
Mjolner Integrated Development Tool − Overview

Mjølner Informatics Report
MIA 91−39
March 2004

Copyright © 1991−2004 Mjølner Informatics.
All rights reserved.

No part of this document may be copied or distributed
without the prior written permission of Mjølner Informatics

http://www.mjolner.com

Table of Contents

1 Overview..1
1.1 Source Browser (Ymer) and Editor (Sif)..1
1.2 Source Level Debugger (Valhalla) ..1
1.3 Interface builder (Frigg) ...1
1.4 CASE tool (Freja)...1

2 Source Browser And Editor...2

3 Debugger ...5

4 Interface Builder ...8

5 CASE Tool...10

Index ...12
A...12
C..12
H..12
I..12
P...12
S...12
V...12

 Mjolner Integrated Development Tool − Overview

i

1 Overview
The Mjølner Tool is an integrated development tool with the following components: a source
browser and editor, a source level debugger, an interface builder and a CASE tool. The Mjølner
Tool is also integrated with the BETA compiler.

1.1 Source Browser (Ymer) and Editor (Sif)

Using abstract presentation and semantic browsing Sif and Ymer provides good overview of
libraries and frameworks including your own design and code. Sif is a structure editor. It always
operates on complete structures. Sif prevents syntax errors and has powerful operations for
modifying even larges pieces of code. The need for scrolling is reduced, making it easy to select
large structures not fitting in a window. [Introduction]

1.2 Source Level Debugger (Valhalla)

Valhalla supports breakpoints, single stepping, tracing, object indpection, stack inspection, code
inspection, source browsing etc. The accompanying object browser can be used to inspect objects
in a persistent store. [Introduction]

1.3 Interface builder (Frigg)

Frigg supports direct construction of graphical user interfaces with automatic incremental code
generation and incremental reverse engineering. The developer can alternate between working on
the user interface and coding the underlying functionality. [Introduction]

1.4 CASE tool (Freja)

Freja supports the UML−based syntax for BETA. Freja has incremental code generation and
incremental reverse engineering. This is achieved without destroying the overview of the code with
internal technical comments. Changes in the design are immediately reflected in the code and vice
versa. Freja makes it easy to alternate between design and implementation. [Introduction]

1 Overview 1

2 Source Browser And Editor
Sif [1] is a general grammar−based editor, but it is especially useful for browsing and editing BETA
programs. Modularity is in BETA handled by means of the fragment system [MIA 99−42] used for
combining fragments into a whole BETA program.

Sif contains a number of basic components: a source browser (Ymer), a fragment group editor and
a fragment form editor. Sif is integrated with the BETA compiler that gives a good support for
locating and correcting semantic errors.

 Figure 1: Source browser and editor

Sif includes the following functionality:

Source Browser
The source browser makes it possible to browse in projects. A project can be a collection of
files, a file directory or parts of the dependency graph of a BETA program. Links in the

2 Source Browser And Editor 2

#mia99-42

fragment structure like ORIGIN and INCLUDE can be followed easily.
Fragment Group Editor

The fragment group editor is a high−level editor used to manipulate the dependency graph
of BETA programs, e.g. to create and delete whole fragment forms in fragment groups and
to create and modify links like ORIGIN and INCLUDE between the fragment groups.

Fragment Form Editor
The fragment form editor is a structure editor that works inside fragment forms. Structure
editing is a powerful technique for editing programs without introducing syntax errors. At the
fragment form level Sif also provides useful browsing facilities, based on the syntactic and
semantic structure of BETA programs.

Structure editing
The basic idea of structure editing is that the program is manipulated in terms of its logical
structure rather than the textual elements such as characters, words and lines. The
advantage of this approach is that only logically coherent parts can be inserted or deleted
and thereby preserving the syntactical rules of the language at any time.
Structure editing is especially useful for application−oriented languages intended for
end−users, casual users and beginners that may have difficulties in remembering the
concrete syntax. Also a program constructed by structure editing needs not be parsed,
thereby saving time in the development phase.

