Beta Compiler — Reference Manual

Mjglner Informatics Report
90-02
March 2004

Copyright © 1990-2004 Mjglner Informatics.
All rights reserved.
No part of this document may be copied or distributed
without the prior written permission of Mjglner Informatics

http://www.mjolner.com

Beta Compiler — Reference Manual

Table of Contents

I [oo [o 1o o P EPR T PP PRPI 1
2 SIMpPle USE Of the COMPIIETiiiiiiiiiiiii e s s s sesssssseesseesseesseeseeessesseeeeeees 2
N I o TN = I IR o = PP PPPPPPPPPPP 2
2.2 Files Generated DY the COMPIIET.........uuuuuiiiiiiiiiiiieiriiiireeiee e eee e eee e eesereseeeeeereeeerrerereraeeaeeess 4
G A5 (o T = = o |11 o PRSPPI 6
G TR Y 1 = D =l (o £ TSP 6

3.2 SEALIC SEMANTIC EFTOIS.....utiiiiiieei ittt ettt e e e e e st e e e e e e s e r e e e e e s s snbbeeeeeeeeeeaanne 6

3.3 CheCK fOr DOUNG SLOTS...uuiiiiiiiiiiitiei ettt e e e e e e e e e e st eeeeeeeeeeannnes 7

3.4 Assembler and LINKEr EFTOIS........ocuuiiiiiie ettt e e e e e e 7

BT SIS YA (=T 0 = o =TSSP 7

3.6 RUNTHIME EITOIS.ciiiiiiiiiitiiiiit ettt ettt et e e e e ettt e e e e e e s bbbttt e e e e e s snnbbneeeeaeeeaannnes 7

4 ComPIlEr AFQUMENES ... 8
5 Machine Dependent CoNfigUIAtiONSuuuuuuuuuururiiiiiieeeesseeereeereeerseeerreee———————————r—rerereeeee. 11
LT 10 B I e o o1 o PP 12

L0 I) 1 | = 1 SO PPPP 12

5.1.2 FUNCHONAIILY.....ccoiiieieeieeeeeee e, 13

B LB EXAMPIE. ... —— 13

5.1.4 More than one build pr. fragment..........cccco 13

6 Code Generation for Multiple MacChINESuuuuiiiiiiiiiiiiiiiiiiiiiiirieeee e e e e e eereeeaaeeaeees 15
6.1 Placement of ObJECt COUEoovvvviiiiiiiiie 15

6.2 MACIO EXPANSION.....cciiiiiiiiiiiiieie ettt 15

AL L= =] = AN T =T 4P LTRSS PPPRRR 16
100 = PSPPI 17
o TR PPPURT 17

15 PP PPRRTR 17
PR PPPRRT 17
PP PPRURR 17
TP PPRRRR 17
OO PP SPPPPPPRRPR 17
PP OUPPPPPPRRR 17

S PP PPPPPPPRRP 17
PP PPPRRP 18

1 Introduction

This manual describes version 5.4 of the BETA compiler (corresponding to release 5.0 of the
Mijglner System). The compiler implements most parts of the BETA language as described in
[MMN93]. There are, however, some changes that have been made to BETA since the publication
of [MMN93]. These changes are described in:

* BETA Language Modifications
A general interface to C and assembly language is part of the libraries/compiler.

The rest of this manual is organized as follows: Section 2 describes the simplest way of using the
compiler. Section 3 describes the organization of the basic BETA libraries. Section 4 describes the
files generated by the compiler. Section 5 describes compile— and run—time errors. These sections
contain useful information for all users.

The remaining sections are only for advanced users. In section 6, a number of different arguments
to the compiler are described. In section 7, it is described how to instantiate machine dependent
configurations of a program. In section 8 it is described how code is generated for multiple
machines.

1 Introduction

#mmn93
beta-index.html
basiclib-32.html
basiclib-32.html
basiclib-32.html

2 Simple Use of the Compiler

The following is an example of a very small BETA program.

hello.bet

ORIGIN '~beta/basiclib/betaenv'
—-—— PROGRAM: descriptor ———

#

do 'Welcome to Mjolner' —> putLine
#)

Only the part between (# ... #) is BETA. The ORIGIN specification:

ORIGIN '~beta/basiclib/betaenv'

describes that the fragment betaenv from the BETA basic library (basiclib) is used.

