
eclipse Technology eXchange Preliminary Version

Integration of BETA with Eclipse
– an exercise in language interoperability

Ole Lehrmann Madsen, Peter Andersen, Mads Brøgger Enevoldsen 1,2

Department of Computer Science
University of Aarhus

Åbogade 34, DK-8200 Århus N, Denmark

Abstract

This paper presents language interoperability issues appearing in order to implement
support for the BETA language in the Java-based Eclipse integrated development
environment. One of the challenges is to implement plug-ins in BETA and be able
to load them in Eclipse. In order to do this, some form of language interoperability
between Java and BETA is required. The first approach is to use the Java Native
Interface and use C to bridge between Java and BETA. This results in a workable,
but complicated solution. The second approach is to let the BETA compiler generate
Java class files. With this approach it is possible to implement plug-ins in BETA
and even inherit from Java classes. In the paper the two approaches are described
together with part of the mapping from BETA to Java class files.

Key words: Language interoperability, BETA, Java, JVM,
Eclipse, debugger, .NET, CLR.

1 Introduction

The goal of this paper is to present experiences from a project on implement-
ing support for the BETA [11] language in Eclipse [2]. Eclipse is a general

1 Email:{olm,datpete,brogger}@daimi.au.dk
2 The integration of BETA with Eclipse has been sponsored by Eclipse.org[2] and the
actual work has been carried out as part of the Master Thesis project by Mads Brøgger
Enevoldsen [3], co-supervised by Peter Andersen and Ole Lehrmann Madsen. The porting
of BETA to CLR and integration with Visual Studio has been sponsored by Microsoft
Denmark and Microsoft Cambridge. The porting of BETA to JVM has been sponsored by
Sun Microsystems. The porting of BETA to JVM and CLR has been carried out by Peter
Andersen and Ole Lehrmann Madsen. We gratefully acknowledge the support, inspiration
and help from Jakob Roland Andersen, Lars Bak, Brian Berry, Gilad Bracha, Susanne
Brøndberg, Neil Gafter, Kim Falk Jørgensen, Henry Michael Lassen, Kasper Verdich Lund,
Henrik Lykke Nielsen, Dave Thomas, and Jørgen Thyme.

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Madsen, Andersen, Enevoldsen

Integrated Development Environment (IDE) with a plug-in architecture that
facilitates addition of new tools. Eclipse is implemented in Java[4] and the ar-
chitecture is well prepared for writing plug-ins in Java. It is possible to write
plug-ins in other languages than Java, but this requires considerably more
work. The main subject of the project has thus been to investigate language
interoperability issues appearing in order to implement support for BETA in
the Java-based Eclipse IDE.

BETA is an object-oriented programming language implemented on a num-
ber of platforms with native compilers. For program development, a powerful
IDE – the MjolnerTool – is available as part of the Mjølner System[9]. The
MjolnerTool is well suited for program development in BETA. There are, how-
ever, a number of reasons for investigating the suitability of using a general
IDE such as Eclipse:

• Most software developers use several programming languages depending on
the kind of project they are working on. Using the same IDE for all the
languages will make it more efficient to alternate between languages.

• Libraries and frameworks may often be used from another language than
they are implemented in. So far language interoperability between object-
oriented (OO) languages has been limited. In the simplest form, procedure
libraries in e.g. C may be used from an OO language. Using Microsoft
COM[5], it has been relatively easy to use components (and objects) across
languages. With Microsoft’s .NET[6]/CLR[7] 3 it has been demonstrated
that it is possible to reuse classes between languages. If language interoper-
ability increases, it is of course an advantage to be able to support several
languages from the same IDE.

• A general purpose IDE should be able to provide more tools than a special
purpose IDE.

• It requires considerable resources to support an IDE like the MjolnerTool.
Using a general IDE, the maintenance burden will hopefully be reduced to
the specific tools being offered by e.g. BETA.

There are a number of requirements that need to be fulfilled in order to replace
the MjolnerTool with Eclipse:

(i) All (or at least most of) the tools available in MjolnerTool should be
available in Eclipse. These include code browsing, text-editing with in-
dentation, syntax-directed editing, semantic browsing, compilation, de-
bugging, a UML-like CASE tool and an interface builder. Furthermore,
other features of modern IDEs such as syntax colouring and semantic
tool-tips should be available.
(a) Code browsing, text editing, syntax colouring, and compiler invoca-

tion were expected to be straightforward to support in Eclipse.
(b) Indentation, syntax-directed editing, semantic browsing, CASE tool

3 CLR is short for Common Language Runtime.

2

Madsen, Andersen, Enevoldsen

and interface builder are all language specific and it was expected
that these tools would have to be provided as new plug-ins.

(c) For debugging it was not clear from the beginning whether or not
it would be possible to reuse some of the Eclipse functionality or a
specific BETA debugger would have to be supplied.