Text editing
Structure editing has its greatest force at the higher levels of editing, i.e. for creating the
overall structure of the program or for moving around large chunks of code. At the detailed
level the textediting technique is more useful. Therefore the programmer may alternate
freely between structure editing and textual editing in Sif. Any program part may be textually
edited.

Incremental parsing
Any program part that has been textually edited is immediately parsed. Only the text−edited
part of the program is parsed.

Adaptive incremental prettyprinting
The editor includes an adaptive prettyprinting algorithm which prints the program such that it
always fits within the size of the window or paper.

Abstract presentation and browsing
The editor is able to present a program at any level of detail. At the top−level of a program
the user may get an overview of classes and procedures. It is then possible to browse
through the classes and procedures to see more and more details. This mechanism is
completely general since the user may decide the level of granularity. Printing a program at
different abstraction levels provides a good basis for documentation.

Integration of documentation and comments
The user decides whether or not to display comments. The user also decides whether to
display a comment as part of the program or in separate window. A pretty−print of a
program which includes just the class and procedure headings (an abstract presentation)
and corresponding comments may be produced. This makes it possible to extract an
interface specification from the program including the explaining comments.
Programmers are motivated for integrating code and documentation since comments are
easy to hide. Large pieces of documentation need not to disturb the overview of the
program. Conversely it is easy to extract a high−level presentation of the program including
the comments.

Hypertext facilities
The editor includes hypertext facilities. The facility for handling comments is an example of
a hypertext link between a program and a text piece. Another type of hypertext link is links
from the use of a name in a program to the corresponding name declaration. Such semantic
links are very useful especially when working with large programs. At the fragment group
level, other examples like ORIGIN and INCLUDE links are links from SLOTs to their
corresponding fragment forms and vice versa.

Metaprogramming system

 Mjolner Integrated Development Tool − Overview

2 Source Browser And Editor 3

The editor is built upon a metaprogramming system [MIA 91−14], which is available to the
user. The user has the possibility to program his or her own metaprogramming tools. It is
possible to integrate such tools with the editor or simply to add functionality to the editor.
This tailorability is provided by a flexible communication model and the object−oriented
implementation language of the editor, which is BETA.

Grammar−basis
The editor is grammar−based, which means that it may support any language that can be
described by means of a context free grammar. All the facilities mentioned above (except
semantic links which require a semantic checker) are provided for any language that can be
described in a context free grammar. Structure editing can not only be used on programs
but any kind of documents with a formal or semi−formal structure. In the Mjølner Tool
manuals the main focus will be on program editing in BETA. Editors have been generated
for programming languages like BETA, SIMULA67, Pascal, Modula−2, for the query
language SQL, for the specification languages SDL−92 and GDMO and finally for document
types described in subsets of ODA and SGML. In addition the structure editor can be used
to create or modify the grammars and prettyprint specifications for each language.

In the Mjølner Tool manuals the focus with respect to editing is on how to use the structure editor
for developing programs in one of the already supported programming languages, especially the
BETA language.

In [MIA 91−14] it is described how to generate a structure editor for a new language, and briefly
how to add functionality to the editor or integrate the editor with another tool.

[Tutorial] [Reference Manual]

 [1] Sif is the wife of the god Thor. Sif is well−known for her golden hair

 Mjolner Integrated Development Tool − Overview

2 Source Browser And Editor 4

#mia91-14
#mia91-14
sif-tut-3.html
sif-ref-4.html

3 Debugger
 Valhalla [2] is the source level debugger in the Mjølner System. Valhalla offers an object−oriented
environment for the debugging of BETA programs. Using Valhalla, you are able to control the
execution of any BETA program; inspect the state of runtime objects; and trace the execution of the
BETA code implementing the functionality of the application. The aim of Valhalla is to help the
programmer to locate errors in BETA programs by tracing their execution at the BETA source level.

The user interface is divided in two integrated parts: the source browser, and the Valhalla Universe.
The source browser enables browsing in the source code of the application being debugged (as
well as other source files), and the Valhalla Universe enables the display of runtime objects and
execution stacks of the actual execution during the execution of the application.