The fragment name and category:

——— PROGRAM: descriptor ———

describes that the BETA program is filled into a slot in betaenv called PROGRAM. The BETA
compiler is integrated with the Mjglner fragment system. The above BETA program is an example
of a BETA fragment.

Assume that the above BETA fragment is located in the file foo.bet. The BETA fragment may
then be compiled by issuing the command

beta foo.bet

which will compile, assemble, and link the BETA fragment. On most platforms binary object code is
generated directly. In this case the assembly phase is omitted. For the HP platforms assembly
code is generated and assembled. The final object code will be in the file foo, which may be
executed.

How to invoke the compiler depends on whether Macintosh, PC or UNIX is used. Details about the
different variants of the BETA compiler may be found in [MIA 99-36].

2.1 The BETA Library

The BETA library is a collection of patterns and objects that include input/output, a text concept, the
user interface toolkit, the metaprogramming system, a container library, a system library, etc. The
library is organized as fragments.

One part of the library contains the basic patterns and objects which are used by most programs.
This basic BETA library is called basiclib and is described in [MIA90-8], which also describes the
interface to C and assembly language.

The library basiclib contains a number of different fragments groups containing basic patterns, a
text concept, various functions and control patterns, a file concept, etc. One of these fragment
groups is betaenv, which contains the basic patterns, the text concept, other basic patterns and

2 Simple Use of the Compiler 2

#mia99-36
#mia99-36
#mia90-8

Beta Compiler — Reference Manual

objects representing the screen and the keyboard. All BETA programs must use betaenv, which
has the form:

betaenv.bet

...
(* A lot of useful patterns *)

<<SLOT LIB: attributes>>

program: <<SLOT program: descriptor>>
theProgram: ~program;

do ...
&|program[] —> theProgram(];
theProgram;

#)...

The LIB slot describes where most libraries are inserted. The program slot describes where an
ordinary user program is inserted (see section 6 for more explanation of this).

On UNIX, the BETA library is often located in the directory /usr/local/lib/beta.
For Macintosh, the convention is that the BETA library is located in a folder called beta.

In the rest of this manual, we assume that the basic library is located in /usr/local/lib/beta.
We also use the UNIX convention for denoting directories with the character / to separate directory
and file names.

When using the Mjglner System, the BETA library must be installed on the file system of the
computer. BETA fragments will need to refer to fragments in the BETA library. Since the location of
the BETA library may differ from machine to machine, a fragment may denote the BETA library by
means of the name:

~beta

The file containing the betaenv fragment may then be denoted by

~beta/basiclib/betaenv

On many UNIX systems, the BETA library is often placed in the directory:

/usr/local/lib/beta/basiclib

In this case a fragment denotation like

~beta/basiclib/betaenv

then refers to the file

/usr/local/lib/beta/basiclib/betaenv

The meaning of ~beta can be changed by using the BETALIB environment variable, see [MIA

2.1 The BETA Library

#mia99-36

Beta Compiler — Reference Manual

99-36].
A program using betaenv may then look as follows:

hello.bet

ORIGIN '~beta/basiclib/betaenv'
—-—— PROGRAM: descriptor ———

#

do 'Welcome to Mjolner' —> PutLine
#)

Please note, that on Windows and Macintosh the separator in ORIGIN specifications is also /. See
section 6.2.

Assume that the above program resides on the file foo.bet. The program may then be compiled
by issuing the command:

beta foo.bet

The file foo will now contain an executable version of foo.bet.

When developing the program, it may be an advantage to invoke the compiler as

beta -r foo.bet

This will run the compiler in repeating mode. After having translated the fragments specified in the
argument list, if in repeating mode, the compiler prompts the user for the name of another fragment
to be translated. Hitting <RETURN> in this case will recompiler the program last compiled. See
section 8 for a survey of the legal command line options. (This is currently not possible on Windows
and Macintosh.)

Please consult the BETA tutorial [MIA94-26] for a quick survey of the BETA language and the
basic libraries.