(ii) Plug-ins for BETA should be implemented in BETA. The reason for this
is that it will allow for reuse of existing BETA code from the MjolnerTool.
Furthermore, if BETA developers and users would have to switch to Java
in order to implement BETA tools, the motivation for using Eclipse will
be smaller.

(iii) BETA libraries and frameworks should in general be usable together with
Eclipse. For the non-GUI frameworks no problems were expected, but
for the GUI libraries it is not at all clear to what extent this can be done
when e.g. implementing Eclipse plug-ins.

Below two approaches for integrating BETA with Eclipse are described. The
initial approach is to use JNI to bridge Java and BETA via C. In this way, it
is possible, in principle, to write parts of the plug-ins in BETA. As said below,
this turns out to be tiresome and very complicated to debug.

The second alternative is to generate Java class files from BETA and launch
these class files in Eclipse. Given this, it should be straightforward to write
plug-ins supporting most of the above requirements.

It is, however, a major task to generate class files from BETA. class files
are designed to support Java and in many ways BETA is more general than
Java. The reason why this was considered a realistic alternative was that
the BETA.Eclipse project was carried out at the same time as a project for
implementing BETA on JVM 4 and Microsofts CLR/.NET platform.

The goals of that project are to investigate the suitability of modern
(typed) virtual machines for supporting a language like BETA, to evaluate
JVM and CLR as virtual machine platforms, and to investigate whether lan-
guage interoperability as claimed for CLR/.NET can work with BETA and
also to what extent language interoperability is possible on JVM.

The status of the two projects are as follows:

(i) BETA has been ported to JVM and CLR.

(ii) Language interoperability for BETA on .NET seems to work as promised
– the surprising thing (at least to the authors) is that it works just as
well on JVM.

(iii) A simple form of integration of BETA with Eclipse has been obtained us-
ing JNI. This includes browsing, text editing, indentation, and launching
of the compiler. The indenter module is written in BETA.

(iv) A much more tight integration has been obtained by using the BETA-

4 JVM is short for Java Virtual Machine.

3

Madsen, Andersen, Enevoldsen

to-JVM compiler. 5 Plug-ins can be written in BETA, compiled to class
files and launched in Eclipse.

(v) Using JBeta together with Eclipse it is possible do high-level debugging
of BETA programs by means of the Java debugger available in Eclipse.

2 Initial Eclipse Integration

2.1 The Plug-in

Code-browsing and raw text editing of BETA source files is possible in Eclipse
“out of the box”. However, as Eclipse does not know about BETA source files
it will be inconvenient to use. As an example, Eclipse will complain about
not knowing the language for the file just opened and suggest to edit the file
using a standard text editor.

By making a small Eclipse plug-in consisting of just one XML file, it is
easy to specify that files with the .bet extension should be presented with a
special icon and use the standard text editor without asking.

More functionality can then be added to the plug-in, by supplying special-
ized classes for e.g., text editing. Syntax colouring can be added with a few
classes, whereas compiler activation requires implementing a larger number of
classes since this typically involves extending the Eclipse tool-bar.

2.2 Adding Indent Strategy using JNI

For Eclipse text editing, a so-called indent strategy can be associated. This
specifies a default behaviour for indentation of code. A default indent strategy
called DefaultAutoIndentStrategy exists in the Eclipse class library. Imple-
menting a specific language indent strategy is obtained by overriding methods
in this class.

In the Mjølner System library there is an implementation of an indent
strategy for BETA code. The goal is to use this existing BETA library to
implement the indent strategy in the editor plug-in.

The JDK 6 library provides an interface to native methods called JNI 7 .
This allows code running in the Java Virtual Machine to access library me-
thods written in C. BETA also has a C interface, which combined with JNI
makes interoperability between Java and BETA possible through C.

The implementation – illustrated in figure 1 – consists of three layers,
deployed into a Java part and two external libraries. The Java part implements
the Eclipse extension point. The library entitled JniIndentWrapper contains
all the “plumbing” needed to call C from Java, whereas the library entitled

5 From now on called JBeta
6 Short for Java Development Kit
7 Short for Java Native Interface

4

Madsen, Andersen, Enevoldsen

CwrappedBETALibrary contains the BETA code to be called by Java as well
as a set of C functions exposing the BETA library to JNI.

}

int indentLineCB(int lineNo) {

Java class

}

JniIndentWrapper
public class BetaAutoIndentStrategy extends

DefaultAutoIndentStrategy {

indentLineCB(lineNo);

JNIEXPORT int JNICALL
Java_BetaAutoIndentStrategy_indentLine(JNIEnv *env, jobject obj, int lineNo) {

CwrappedBETALibrary

return indentLine(lineNo);

...

