
BETA Language Modifications − Reference Manual

Mjølner Informatics Report
MIA 99−41
March 2004

Copyright © 1999−2004 Mjølner Informatics.
All rights reserved.

No part of this document may be copied or distributed
without the prior written permission of Mjølner Informatics

http://www.mjolner.com


Table of Contents

1 Introduction .....................................................................................................................................1

2 Basic Patterns.................................................................................................................................2

3 Operations on Basic Patterns and References............................................................................3
3.1 Assignment .......................................................................................................................3
3.2 Relational Operators..........................................................................................................6

3.2.1 Restrictions on Relational Expressions ..............................................................6
3.2.2 Type Rules for Relational Expressions ..............................................................6

3.3 Arithmetic Operators........................................................................................................11
3.4 Boolean Operators ..........................................................................................................13

3.4.1 Xor Primitive......................................................................................................13
3.4.2 Short−circuit Boolean Expressions...................................................................13
3.4.3 Type rules for boolean expressions .................................................................13
3.4.4 Unary Operators: ..............................................................................................13

4 Repetition Constructors ...............................................................................................................15
4.1 Value Repetitions.............................................................................................................15
4.2 Example...........................................................................................................................15
4.3 Variable number of enter parameters..............................................................................15

5 Pattern text and wtext ..................................................................................................................17
5.1 String Literals as References...........................................................................................17
5.2 Special Characters in String Literals................................................................................17
5.3 Text Literal Concatenation ..............................................................................................18
5.4 Text literals ......................................................................................................................18

6 Imperatives ...................................................................................................................................19
6.1 General If−Imperative .....................................................................................................19
6.2 Simple If−Imperative........................................................................................................19
6.3 The labeled compound imperative ..................................................................................19
6.4 Leave− and Restart Imperative .......................................................................................20
6.5 Inserted items..................................................................................................................20

7 Virtual Patterns and Final Patterns as Superpatterns ..............................................................21

8 The Use of this(P) for Component Objects ...............................................................................22

9 Dynamic denotations ..................................................................................................................23

10 Concurrency ...............................................................................................................................24

11 Exception Handling ...................................................................................................................25

12 Pattern Variables/Structure Objects ........................................................................................26

13 Mjølner BETA Low Level Primitives ..........................................................................................27
13.1 Introduction....................................................................................................................27
13.2 Low Level Operations....................................................................................................27
13.3 Syntax............................................................................................................................27
13.4 Addressing Conventions................................................................................................27

 BETA Language Modifications − Reference Manual

i



Table of Contents

13.5  Operations....................................................................................................................28
13.5.1 Bitwise logical complement (one's complement).............................................28
13.5.2 Bitwise logical and, or, exclusive or................................................................28
13.5.3 Shift of a long..................................................................................................28
13.5.4 Get byte/short from a long...............................................................................28
13.5.5 Put byte/short into a long................................................................................29
13.5.6 Get bits from a long.........................................................................................29
13.5.7 Put bits into a long...........................................................................................29
13.5.8 This object.......................................................................................................29

14 The Fragment System ...............................................................................................................30

Index .................................................................................................................................................31
\..............................................................................................................................................31
A.............................................................................................................................................31
B.............................................................................................................................................31
C............................................................................................................................................31
D............................................................................................................................................31
F.............................................................................................................................................31
H............................................................................................................................................31
N............................................................................................................................................31
O............................................................................................................................................32
Q............................................................................................................................................32
S.............................................................................................................................................32
V.............................................................................................................................................32

 BETA Language Modifications − Reference Manual

ii



1 Introduction
The BETA language is described in [MMN 93] which is the main reference to BETA. The BETA
book is a tutorial description of BETA. As of today there is no language definition manual, but one
in preparation. Short introductions to BETA may be found in [Madsen 99], and [MIA 94−26]. In
addition the following documents are available:

• A structured context−free grammar for BETA .
• A summary of BETA Terminology.
• A Quick Reference Card for BETA.

This document describes modifications of the BETA language that have been made since the
publication of the BETA book. These include modifications, clarifications as well as extensions:

• A number of new basic patterns have been introduced.
• The operations on basic patterns such as integer, char, boolean and real, and references

are further specified.
• Repetition constructors have been introduced.
• Text literals are further specified and extended and support for UniCode text has been

included.
• For imperatives, the type of a general imperative must be a basic pattern or a reference, a

simple if−imperative has been introduced, the labeled compound imperative has been
eliminated. There are various restrictions with respect to leave/restart of patterns. Inserted
objects are implemented as dynamic objects.

• Virtual superpatterns are not implemented, but a final pattern may be used as a
superpattern.

• The use of this(p)[] for component objects is specified.
• Low level primitives for bit manipulation.
• Finally there are some changes regarding dynamic denotations, concurrency, exception

handling, structure objects and the fragment system.