2.2 Files Generated by the Compiler

For each fragment file, a number of other files and directories may be produced by the compiler.For
the BETA fragment foo.bet the following files and directories are produced: Then

File: foo.Ist
contains information about possible syntactic and static semantic errors. If such errors
occur, then the file contains a pretty—print of the fragment with an indication of the error(s).
See section 7 for further information about error handling. Possible semantic error
messages are listed in appendix A. The compiler also prints short error messages on the
screen during compilation.

File: foo.ast or foo.astL
contains the abstract syntax tree representation of the compiled source code for big—endian
and little—endian architectures, respectively. The AST files are used by many tools in the
Mijglner System.

One of the following directories depending on the platform: (The extensions ..s and .o differ on

2.1 The BETA Library 4

#mia99-36
#mia94-26

Beta Compiler — Reference Manual

the various platforms.)

sun4s: on a SUN Sparc running Solaris

sgi: on a Silicon Graphics MIPS running Unix

linux: on a PC running Linux

hpux9pa: on a HP PA Risc running HP UX
nti-gnu: on a Windows PC based on GNU tools
nti-ms: on a Windows PC based on Microsoft tools
ppcmac: on a Power Macintosh

The code directory contains the following files:

File: foo..s
contains the generated assembly code for the compiled source code (As mentioned
assembly code is only generated for HPUX9PA) The assembly file is usually deleted
by the compiler after assembly.

File: foo.o
contains the object code generated by the compiler or assembler.

File: foo.db
contains information used by the debugger Valhalla when debugging the foo
fragment. See [MIA90-12].

File: foo..job
containing directives for assembly and linking. This file is usually deleted by the
compiler after linking.

The above list of files is generated for each fragment group that is included in a program. In
addition, the following file is generated for each program:

File: foo
containing the executable code for the program.

2.1 The BETA Library 5

#mia99-40

3 Error Handling

BETA programs containing errors will cause error messages during compilation. Error
messages may appear during syntax analysis, static semantic analysis, code generation
and assembly/linking. In addition various forms of system errors may occur.

3.1 Syntax Errors

A syntax error is given when there are errors in the context free syntax of the BETA
program. These includes missing semicolons, non—matching brackets, etc. Such errors are
printed on the screen and may look as follows:

Mjolner BETA Compiler: 5.4(5.5.1473/124) — SUN-4 Solaris 2.x (ELF)
Building dependency graph for: 'syntaxerror' ...

Parsing: 'syntaxerrorERROR: current lexem has not been reduced!
PARSE ERRORS

1 ORIGIN '~beta/basiclib/betaenv’;

2 -——PROGRAM: descriptor——

3HT: ##H);

4 X:[100) @integer;

*kkkkkkkkkkkk AN

Expected symbols: >= —> 9% and mod *] + <= - >/ xor <= div <> or
File "/users/beta/public_html/doc/compiler/files/syntaxerror.bet"; Line 4
3HT: ##H);

4 X:[100) @integer;

5do (fori: X.range repeat

6 3—>X]i];

7 if)

*kkkkkk N

Expected symbols: _NAME_ _KONST_ _STRING_ restart none not % suspend & (@@ tos inner ; + leave
File "/users/beta/public_html/doc/compiler/files/syntaxerror.bet"; Line 7

Cannot open fragment—file : /users/beta/public_html/doc/compiler/files/syntaxerror

The error message shows that there are syntax errors in lines 4 and 7. In line 4 the arrow(")
points at the place where an illegal symbol is met. The compiler gives a list of acceptable
symbols. In this case) should have been a]. In line 7, the if should have been a for.

3.2 Static Semantic Errors

Static semantic errors appear in situations where a name is used without being declared,
where a pattern name is used as an object, etc. Each error found is printed on the screen
with a small indication of the context. After the checking, a pretty print of the fragment
including a precise indication of the error is generated on the Ist-file (see section 4).

Some semantic errors may cause the compiler to fail without generating a pretty print.
There should however always be an error indication on the screen. In case the compiler
fails during checking and it is not obvious for what reason, it is possible to trace the
checking of declarations and imperatives using the option ——traceCheck (see section 8).
However, this may generate a large amount of output on the screen. The compiler may also
fail during code generation. These errors may be traced using option ——traceCode.
However, tracing errors in this way should rarely be needed.