}

System.loadLibrary("JniIndentWrapper")
value = indentLine(lineNo);

native int indentLine(int lineNo);

(#
indentLine: (#

enter lineNo
do ...
#)

#)

 lineNo: @integer;

BETAIndentationLibrary

Fig. 1. Java BETA interoperability using JNI

This form of interoperability requires the BETA plug-in to be written in Java,
but allows some part of the functionality to be implemented in BETA. This
facilitates reuse of existing BETA code. The code for the Java class calling
the BETA libraries through JNI is sketched below:

class BetaAutoIndentStrategy extends DefaultAutoIndentStrategy {
native int indentLine(int lineNo); // External method
public BetaAutoIndentStrategy() {
System.loadLibrary("JniIndentWrapper"); // Load external library
...

}
public void customizeDocumentCommand(IDocument d,

DocumentCommand c) {
...
value = indentLine(lineNo); // Call external method
...

}
}

2.3 Evaluation

Code browsing and raw editing are indeed available “for free” in Eclipse per
se. And with a small plug-in specification it is possible to make Eclipse know
about source files with a given extension. However, to obtain basic function-
ality such as syntax colouring and compiler invocation, quite some coding is
needed. Perhaps more than was expected.

The implementation of the BETA indent strategy by reusing BETA li-
braries through JNI consists of more than 1000 lines of BETA code in several
source files. This shows that this technique is possible to use for a non-trivial
example. However, it has several disadvantages: One problem is that three
different languages are used. This makes the integration tedious and compli-
cated. Not only is it complicated to write the code, but more importantly

5

Madsen, Andersen, Enevoldsen

once written and compiled it is far from certain that it will work. Loading
of the libraries happens at run-time and this late binding of the code makes
it impossible for the compiler to make even simple syntactic and semantic
checks on e.g. the various method invocations. When a run-time error occurs
in external code there is little information from the JVM. Often one has to
suffice with the error message Crashed somewhere outside the VM. Debug-
ging such a bug is done by carefully looking at the source code and using print
statements everywhere!

Overall, this solution is far from good. It solves the problem but for the
implementor, in a very inconvenient way. The next sections describe a different
approach that solves the problem in a native way – namely by compiling the
BETA source directly to JVM bytecode, thus eliminating the need for the JNI
layer.

3 Implementation of BETA on Java Virtual machines

Before presenting the JBeta solution for Eclipse integration, parts of the map-
ping of BETA to JVM are presented – see [1] for a complete description. There
have been two overall issues regarding the mapping of BETA to JVM:

(i) JVM is a typed virtual machine designed to support Java and it was in
no way obvious that BETA could be mapped to JVM. One overall issue
has thus been whether or not it was possible to find a mapping to JVM.

(ii) The other issue is language interoperabiliby as seen from the program-
mer’s point of view. To obtain true language interoperability, it should be
possible to use classes written in Java from BETA and vice versa. Given
an implementation of BETA for JVM this should be possible. The main
issue will be readability/understandability of doing this. Using Java from
BETA will probably not pose problems, since a BETA programmer just
has to understand the Java classes being used.

The other way around may be more problematic, since BETA is more
general than Java. Java programmers that will use BETA should be
presented with a view of BETA as Java classes reflecting the mapping
of BETA to JVM. This means that a readable mapping must be defined
and this is of course a stronger requirement than just finding a working
mapping.

Note that this paper is not an attempt to present the rationale behind the
generality of BETA. The purpose is to present some of the issues in mapping
BETA to JVM. This will be illustrated by more or less useful examples. The
rationale behind BETA has been presented in a number of other places such
as [10,11]. A short summary of BETA is given in the appendix.

6

Madsen, Andersen, Enevoldsen

3.1 Example of a BETA program mapped into Java

BETA has one major abstraction mechanism called pattern. A pattern unifies,
e.g., the concepts of class and method known from other languages like Java
and C#[8].

Consider the following example of a BETA pattern describing a calculator
that may add a sequence of values:

Calculator:
(# R: @integer;

set: (# V: @integer enter V do V -> R #);
add: (# V: @integer enter V do R + V -> R exit R #)

#);

The Calculator pattern has three attributes R, set and add. R is an instance
variable holding the current value of the Calculator. The attributes set and
add describe operations on the calculator. The operation set is used to set
the value of R to the value of the enter-parameter V. The operation add adds
the value of the enter-parameter V to R and returns (exit) the value of R to
the caller.

The following example shows an instance C of Calculator, an instance X

of integer; a call of C.set with enter arguments 12; and a call of C.add with
enter argument 5 and the resulting exit-value being assigned to X.

C: @Calculator; X: @integer;
12 -> C.set;
5 -> C.add -> X;

Note that Calculator, set and add are all examples of patterns.