In the following, the above mentioned changes will be described in detail. The reader is assumed
to be familiar with [MMN 93]

1 Introduction 1

#mmn93
#mmn93
#madsen99
#madsen99
#mia94-26
beta.html
beta.html
Terminology.html
Terminology.html
Quick-Reference-Card.html
Quick-Reference-Card.html
#mmn93


2 Basic Patterns
The BETA book defines the following basic patterns: boolean, char, integer, and real. To
support different sizes of integers and characters, a number of new basic patterns have been
introduced. The following table shows the current basic patterns of BETA and their representation.

int8 signed 8−bit integer

int8u unsigned 8−bit integer

int16 signed 16−bit integer

int16u unsigned 8−bit integers (replaces pattern shortInt)

int32 signed 32−bit integer (identical to integer)

int32u unsigned 32−bit integer

integer signed 32−bit integer (identical to int32

char 8−bit ASCII character

wchar 16−bit UniCode character

boolean boolean value true or false

real 64−bit floating point number

Notes:

• Pattern shortint will be eliminated and should no longer be used.
• Pattern wchar will eventually replace pattern char. I.e. characters will in the future be

represented as 16−bit UniCode characters.

2 Basic Patterns 2



3 Operations on Basic Patterns and References
In this section the rules for basic patterns− and references operations such as assignment,
arithmetic operations, relational operations, boolean operations, etc. are further specified.

All expressions are evaluated as 32−bit values, either signed or unsigned. If an expression is
assigned to a a variable representing 8− or 16−bit values, only the least significant 8− or 16−bits
are assigned.

In the following a number of tables showing legal combinations of operands and result type for the
operations on basic patterns and references will be given. Entries not shown are illegal. Entries
marked with * are illegal. Entries marked with ! will give a compiler warning, and may become
illegal in a future version of BETA. The following abbreviations will be used:

Abbreviations:

int represents an evaluation of type integer

bool represents an evaluation of type boolean

iref represents an evaluation of type item reference

cref represents an evaluation of type component reference

sref represents an evaluation of type structure reference

NONE is both an iref, a cref and an sref.

3.1 Assignment

The following table shows the legal combinations of the left and right side of an assignment for
basic patterns and references:

E −> V

The rows of the table shows possible types of of E and the columns of the tables show possible
types of of V. The elements of the table shows the result type, which for assignment are the same
as the type of V.

Note that E and C stand for arbitrary evaluations including values as in:

a+b*10 −> c

and references as in:

&P[] −> S[]

int

char

3 Operations on Basic Patterns and References 3



real

bool

iref

cref

sref

int

int

char

real

!

*

*

*

char

int

char

*

*

*

*

*

real

int

*

real

*

*

*

 BETA Language Modifications − Reference Manual

3 Operations on Basic Patterns and References 4



*

bool

!

*

*

bool

*

*

*

iref

*

*

*

*

iref

*

*

cref

*

*

*

*

*

cref

*

sref

*

*

 BETA Language Modifications − Reference Manual

3 Operations on Basic Patterns and References 5



*

*

*

*

sref

Notes:

• Assignment between integer, and real is allowed.
• In assignments of a real value to an integer value, the real value is truncated.
• If an integer value is assigned to a variable of type int8, int8u, int16, int16u, the value may

be truncated.
• Assignment between integer and char/wchar is allowed. Character constants have their

ASCII or UniCode value. Assignment of an arbitrary integer value to char/wchar may result
in truncation of the integer value.

• Assignment between instances of integer and boolean is currently allowed, but a warning is
given. In a future version of BETA these assignments may not be allowed and may give an
error. The patterns true and false have the values 1 and 0 respectively. Assignment of an
arbitrary integer value to a boolean instances may result in truncation of the integer value.

3.2 Relational Operators

3.2.1 Restrictions on Relational Expressions

The relational operators:

=, &lt;&gt;, &lt;, &lt;=, &gt;, &gt;=

can only be used for the basic patterns integer, real, boolean, and char.

The relational operators:

=, &lt;&gt;

can in addition be used for references.

It is not possible to compare a list of values as in:

(# P: (# ... exit(e1,e2,e3) #);
   A: (# ... exit(f1,f2,f3) #);
   B: @boolean
do P = A −> B;
   P = (g1,g2,g3) −> b
#)

3.2.2 Type Rules for Relational Expressions

The following table shows the legal combinations of types for expressions of the form:

 BETA Language Modifications − Reference Manual

3.2 Relational Operators 6



E1 = E2

and

E1 <> E2

int

char

real

bool

iref

cref

sref

int

bool

bool

bool

!