 Figure 2: Debugger universe

The program execution may be controlled e.g. by setting breakpoints and single stepping at the
BETA source level. Runtime errors are caught by Valhalla that will display the offending object and
code. From there, program state can be browsed to locate the cause of error. The debugged
program executes in a process of its own, being watched by Valhalla, but otherwise unaffected.

Using the Mjølner Debugger you may:

• Control and trace the execution of a BETA program by setting breakpoints and stepping at
the level of single BETA source lines, stepping over procedure−calls and even single step at
the level of machine code instructions.

• Simultaneously examine the state of any number of objects.
• Examine the execution stack and view code and objects on the stack.
• Examine the program heaps and view objects on the heaps.
• Simultaneously view any number of windows containing source code.

3 Debugger 5

 Figure 3: A breakpoint

The breakpoints and current execution point in the code is shown in the sourcebrowser.

Trace points
In order to make it easy to trace the execution of the application, Valhalla offers trace
points. A trace point is a point in the source code, with an associated text string. Each time
the execution passes a trace point, the text string is printed on the standard output. The text
string is specified as part of the specification of the trace point.

Break points
In order to inspect the state of objects during the execution of the application, Valhalla offers
break points. A break point is a point in the source code. Each time the execution passes a
break point, control is passed back to Valhalla, enabling you to inspect the state of the
execution, the state of runtime objects, etc.

Execution Control
Using Valhalla, you can control the execution of any BETA application. You can start and
stop the execution, set break points and trace points, single step at the level of machine
code instructions, at the level of BETA imperatives, step over procedure calls, etc.

Runtime Inspection
Valhalla offers extensive support for inspection of the runtime structure of the running
application. You can examine the state of objects and runtime stacks. Using the
easy−to−use graphical interface, you can navigate through the entire object structure, and
locate any object in the application, inspecting its state.

 Mjolner Integrated Development Tool − Overview

3 Debugger 6

[Tutorial] [Reference Manual]

 [2] Valhalla is the name of the Hall of the Nordic God Odin. Valhalla is the place whereto all the
dead warriors are brought when they have fallen as heroes on the battlefield. Odin is the highest
ranking God in Asgaard

 Mjolner Integrated Development Tool − Overview

3 Debugger 7

valhalla-tut-3.html
valhalla-ref-3.html

4 Interface Builder

Frigg [3] is the interface builder of the Mjølner System, it aims at supporting rapid prototyping and is
meant primarily for system designers and developers.

Frigg supplies a graphical editor which interacts with the structure editor to create a prototyping
environment. The graphical editor lets its users construct the user interface via direct manipulation,
while the necessary code is generated automatically and incrementally behind the scene.

 Figure 4: Graphical GUI editor

The generated code can be extended and tailored using the structure editor, and this tailoring can
take place at any time during the development of the user interface, because the graphical editor
can keep track of the code even though the code has been altered in the structure editor
(incremental reverse engineering). The developer can therefore alternate between working on the
user interface and coding the underlying functionality. In addition GUI applications developed or
modified outside the interface builder can be reverse engineered and modified in the graphical
editor.

The integration of Frigg's editors is accomplished using the Mjølner System's uniform
representation of programs: abstract syntax trees (ASTs). Manipulations of the ASTs are done
through the Meta−Programming System (MPS). Furthermore, all editors working on the same AST
are informed when the AST changes, thereby allowing the editors to ensure consistency.

Frigg utilises the Fragment System to: (1) Get access to Lidskjalv, the Mjølner Graphical User
Interface environment (GUIenv), (2) Create user interface modules that are properly separated
from the model modules of the program, (3) Separate the interface part and the implementation

4 Interface Builder 8

part of the user interface objects, to allow fine tuning of the users interface without recompiling the
entire program.

The code generated by Frigg are specialisation's of the classes in GUIenv.