3.2 A simple but incomplete mapping

In the example in the previous section, Calculator is used as a class and set

and add as methods. This use of the Calculator pattern is illustrated by the
following simple mapping to a Java class:

class Calculator extends Object {
int R;
void set(int V) { R = V; }
int add(int V) { R = R + V; return R; }

}

The BETA declarations and invocations shown above then map to the follow-
ing declarations and invocations in Java:

Calculator C = new Calculator(); int X;
C.set(12);
X = C.add(5);

7

Madsen, Andersen, Enevoldsen

3.3 A complete mapping

The above mapping shows a simple semantics of the BETA Calculator pat-
tern. To capture the full semantics of the Calculator pattern a more complex
mapping is needed. The fact that e.g. add is a pattern means that it is possible
to use add as a class and create instances of add as in the following example:

C: @Calculator; X: @integer;
A: ^C.add;
&C.add[] -> A[];

The variable A may refer to instances of C.add. The statement &C.add[] ->

A[] creates an instance of the pattern C.add and assigns its reference to A. It
is now possible to use A to assign a value to the instance variable V:

17 -> A.V

The pattern add also defines a do-part, which is executed when add is used
as a procedure. The do-part of A may be executed directly by the following
statement (the exact semantics should be clear when the complete mapping
of the Calculator pattern is depicted below):

2 -> A -> X

To obtain the full semantics of the add pattern, it is mapped into the following
inner class of Calculator:

class add extends Object {
int V;
void enter(int a) { V = a; }
void do() { R = R + V; }
int exit() { return R; }

}

In addition, the following method is added to class Calculator:

int add(int V) {
add A = new add();
A.enter(V);
A.do();
return A.exit();

}

The BETA invocation 5 -> C.add -> X may now be mapped into the corre-
sponding Java invocation X = C.add(5).

The structure of the complete mapping of the Calculator pattern is:

class Calculator extends Object {
int R;
void set(int a) { ... };
int add(int V) { ... }
class set extends Object { ... }
class add extends Object { ... }

8

Madsen, Andersen, Enevoldsen

}

As can be seen, each inner pattern of Calculator – in this case set and add –
gives rise to a method and an inner class. This reflects the fact that a pattern
may be used as a method as well as a class. The method int add(int) is for
using pattern add as a method.

The inner class add may be used to create instances of the pattern as a
class. Consider the BETA example of creating instances of pattern add. This
is mapped to the following Java code.

Calculator C = new Calculator(); // C: @Calculator
Calculator.add A = C.new add(); // A: ^C.add; &C.add[]->A[]
A.V = 17; // 17 -> A.V
A.enter(2); // 2 -> A -> X;
A.do();
int X = A.exit();

The above example illustrates how a subset of BETA is mapped to Java. Of
the remaining parts of BETA, the most challenging ones to map are inner,
virtual patterns used as virtual classes, leave and restart (essential goto)
out of nested method calls, patterns as variables and coroutines, concurrency
and synchronization. The full mapping is described in [1]. [1] also describes
the mapping to C#, which at the language level essentially is identical in
terms of structure to the mapping to Java. One major difference is that
.NET/CLR and thus C# does not support full inner classes, which means
that the mapping of nested classes has to include an explicit reference to the
enclosing object. At the bytecode level there are of course minor technical
differences between JVM and CLR.

3.4 Using Java classes from BETA and vice versa

To import Java class files into a BETA program, BETA has been extended with
an ExternalClass declaration that allows external classes to be imported. A
tool has been implemented that can translate any class-file into a set of BETA
external class declarations. In this way, the whole Java library is available from
BETA.

Currently, the tool has to be used on a class-file before it can be used from
BETA. In the future, it will be possible to import Java class files directly to
a BETA program and integrate the tool with the compiler.

The other way around – using BETA from Java – works immediately. A
BETA class-file can be imported and used from any Java program. JBeta
generates a Java package structure from a BETA pattern. The main problem
in using BETA from Java is the lack of a browser for BETA class files to
be used by Java programmers. Currently, Java programmers will either have
to inspect the BETA code and from that derive how the corresponding Java
class files look like or alternatively reverse engineer a Java source file from the
BETA class-file. However, it should be straightforward to develop a browser

9

Madsen, Andersen, Enevoldsen

tool.

4 JVM Based Eclipse Integration

In section 2, it was described how the indenter library, written in BETA, was
accessed from Java in the plug-in using JNI. With JBeta this is much easier.

The Java class BetaAutoIndentStrategy can now be replaced with the
BETA pattern inheriting from the Java class DefaultAutoIndentStrategy:

BetaAutoIndentStrategy: DefaultAutoIndentStrategy
(# customizeDocumentCommand:

(# d: ^IDocument; c: ^DocumentCommand; value: @integer;
enter (d[], c[])
do ... lineNo -> indentLine -> value (* Call BETA *)
#)

#)

This pattern calls the indentation library directly, so with an implementation
of BETA on JVM, it is possible to drop all of the external libraries used for JNI.
Note that the solution could just as well have kept BetaAutoIndentStrategy
in Java, and accessed the BETA library from there. This is up to the pro-
grammer.

4.1 Debugging

The BETA IDE described so far gives the user the possibility to edit, indent,
compile and run BETA programs. Another important part of an IDE is the
debugger. As mentioned above, the MjolnerTool has a native debugger, so
there are two solutions for adding a debugger to the BETA plug-in: use the
classic BETA debugger or somehow use the Java debugger available in the
Eclipse Java-IDE, called the JDT debugger.