*

*

*

char

bool

bool

bool

*

*

*

*

 BETA Language Modifications − Reference Manual

3.2 Relational Operators 7



real

bool

bool

bool

*

*

*

*

bool

!

*

*

bool

*

*

*

iref

*

*

*

*

bool

*

*

cref

*

*

*

 BETA Language Modifications − Reference Manual

3.2 Relational Operators 8



*

*

bool

*

sref

*

*

*

*

*

*

bool

The following table shows the legal combinations of types for expressions of the form:

E1 < E2

E1 <= E2

E1 > E2

E1 >= E2

int

char

real

bool

sref

int

bool

bool

 BETA Language Modifications − Reference Manual

3.2 Relational Operators 9



bool

*

*

char

bool

bool

bool

*

*

real

bool

bool

bool

*

*

bool

*

*

*

bool

*

sref

*

*

*

*

bool

 BETA Language Modifications − Reference Manual

3.2 Relational Operators 10



3.3 Arithmetic Operators.

The following table shows the legal combinations of types for expressions of the form:

E1 + E2

E1 − E2

E1 * E2

int

char

real

int

int

int

real

char

int

int

*

real

real

*

real

The following table shows the legal combinations of types for expressions on the form :

E1 div E2

Note that the div operator is integer division.

int

 BETA Language Modifications − Reference Manual

3.3 Arithmetic Operators. 11



char

int

int

int

char

int

int

The following table shows the legal combinations of types for expressions of the form:

E1 / E2

Note that the / operator is a a real operator. The result is always a real, even if the operands are
integers. If integer division is wanted, use the div operator.

int

char

real

int

real

real

real

char

real

real

*

real

real

*

real

char is likely to be eliminated as a legal operand for / in a future version.

 BETA Language Modifications − Reference Manual

3.3 Arithmetic Operators. 12



3.4 Boolean Operators

3.4.1 Xor Primitive

An xor primitive is supported as a basic operation on booleans. If E1 and E2 are boolean
expressions then the expression

E1 xor E2

is an exclusive or between E1 and E2.

3.4.2 Short−circuit Boolean Expressions

Boolean expressions are implemented as short−circuit boolean expressions.

That is, in:

B1 or B2

B2 is not evaluated if B1 is true.

Similarly in:

B1 and B2

B2 is not evaluated if B1 is false.

3.4.3 Type rules for boolean expressions

The following table shows the legal combinations of types for expressions of the form:

E1 and E2

E1 or E2

E1 xor E2

bool

bool

bool

3.4.4 Unary Operators:

For unary expressions of the form:

 BETA Language Modifications − Reference Manual

3.4 Boolean Operators 13



+ E

− E

The legal types for E are: int, char, or real. The result type is the same as operand type

For a unary expression of the form:

not E

The type of E must be bool and the result type is bool

 BETA Language Modifications − Reference Manual

3.4 Boolean Operators 14



4 Repetition Constructors

4.1 Value Repetitions

Consider a value repetition:

R: [exp] @T

where T is a basic pattern.

A repetition object may be constructed and assigned to R in the following way:

(E1,E2,...,En) −> R

where E1, E2, ... En are evaluations of type T.

A repetition object with range = n is constructed and R[i] = Ei, i in [1,n].

A repetition object consisting of one element may be constructed using:

E −> R

4.2 Example

The following is an example of using repetitions constructors:

(# a,b: @integer;
   R:[1] @integer
do 10−>a; 20 −> b
   (a,b,a+b) −> R;
   (for i: R.range repeat R[i] −> putint; ' '−> put for)
#)

The above example will print the sequence

10 20 30

4.3 Variable number of enter parameters

Repetitions may be used to define patterns with a limited form of a variable number of parameters.
Consider the following example:

foo:
   (# S: ^stream;
      V: [1] @integer;
      sep: @char
   enter(S[],V,sep)
   do (for i: V.range repeat
           V[i] −> S.putint; sep −> S.put
      for)
   #)

4 Repetition Constructors 15



Pattern foo may be used in the following way:

(screen[],(1,2,3,4,5),'−') −> foo

which will print the following sequence to the screen:

1−2−3−4−5−

 BETA Language Modifications − Reference Manual

4 Repetition Constructors 16



5 Pattern text and wtext
Pattern text represents 8−bit ASCII texts.

Pattern wtext represents 16−bit UniCode texts. For details see the library
basiclib/wtext.bet. Operations supporting conversion between text and wtext are
available. In a future version of BETA, wtext may replace text.

5.1 String Literals as References

The pattern Text enters and exits a char−repetition. This means, that a text may be initialized
using constant strings as follows:

t: @text;
do 'hello' −> t;

Many operations involving texts, however, takes references to texts as enter/exit parameters. This
is mainly for efficiency reasons.