Frigg does not enforce one particular style of development on its users. In fact, Frigg supports at
least the following approaches: (1) starting with design of user interface objects (UIOs) and building
up a horizontal prototype having only minimal functionality; (2) starting from a model, and an
implemented description of the functionality of a system, but with no UIOs implemented; (3) vertical
prototyping, i.e. implementing the functionality behind a subset of a horizontal prototype or fully
implementing a small subset of a system intended for incremental extension; (4) simulation of
functionality, i.e. adding temporary short cut or dummy computations to a horizontal prototype to
support sample data; and (5) full application development. In addition, these different ways of using
Frigg can be combined.

[Tutorial] [Reference Manual]

 [3] Frigg is the wife of Odin

 Mjolner Integrated Development Tool − Overview

4 Interface Builder 9

frigg-tut-4.html
frigg-ref-4.html

5 CASE Tool
Freja [4] is the CASE tool of the Mjølner System supporting system development with the Unified
Modeling Language [UML1.1] and with BETA as the implementation language. Together with Sif
(the structure editor), Freja supports a smooth transition from design diagrams to implementation
code and vice versa.

 Figure 5: Class diagram editor

The CASE tool offers:

Diagram editing
Design diagrams (class diagrams) can be created and modified.

Automatic code generation
Code skeletons are generated automatically from the design diagrams.

Reverse engineering
Design diagrams can be automatically created from the program code.

Simultaneous editing of design descriptions and program code
The design descriptions and the corresponding program code can be viewed and edited
simultaneously, i.e. modifications in the design diagrams are reflected immediately in the
program code and vice versa. In other words Freja supports incremental code generation
and incremental reverse engineering.

Round trip engineering
If for example attributes, operations or entire classes are added or deleted outside the
context of the CASE tool, the diagram will be automatically updated − with as little
disturbance to the existing layout as possible − next time it is opened in the CASE tool.

Freja and Sif are tightly integrated in two ways.

Firstly Freja and Sif share one common representation of the program being developed. The
structure editing technique gives a convenient representation, namely an abstract syntax
tree (AST). The AST is presented (prettyprinted) textually in Sif and graphically in Freja.

Secondly, they communicate about changes in focus or modifications of the AST. Sif manipulates

5 CASE Tool 10

http://www.rational.com/uml/index.jtmpl

the AST through the textual representation and Freja manipulates the AST through the graphical
representation. Whenever one of the editors modifies the AST, the other editor is notified and the
other representation can be updated accordingly. Since the graphical UML syntax only reflects the
overall structure of BETA programs, many modifications in the textual representation may not affect
the graphical representation. Conversely, almost every modification of the design diagram, except
changing the layout of the diagrams, implies that the textual representation must be updated.

Both representations need not be visible at the same time. In the start of the development process
the user might prefer only to see the diagrams, whereas the textual representation becomes more
important later on. Since the diagrams and the program are prettyprints of the AST, they can
always be reproduced.

[Tutorial] [Reference Manual]

 [4] Freja is the goddess of love

 Mjolner Integrated Development Tool − Overview

5 CASE Tool 11

freja-tut-4.html
freja-ref-4.html

Index
The entries in the alphabetic index consists of selected words and symbols from the body files of
this manual − these are in bold font − as well as the identifiers defined in the public interfaces of
the libraries − set in regular font.
In the manual, the entries, which can be found in the index are typeset like this. This can help
localizing the identifier, when the link from the index if followed − especially in the case where the
browser does not scroll the line to the top, e.g. because there is less than a page of text left.
In the small table of letters and symbols below, each entry links directly to the section of the index
containing entries starting with the corresponding letter or symbol.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A

abstract syntax tree

C

common representation

H

horizontal prototype

I

incremental extension Interface Builder

P

program execution

S

structure editing

V

Valhalla vertical prototyping

Index 12

	Table of Contents
	1 Overview
	1.1 Source Browser (Ymer) and Editor (Sif)
	1.2 Source Level Debugger (Valhalla)
	1.3 Interface builder (Frigg)
	1.4 CASE tool (Freja)

	2 Source Browser And Editor
	3 Debugger
	4 Interface Builder
	5 CASE Tool
	Index
	A
	C
	H
	I
	P
	S
	V