Using the classic BETA debugger would require the following: First, the
existing code should be refactored, structuring it so there is a clear separation
of UI and non-UI code. Second, the non-UI part of the debugger would then
have to be modified making it fit in the Eclipse launching/debugging frame-
work – which means it would have to fulfil the contracts of the plug-ins by
implementing the correct Java interfaces.

Using the JDT debugger is possible because it operates on Java bytecodes
and that is what JBeta generates. So the idea is to compile the BETA source
using JBeta and when debugging, then do “whatever JDT does when debug-
ging”.

4.2 Implementation of the BETA Debugger in Eclipse

Launching and debugging in Eclipse, and thereby in JDT, is closely con-
nected [14].

10

Madsen, Andersen, Enevoldsen

Since JBeta generates Java bytecodes from BETA sources the extension
in the BETA IDE can use the same JDT class for handling, launching and
debugging as is used for Java.

Using this class it is immediately possible to launch BETA applications.
Debugging, however, is a bit more complicated, since Eclipse must be in-
structed on how to set the breakpoints, given the source BETA code.

The Eclipse class JDIDebugModel[17] 8 is an implementation of the Java
Debug Interface (JDI) in SUN Microsystems’ Java Platform Debugger Archi-
tecture (JPDA)[16]. It contains static methods for adding breakpoints to the
debug model. The methods take arguments such as name of the source file,
line number and the name of the type (class) in which to set the breakpoint.
With this information the debugger is able to identify the corresponding byte-
codes at run time.

What complicates the setting of breakpoints in BETA sources, is the type
name that has to be specified. As described in section 3, a BETA source file is
compiled into several class files, i.e. many types. Given a specific BETA file
and a line number it is not trivial to find the corresponding generated class

file. In a future version, the BETA compiler would, however, be able to supply
this information for the BETA plug-in 9 .

The Eclipse debugging model could be more friendly for BETA and the
numerous other languages targeting JVM [15] by using a less strict coupling
to JPDA.

Since Java class files contain information about source file names and line
numbers for the bytecodes, the debugger should be able to find the break
locations given just the source file name and line number: For classes already
loaded, the debugger could check if any of these corresponds to the given
source file, and set the breakpoint. If no such class is currently loaded, the
debugger could defer the breakpoint setting and repeat the analysis whenever
a new class is loaded.

In the proof-of-concept implementation of the BETA IDE, it is possible to
add line breakpoints to the BETA source 10 . I.e. the debugger can stop execu-
tion on specific BETA imperatives. It is possible to perform single stepping,
and objects may be inspected and modified with full source code information
including BETA names of classes and variables [3]. This behaviour is mainly
a property of JVM, which has complete type information, symbolic names,
and source code line numbers for a given program. It is, however, impressive
that it is possible to develop generic tools like Eclipse and JVM that given a
compiler that generates JVM bytecode can support a full symbolic debugger

8 located in package org.eclipse.jdt.debug.core
9 The activation of JBeta when building BETA projects is accomplished by calling an
external jbeta executable
10 At the time of writing it is only possible to break inside the PROGRAM fragment, because
we have not yet integrated the above mentioned program analysis to determine the class
name from a source file position

11

Madsen, Andersen, Enevoldsen

for a considerably different language like BETA.

In figure 2 a simple BETA program is being debugged. The debugger has
stopped the execution and it is possible to inspect and change the object fields.

Fig. 2. Debugging BETA in Eclipse

4.3 Evaluation of the JBeta Integration

The Eclipse integration based on JVM is very elegant compared to the inte-
gration based on JNI. In JNI there were many layers of code, because calls
between Java and BETA had to happen through C. With JBeta there is no
difference in using BETA patterns or Java classes, so from the point-of-view of
the BETA programmer, it is as if only working with BETA – when in fact it is
the design of a plug-in that has to fit in the Eclipse framework. The language
barriers have disappeared.

It is impressing that the JDT debugger in Eclipse is general enough to
debug BETA at a symbolic level, despite originally being targeted at Java.
Besides the relative small extension that has to be implemented to allow for the
debugger to be launched, the only complex programming task is the handling
of breakpoints.

The disadvantage of this solution is, as illustrated, that the mapping of the
BETA language to JVM is non-trivial. Furthermore, a system like the BETA
Mjølner system contains a large number of libraries and porting these involves

12

Madsen, Andersen, Enevoldsen

changing numerous system specific calls into calls of the corresponding Java
class libraries.

4.4 Comparison with Microsoft Visual Studio .NET Integration

Part of the project[1] in porting BETA to CLR/.NET has been to investigate
the use of Microsoft Visual Studio .NET [12] as an IDE supporting BETA.
Visual Studio .NET (VS) is a powerful IDE supporting a number of languages
and in this way, it is a possible alternative to Eclipse. As indicated by its
name, this IDE supports the languages of the Microsoft .NET platform, which
in many ways resembles the Java platform. Unlike Java, .NET is designed to
support multiple programming languages.