3 Error Handling 6

Beta Compiler — Reference Manual

3.3 Check for bound SLOTSs.

In general the compiler will only attempt to link, if a PROGRAM slot has been found in the
dependency graph.

If SLOTSs of category DoPart or Descriptor in the dependency graph are not bound, and
linking would otherwise have happened, the compiler issues a warning, and does not
attempt to link.

Likewise, if two or more fragments tries to bind the same SLOT, the compiler will give a
warning.

3.4 Assembler and Linker Errors

Errors may also appear during assembling and linking. The following type of errors may
appear:

¢ The assembler/linker complains about a corrupt ..s or .o file. This may happen if the
compilation/assembly has been interrupted for some reason leaving an incomplete
file. This can usually be handled by forcing a recompilation of the corresponding
BETA file. (Delete the ..s and .o files in question)

¢ The linker may report errors such as 'Undefined Reference' or 'Multiply Defined
Symbol'. This may be due to violations of the restrictions mentioned in section 6.

¢ The disk may run full during assembling or linking. Restart compilation after having
obtained more disk space.

See also section 6.6.

3.5 System Errors

Two kinds of system errors may appear: (1) Errors in the compiler, and (2) error situations
in the operating systems. Most times a meaningful error message is given in these
situations, but due to the nature of these errors this is not always the case.

Compiler errors should be reported to Mjglner Informatics

See [MIA 99-36], section 4.5

Operating system errors are often due to local problems. Examples of such errors may be:
insufficient access to files, no more disc space, file server inaccessible, etc.

3.6 Run—-time Errors

Runtime errors are errors in the program detected during its execution. In this case an error
message is given and a dump of the call stack of objects is generated.

See
BETA runtime error stack dump

for details.

3.3 Check for bound SLOTSs.

#errors
beta-dump.html
beta-dump.html

4 Compiler Arguments

When activating the BETA compiler, the following command line arguments are valid.
Most options have both a '-—<name>' and a '-—no<name>' form: Activate the option using
'——<name>"; deactivate the option using '-=—no<name>'. In the listing below, the activating
form is shown first (and explained), if both exist for an option.

For most options, there is a short (one—character) option for the non—default form.
One-character options allow multiple option characters after the '-' (e.g. '—qwd").

Long option names are case insensitive, whereas one—character options are case sensitive.
A star (*) in the listings below indicates the default option.

——help —h Show a brief overview of the legal command line options

——repeat —r Run compiler in repeating mode. After having translated the

fragments specified in the argument list, if in repeating mode, the compiler

prompts the user for the name of another fragment to be translated:

Type Fragment File Name:

This interaction is continued until the compiler is explicitly killed, e.g. by
sending a control-C or the end-of-stream character to the compiler process.

The compiler may also be given additional options at the prompt, e.g. you
may type ——nolink foo.bet to translate foo.bet, but avoid linking of it.

If no new fragments are specified at the prompt, the compiler will retranslate
the last fragment it has translated when <RETURN> it typed.

By using repeating mode, the compiler saves time when analyzing
dependencies between fragments, since fragments are saved in memory
between compilations.

——noRepeat *

——link * Link program

——noLink —x

——static Use static linking

——dynamic * Use dynamic linking

——list * Generate .Ist file, if semantic errors

——noList -

——debug * Generate debug info to enable debugging. Include debugging
information in the generated code. This is used by the BETA debugger
valhalla. On the other hand, using ——noDebug forces the linker to strip the

application , which reduces the size of the executable files by 30-50%, and

4 Compiler Arguments 8

Beta Compiler — Reference Manual

also speeds up linking time. The actual machinelevel code generated for the
BETA program is identical with or without debug info.???

——noDebug -d

——code * Generate code

——noCode —c

——checkQua * Generate runtime checks for QUA errors
——noCheckQua -Q

——checkNone * Generate runtime checks for NONE references
——noCheckNone -N

——checkindex * Generate runtime checks for repetition index out of range
——noCheckindex -I

—-warn * Generate warnings

——noWarn -w

——warnQua * Generate warnings about runtime QUA checks
——noWarnQua —q

——verbose Verbose compiler info output

——quiet * Only compiler info on parse, check, etc.