VS immediately allows for browsing and editing of BETA source files.
Furthermore, the multi-language support manifests itself by the ease of getting
a BETA program into VS and doing almost complete source level debugging
on it 11 . To make VS do this, all that was needed was to include source file
and line number information into the generated byte code for .NET/CLR,
and then just open an .exe file generated from BETA in VS. As can be seen
from the VS screenshot in figure 3, this immediately allows VS to identify the
source files, do source level stepping, insert break points, inspect objects and
even change values of variables. No changes to VS were needed to obtain this!

Fig. 3. Debugging BETA in Visual Studio .NET

However, to obtain a more complete language integration, i.e. syntax colour-
ing, semantic tool-tips, control of the BETA compiler etc., hard work is needed:

11 As can be seen in the VS screenshot in figure 3, variables are shown in internal .NET
syntax, e.g. the i variable is shown to be of type int. Presenting this as the BETA type
integer is one of the things that can be accomplished by extending the debugger integration

13

Madsen, Andersen, Enevoldsen

Like in Eclipse, the VS IDE is programmable and extensible. The APIs for
doing this – called VSIP 12 – consist of a large number of COM interfaces,
that need to be implemented to obtain the integration. COM[5] is Microsoft’s
predecessor to the .NET platform and it uses a completely different program-
ming model and run-time system. Thus it requires a lot of non-.NET work
to do the integration. However, at the time of writing, a beta-release of a
so-called managed VSIP API has been announced from Microsoft [13]. Using
this it will be possible to write the VS integration code entirely in BETA and
compile this BETA code into .NET bytecode, i.e. using exactly the same strat-
egy as is used for the Eclipse integration. This work has not been done, but
the VSIP promises features such as handling of projects; participating in the
building, debugging and deployment of a project; creating a custom debugger
for your language; creating a custom text editor for your language; creating an
interface builder with code generation in your language; IntelliSense (semantic
tool-tips); syntax colouring; and adding your logo to the VS splash screen.

5 Conclusion

At this stage of the project, a proof-of-concept for integration of BETA in
Eclipse has been obtained. Two strategies have been examined.

An integration based on JNI showing that it is indeed possible to write
part of a plug-in – the indenter – in BETA and load it in Eclipse. There are,
however, a number of disadvantages of this technique. JNI is not easy to use –
this is more a Java problem than a problem of Eclipse – it should be possible
to supply a much simpler and easy-to-use interface to C for Java than JNI.
Even with an improved JNI, the distance from Java to BETA over C is too
long, which severely complicates debugging and makes the code less readable.

The integration based on JVM on the other hand works well. By generating
Java class files from BETA there are – except for the languages – no differences
between writing plug-ins in Java or BETA.

In addition, the JVM integration makes it possible to use the Eclipse de-
bugger for BETA at the same symbolic level as for Java. But there is room
for improvement in the design of the JDT, e.g., breakpoint setting could be
handled more generically – JDT is based on the JPDA model for the Java
language, but could probably be changed to support other languages as well.

A corresponding integration into VS will be possible, and although the ini-
tial integration (browse, edit, and debug) requires less work than in Eclipse,
to obtain a full language integration, comparable work is expected to be re-
quired if using the pre-released managed APIs, whereas more tedious work is
expected if using the old style COM interfaces. One disadvantage of using
VS is that it is a commercial product where Eclipse is free. In addition, VS
only runs on Windows where Eclipse is available wherever Java is available.

12 Short for VS Integration Programme

14

Madsen, Andersen, Enevoldsen

Our experience is, however, that Eclipse does not run well on certain Unix
platforms including Sun Solaris.

It should be apparent that the main reason for the tight integrations of
BETA with Eclipse and VS is that the integrations are based on the BETA
implementations of BETA for JVM and CLR. The architecture of JVM and
CLR have demonstrated that with modern virtual machines with full symbolic
information available it is possible to obtain support for a new language like
BETA.

The implementations of BETA on JVM/CLR have also demonstrated that
language interoperability is possible between BETA and Java/C#. From
BETA it is easy and straightforward to use Java and/or C# classes includ-
ing inheritance. And the other way around – using BETA patterns from
Java and/or C# works just as well. At this stage it is unknown to what
extent BETA programmers will use Java/C# libraries and frameworks in ma-
jor projects and vice versa. Currently, mainly example programs including
Applets have been written.

It was no surprise that language interoperability worked for CLR/.NET,
which has been designed for that. It was a surprise that it worked just as well
for JVM.

It is outside the scope of this paper to discuss the quality of JVM and CLR
with respect to supporting a language like BETA – see [1] for such a discussion.
It was indeed possible to find a mapping of BETA to JVM/CLR. Certain
parts of BETA did not map very well from a logical as well as an efficiency
point of view. Platforms like JVM/CLR make it easy for language developers
to write compilers. One might argue, though, that JVM and CLR are just
representatives of the early generations of general purpose virtual machines.
There is definitely room for improvements with regard to generality.