——mute No compiler info output

——traceCheck Trace the compiler during semantic checking
——noTraceCheck

——traceCode Trace the compiler during code generation
——noTraceCode

——out —o Specify name to use for resulting executable image
——preserve —p Preserve generated .job and assembly files
——noPreserve *

——job * Execute the ..job file

——noJob —j

——switch —s Set/unset one or more compiler switches. The —s option makes
it possible to define one or more so—called compiler switches. Switches are

4 Compiler Arguments

Beta Compiler — Reference Manual

specified as integers on the command line after ——switch or —s, possibly
terminated by a 0 (zero). Switches are used for a number of purposes:
parameterization of the compiler, debugging, testing etc. The most
interesting switches with respect to parameterization are listed below; notice
that some of them may also be set as ordinary options.

- 5: Suppress code generation. l.e. only semantic checking is performed.
This switch will also set switch 33. Same as —c.

- 6: Suppress linking. Same as —x.

- 14: Do not generate run—time checks for NONE-references. Same as —N
- 15: Do not generate run—time checks for index—errors. Same as -I.

- 18: Preserve assembly— and job—files. Same as —p.

- 19: Suppress notification of insertion of run—time checks for qualification
errors in reference assignment. Same as —q.

- 21: Continue translation after semantic errors.

- 23: Preserve job—files.

- 32: Do not produce .lst file in case of semantic errors. Same as —I.
- 33: Do not execute .job file. Same as —j.

- 37: Do not generate debugging information. Same as —d.

- 42: Do not generate run—time checks for qualification errors in reference
assignment. Same as —Q.

- 191: Print each descriptor just before it is checked.

- 192: Print each declaration just before it is checked.

- 193: Print each imperative just before it is checked.

- 308: Print each declaration just before code is generated for it.

- 311: Print each imperative just before code is generated for it.

——linkOpts Specify text string to be appended to the link directive

fragmentl ... fragmentN

Arguments other than the above mentioned options are treated as the names
of fragments to be translated by the compiler. It should be noted that for an
option to take effect in the translation of a fragment whose name is passed

as argument to the compiler, the option must appear before the fragment
name in the argument list.

4 Compiler Arguments 10

5 Machine Dependent Configurations

In this section, the terminology of the fragment system is used freely without further
explanation. The fragment system has been extended to support generic software
descriptions. The same generic software description may be used to instantiate
configurations for different machines. The term 'machine’ covers a CPU and an operating
system running on that CPU.

The concept of generic software descriptions is implemented by means of special 'generic
properties'. Normally, a property has exactly one associated set of values. A generic
property has a number of such value—sets. The idea is that the programmer can specify a
value-set for each machine. These value—sets are the ones termed
<MachineSpecificationList> in the formal specification of properties in section 6.3 and 6.5.
As an example:

OBJFILE sun4s 'xlib.o'
linux ‘zlib.o'
default 'wlib.o'

OBJFILE is the name of a generic property. The OBJFILE property is used for inclusion in
the linkage phase of external object files, e.g. produced by a C compiler. A generic property
specification should be seen as a kind of 'switch/case' statement. The semantics of the
above OBJFILE property is that when instantiating a configuration for the machine sun4s,
the value xlib.o is chosen. This means that the object file xlib.o is included when linking a
configuration for a sun4s machine. Similarly for linux machines. The default literal indicates
that when instantiating configurations for machines other than sun4s or linux , the object file
wlib.o should be included.

Besides OBJFILE, there are the following generic properties: MAKE, BETARUN, LIBFILE,
LINKOPT, RESOURCE, and MDBODY. For all of these properties, the relation between
machine symbols and value-sets are specified in the same manner as described above. To
be precise, the following algorithm is used when instantiating a configuration for a specific
machine type, say A.

1. If A matches any of the machine symbols of the generic property, the value-set
associated with that particular machine symbol is chosen. If no match is possible, proceed
with step 2.

2. If the symbol default is specified as machine symbol, the associated value—set is chosen.
If not, a warning is issued.