At this stage of the project, the main emphasis has been on the language
interoperability issues in order to be able to write plug-ins in BETA. As a
result writing Eclipse plug-ins is now possible in BETA and more sophisticated
plug-ins can be created using the existing BETA libraries currently used by
the MjolnerTool.

The BETA IDE in Eclipse has been used by a small team of people for
browsing, text editing, indentation and compilation. This has been a promis-
ing experience and in the future increased use of Eclipse as an IDE for BETA
is to be expected. Furthermore, when a full integration into Visual Studio has
been produced, using BETA in Visual Studio is to be expected as well. Time
will tell which of the two will turn out to be the preferred IDE on Windows.

The main conclusion so far is that language interoperability as discussed
in this paper is indeed possible to a certain extent. Modern virtual machines
like JVM and CLR are able to support other languages including support
for tools in IDE’s as Eclipse and Visual Studio. Language interoperability
should, however, be taken with a grain of salt. JVM and CLR support a
family of languages with similar structure. The more a language differs from

15

Madsen, Andersen, Enevoldsen

the family, the more complicated is the mapping to the virtual machine. The
authors do, however, believe that there is sufficient room between platforms
like JVM/CLR and general platforms like standard microprocessors to support
a broader range of languages at the same level as JVM and CLR does.

References

[1] P. Andersen, O.L. Madsen: Implementing BETA on Java Virtual Machine
and .NET – an exercise in language interoperability, Department of Computer
Science, University of Aarhus, January 2003.

[2] Eclipse Project Home Page: http://www.eclipse.org

[3] M. B. Enevoldsen: Object Oriented Language Interoperability – A Case Study
of BETA support in Eclipse, Department of Computer Science, University of
Aarhus, forthcoming Master Thesis, 2004.

[4] Arnold, Gosling, Holmes: The Java Programming Language, Third Edition,
Addison-Wesley, Boston 2000, ISBN: 0201704331

[5] Dale Rogerson: Inside COM, Microsoft Press, February 1997 ISBN:
1572313498

[6] Microsoft .NET: http://www.microsoft.com/net

[7] Microsoft .NET Common Language Runtime:
http://msdn.microsoft.com/library/en-
us/cpguide/html/cpconCommonLanguageRuntimeOverview.asp

[8] C# home page: http://msdn.microsoft.com/vcsharp/language

[9] The Mjølner System, Mjølner Informatics A/S:
http://www.mjolner.dk/mjolner-system

[10] O.L. Madsen, B. Møller-Pedersen: Virtual Classes - A Powerful Mechanism
in Object-Oriented Programming, in: Proceedings of OOPSLA’89, Object-
Oriented Programming Systems, Languages and Applications, Sigplan
Notices, 1989

[11] O.L. Madsen, B. Møller-Pedersen, K. Nygaard: Object-Oriented Programming
in the BETA Programming Language. ACM Press/Addison Wesley, Addison-
Wesley, June 1993, ISBN 0-201-62430-3, 350 pages. Out of print – a copy can
be downloaded from http://www.mjolner.com/mjolner-system/books en.php

[12] Microsoft Visual Studio Home Page: http://msdn.microsoft.com/vstudio

[13] Microsoft Visual Studio Industrial Partners (formerly: Microsoft Visual Studio
Integration Program): http://www.vsipdev.com

[14] J. Szurszewski: We Have Lift-off: The Launching Framework in Eclipse, 2003
http://www.eclipse.org/articles/Article-Launch-Framework/launch.html

16

http://www.eclipse.org
http://www.microsoft.com/net
http://msdn.microsoft.com/library/en-us/cpguide/html/cpconCommonLanguageRuntimeOverview.asp
http://msdn.microsoft.com/library/en-us/cpguide/html/cpconCommonLanguageRuntimeOverview.asp
http://msdn.microsoft.com/vcsharp/language
http://www.mjolner.dk/mjolner-system
http://www.mjolner.com/mjolner-system/books_en.php
http://msdn.microsoft.com/vstudio
http://www.vsipdev.com
http://www.eclipse.org/articles/Article-Launch-Framework/launch.html

Madsen, Andersen, Enevoldsen

[15] Programming Languages for the Java Virtual Machine:
http://grunge.cs.tu-berlin.de/~tolk/vmlanguages.html

[16] Java Platform Debugger Architecture: http://java.sun.com/j2se/1.4.2/
docs/guide/jpda

[17] Eclipse Online Documentation for JDIDebugModel: http://help.eclipse.
org/help21/index.jsp?topic=/org.eclipse.jdt.doc.isv/reference/
api/org/eclipse/jdt/debug/core/JDIDebugModel.html

6 Appendix. A short overview of BETA

In BETA abstraction mechanisms such as class, type, procedure, method,
function, coroutine, process and exception have been unified into one ab-
straction mechnism - the pattern. In addition to the pattern, BETA has
subpattern, virtual pattern and pattern variable. This unification of abstrac-
tion mechanisms gives a uniform treatment of abstraction mechanisms and a
number of new ones. Most object-oriented languages have classes, subclasses
and virtual procedures and some have procedure variables. Since a pattern
is a generalization of say class, procedure, function, the notions of subpat-
tern, virtual pattern, nested pattern and pattern variable also apply to these
abstraction mechanisms.

The subpattern covers subclasses as in most other languages. In addition,
procedures may be organized in a subprocedure hierarchy in the same way as
classes may be organized in a subclass hierarchy. Since patterns may also be
used to describe functions, coroutines, concurrent processes, and exceptions,
these may also be organized in a pattern hierarchy.

The notion of virtual pattern covers virtual procedures as in Simula, Java
and C#. In addition, virtual patterns cover virtual classes, virtual coroutines,
virtual concurrent processes, and virtual exceptions. Virtual classes provide a
more general alternative to generic classes as in Eiffel or templates as in C++.

A nested pattern is a pattern defined textually within another pattern.
Nested procedures are known from Algol and Pascal. In addition to nested
procedure patterns, BETA also supports nesting of class patterns. Java sup-
ports nested classes in the form of inner classes. In C++ and C# a restricted
form of nested classes is supported, but data-items in the enclosing object
cannot be referenced from inner classes.

BETA includes the notion of pattern variable. This implies that pat-
terns are first class values, that may be passed around as parameters to other
patterns. By using pattern variables instead of virtual patterns, it is possible
dynamically to change the behavior of an object after its generation. Pattern
variables cover procedure variables (i.e. a variable that may be assigned dif-
ferent procedures). Since patterns may be used as classes, it is also possible
to have variables that may be assigned different classes, etc.

An object may be singular, which means that it is described directly and

17

http://grunge.cs.tu-berlin.de/~tolk/vmlanguages.html
http://java.sun.com/j2se/1.4.2/docs/guide/jpda
http://java.sun.com/j2se/1.4.2/docs/guide/jpda
http://help.eclipse.org/help21/index.jsp?topic=/org.eclipse.jdt.doc.isv/reference/api/org/eclipse/jdt/debug/core/JDIDebugModel.html
http://help.eclipse.org/help21/index.jsp?topic=/org.eclipse.jdt.doc.isv/reference/api/org/eclipse/jdt/debug/core/JDIDebugModel.html
http://help.eclipse.org/help21/index.jsp?topic=/org.eclipse.jdt.doc.isv/reference/api/org/eclipse/jdt/debug/core/JDIDebugModel.html

Madsen, Andersen, Enevoldsen

not as an instance of a class. In Java this corresponds to anonymous classes.

BETA supports passive as well as active objects. A BETA object may
act as a coroutine. BETA coroutines may be executed concurrently (non
pre-emptive scheduling in current version). The basic mechanism for synchro-
nization is the semaphore, but high-level abstractions for synchronization and
communication, hiding all details about semaphores, are easy to implement,
and the standard libraries include monitors and Ada-like rendezvous. The
user may easily define new concurrency abstractions including schedulers for
processes. The distribution library supports true concurrency between BETA
objects.

An example of a BETA program is given below:

(#
Calculator:

(# R: @integer
set: (# V: @integer enter V do V -> R #);
add: (# V: @integer enter V do R + V -> R exit R #)

#);
C: @Calculator;
X: @integer;

do 12 -> C.set;
5 -> C.add -> X

#)

• A BETA program is a singular object containing three declarations:
· Calculator, a pattern; C, an instance of Calculator; and X, an instance

of integer.
and two statements:
· 12 -> C.set, a method invocation of C.set with argument 12.
· 5 -> C.add -> X, a method invocation of C.add with argument 5 and a

subsequent assignment of the result to variable X.

• The Calculator pattern contains three declarations: R, an instance of in-
teger; set, a pattern; and add, a pattern.

• The pattern set contains:
· A declaration, V; an enter-part, enter V, which specifies that V is an input

argument to set; and a statement V -> R assigning V to R.

• The pattern add is similar to set, but in addition contains:
· An exit-part, exit V, which specifies that the value of V is returned as a

result of execution of set.

In the above example, Calculator, set and add are all examples of patterns.
Calculator is used as a class and set and add are used as methods. It is,
however, possible to create instances of set and add as if they were classes.
An example of creating instances of add is given in the beginning of section
3.3 of this paper.

18

	Introduction
	Initial Eclipse Integration
	The Plug-in
	Adding Indent Strategy using JNI
	Evaluation

	Implementation of BETA on Java Virtual machines
	Example of a BETA program mapped into Java
	A simple but incomplete mapping
	A complete mapping
	Using Java classes from BETA and vice versa

	JVM Based Eclipse Integration
	Debugging
	Implementation of the BETA Debugger in Eclipse
	Evaluation of the JBeta Integration
	Comparison with Microsoft Visual Studio .NET Integration

	Conclusion
	References
	Appendix. A short overview of BETA