The only distinction between the different generic properties is in the interpretation of the
elements of the chosen value-set. For OBJFILE, the value-set is interpreted as external
object files. MAKE is meant to point out a number of so—called makefiles. These are
executed just prior to the linkage phase. A makefile is often used to keep the included
object files up to date with respect to the source files from which they originate. For
BETARUN, the value-sets must contain exactly one element, and this element denotes the
runtime system to be used in the resulting configuration. With respect to LIBFILE, the
elements of the value—sets are interpreted as external libraries, e.g. the X11 library, to be
included in the linkage phase. The chosen value-set in an MDBODY property denotes
ordinary BETA fragments to be treated as if they had been specified by means of a normal
BODY property. The MDBODY property may thus be used to specify that a fragment
appears in a number of machine dependent variants. Finally, the LINKOPT property
denotes arguments to append to the link—directive in the linking phase of compilations.

5 Machine Dependent Configurations 11

Beta Compiler — Reference Manual

Finally, the RESOURCE property is used (only on PC and Macintosh) to specify a set of
resource files to add to the application.

Configurations are instantiated by the compiler, by default for the machine on which the
compilation takes place. It is possible to instantiate a configuration for a machine other than
the one, on which the compilation is performed (‘cross—compilation'). This requires
extensions to the Mjglner System; please contact Mjglner Informatics if this is needed.

5.1 BUILD Property
The BUILD property unifies the OBJFILE and MAKE properties. The BUILD property is

used to specify rules for keeping external (i.e. non—BETA) sources up to date, and to
include the external files in the link directive.

5.1.1 Syntax

BUILD <machine> '<objectfile>'
'<depl>''<dep2>' ... '<depN>'
'<command>";

where
<machine> is the target machine specification (see MDBODY description)
<objectfile> is the external objectfile to include and possibly maintain. A 3 in this

specification is expanded to the machine type, like in other properties. If a backslash (\) or a
newline must be included literally in the specification, it must be quoted with backslash.

<depl>
<dep2>

<depN>

Are source files, that the <objectfile> depends on.

<command> is a command (sequence) that is executed by the compiler as it is, except for
the following substitutions:

$3 is expanded to the machine type, as explained above.
$0 is expanded to <objectfile>
$1 is expanded to <dep1>

$2 is expanded to <dep2>

$N is expanded to <depN>

If a backslash (\) or a newline must be included literally in the commands, it must be quoted
with backslash.

5.1 BUILD Property 12

Beta Compiler — Reference Manual

5.1.2 Functionality

The <objectfile> is included in the link directive. The compiler will execute <commands> if
and only if

a. <objectfile> does not exist
or
b. any of the files <depl>, <dep2>, ... <depN> are newer than an existing <objectfile>

The compiler will execute <commands> from the directory in which the file containing the
BUILD property resides.

5.1.3 Example

If the object file foo.0 (foo.obj) is to be generated from the foo.c file in the external directory,
but also depends on the foo.h file in the external directory, you could specify this as:

BUILD nti '$$/foo.obj' 'external/foo.c' 'external/foo.h’
‘cl —¢ $1 -Fo3$0 —nologo -w —02 -Zd -Zp4'
ppcmac ":$$:foo.obj "external:foo.c' ".external:foo.h'
'‘MrC -D MAC -0 $0 $1'
default '$$/foo.0" 'external/foo.c' 'external/foo.h’
'$CC -0 $0 $1';

Notice, that regular environment variables may be used in the <commands> specification,
e.g. in the default (UNIX) specification, the variable CC are used (on UNIX, this is always
set to an appropriate value in the job—file).

5.1.4 More than one build pr. fragment

In general, more than one build pr. fragment will not work. The reason is that the
meta—programming system combines all build directives into one directive (property). This
means that:

BUILD sun4s 'ccl' default 'cc2’;
BUILD sun4s 'cc3' default 'cc4

means the same as:

BUILD sun4s 'ccl' default 'cc2' sun4s 'cc3' default ‘cc4’

BUILD 'executes' all entries for a given plaform. This means that the 2 sun4s entries will be
executed for sun4s. The 2 default entries will be executed for all other platforms.

If the following two build entries are used:

BUILD sun4s ‘ccl' default 'cc2';
BUILD sgi ‘'cc3' default 'cc4’

ONLY ccl will be executed for sun4s and ONLY cc3 for sgi, and the 2 default entries for all
other platforms. This is probably not what is intedended: For sun4s you would expect ccl

5.1.2 Functionality 13

Beta Compiler — Reference Manual

and cc4 to be executed and sgi, cc2 and cc3.
To fix this, changes in the meaning of properties in MPS must be changed.

Summary: more than one build directive in a fragment file will work if they have the same
structure with respect to platform.

Alternative

It would be easy to implementa build directives on the form:

BUILD1 sun4s 'ccl’ default 'cc2’;
BUILD2 sgi 'cc3' default 'cc4’

This will give different properties and the compiler can be made to handle this. It is,
however, not an ideal solution.

5.1.2 Functionality

14

6 Code Generation for Multiple Machines

6 Code Generation for Multiple Machines

When instantiating a configuration for some machine, a humber of object files are produced
by the compiler — one for each fragment contributing to the configuration. On most
architectures, the compiler actually generates symbolic assembly code, and this code is
turned into object files by means of the native assembler. The native linker is used to
produce an executable image for the machine in question on basis of these object files.

6.1 Placement of Object Code

Different machines normally use different formats for object files. The files containing object
code and symbolic assembly code are always placed in a sub—directory relative to the
directory containing the common source code. A sub—directory is created for each special
object file format. Currently the following subdirectories are used:

sunds SUN-4 (SPARC) running Solaris 2.x
hpux9pa HP 9000/700 running HP-UX 9.x

sgi Silicon Graphics (MIPS) running IRIX 5.3
linux PC running Linux 1.0 or later

nti PC running Windows NT or Windows 95
ppcmac Power Macintosh 3.2 or later

For executable images to be activated directly, without prefixing their name with the name
of a sub—directory, executable images are placed in the same directory as the common
source files. It is however possible to control the naming of the executable images. This is
done by means of the —o option to the compiler.

6.2 Macro Expansion

Consider this use of the MDBODY property:
MDBODY default './$$/betaenvbody_$$'

The symbol $$ is expanded by the compiler. It is expanded to the name of the subdirectory
into which the generated code will be placed. That is, if code is generated for the linux
platform, the above expands to ./linux/betaenvbody_linux. This may be a convenient
short-hand, but may also make is possible to instantiate configurations for new machines
without changing the original source code.

15

7 The BETA Grammar

An HTML interface to the BETA grammar can be found in

BETA Grammatr.

7 The BETA Grammar

16

beta.html

Index

The entries in the alphabetic index consists of selected words and symbols from the body files of
this manual - these are in bold font — as well as the identifiers defined in the public interfaces of
the libraries — set in regular font.

In the manual, the entries, which can be found in the index are typeset like this. This can help
localizing the identifier, when the link from the index if followed — especially in the case where the
browser does not scroll the line to the top, e.g. because there is less than a page of text left.

In the small table of letters and symbols below, each entry links directly to the section of the index
containing entries starting with the corresponding letter or symbol.

ABCDEFGHIJKLMNOPQRSTUVWXYZ

B

betaenv

D

debugging information

F

Files

M

Macro Expansion

N

NONE Check

O

OBJFILE

Q

QUA errors

S

Semantic Errors

Index

dynamic linking

static linking

Syntax Errors

17

\Y

Verbose compiler info output

W

warnings

Beta Compiler — Reference Manual

18

	Table of Contents
	1 Introduction
	2 Simple Use of the Compiler
	2.1 The BETA Library
	2.2 Files Generated by the Compiler
	3 Error Handling
	3.1 Syntax Errors
	3.2 Static Semantic Errors
	3.3 Check for bound SLOTs.
	3.4 Assembler and Linker Errors
	3.5 System Errors
	3.6 Run-time Errors

	4 Compiler Arguments
	5 Machine Dependent Configurations
	5.1 BUILD Property
	5.1.1 Syntax
	5.1.2 Functionality
	5.1.3 Example
	5.1.4 More than one build pr. fragment

	6 Code Generation for Multiple Machines
	6.1 Placement of Object Code
	6.2 Macro Expansion

	7 The BETA Grammar
	Index
	B
	D
	F
	M
	N
	O
	Q
	S
	V
	W