To allow easy invocation of such operations on string literals, the following is also allowed:

t: ^text;
do 'hello' −> t[];

The semantics of this is, that a text object is instantiated, initialized by the constant string, and
finally assigned to the text reference. It thus corresponds to the following code:

do &text[] −> t[];
   'hello' −> t

5.2 Special Characters in String Literals

The following special characters are allowed in BETA string literals.

 \a alert (bell) character

 \b backspace

 \f formfeed

 \n newline

 \r carriage return

 \t horizontal tab

 \v vertical tab

 \\ backslash

5 Pattern text and wtext 17



 \? question mark

 \' single quote

 \" double quote

 \ooo octal number

\ooo can also be \o or \oo, if the character immediately following \o or \oo respectively, is not a
digit.

Previous versions of BETA has allowed '' to represent a quote ' in strings as in 'Tom''s
Cottage'. This is no longer allowed. Quote must be represented using \' as in:

'Tom\'s Cottage'

5.3 Text Literal Concatenation

A text literal cannot contain newlines. Alternatively a text literal may be written as a sequence of
strings separated by white space as in:

'Lisa Nelson, '
'2454 West Street, '
'Palo Alto, CA 94304' −> T[]

This corresponds to:

'Lisa Nelson, 2454 West Street, Palo Alto, CA 94304' −> T[]

5.4 Text literals

Text literals like 'Hello' may be considered as abbreviations of char repetition constructors like
('H','e','l','l','o'). Consider:

Q: [1]@char

The evaluation:

'Hello' −> Q

may considered as an abbreviation for:

('H','e','l','l','o') −> Q

 BETA Language Modifications − Reference Manual

5.3 Text Literal Concatenation 18



6 Imperatives

6.1 General If−Imperative

A general if−imperative has the form:

(if E0 
 // E1 then ... 
 // E2 then ... 
 ...
 // En then ...
if)

with a possible else−part.

The value of E0, E1, E2, ..., En must be of type int, bool, char, real, iref or cref.

It is thus not possible to compare a list of values as in:

(# P: (# ... exit(e1,e2,e3) #);
   A: (# ... exit(f1,f2,f3) #);
do (if P
    // A then ...
    // (g1,g2,g3) then ...
   if)
#)

6.2 Simple If−Imperative

Often the following If imperative is used:

(if boolExp // true
 then ...
 else ...
if);

The current version of the compiler supports an extension to the BETA language called Simple If
Imperative. This extension means, that the case−selector // may be omitted, if the evaluation on the
left hand side exits a boolean. That is, the above may be written

(if boolExp
 then ...
 else ...
if);

Like in the general if−statement, the else part is optional.

6.3 The labeled compound imperative

The labeled compound imperative:

(L: imp1; imp2; ...; impN :L)

6 Imperatives 19



has been eliminated from the language. Instead the following construct may be used:

L: (# do imp1; imp2; ... ; impN; #)

Inserted items with no declarations and no superpattern will be inlined in the enclosing code. There
will thus be no execution overhead compared to the old (never implemented) labeled compound
imperative statement.

6.4 Leave− and Restart Imperative

It is in general not possible to use leave P or restart P where P is a pattern. P must in general be a
label. However, the following has been implemented:

P: (#
   do ...
      leave P
      ... 
      restart P;
      ...
   #)

Leave/restart from an inserted item, however, is not supported by the current version of the
compiler:

P: (#
   do ...
      (#
      do ...
         leave P; (* ILLEGAL *)
         ... 
         restart P; (* ILLEGAL *)
         ...
      #)
      ...
   #)

6.5 Inserted items

If P is a pattern then an inserted item ([MMN93], section 5.10.2) may be specified as:

(# ...  do ...; P; ... #)

Inserted items are implemented as dynamic items (&P).

Inserted components ([MMN93Madsen93], section 5.10.3):

do ...; |(# ... #); ...

have not been implemented.

 BETA Language Modifications − Reference Manual

6.4 Leave− and Restart Imperative 20



7 Virtual Patterns and Final Patterns as
Superpatterns
A virtual pattern cannot be used as a super pattern as shown in the following example:

A::< (# ... #);
B: A(# ... #)

Previous version of BETA has supported the use of virtual patterns as super patterns, but due to
efficiency considerations virtual super patterns are no longer supported.

A virtual pattern that has been final bound may be used as a superpattern as shown in the following
example:

A:: (# ... #); 
B: A(# ... #)

The situation may also occur in a more indirect way:

graph:
   (# node:< (# ... #);
      nodeList: @list(# element::< node #);
      ...
   #);

Here the virtual further binding of element in list is not allowed, since node is itself virtual.

The current version of the compiler will allow final binding using a pattern that is itself virtual. That
is, you can do this:

graph:
  (# node:< (# ... #);
     nodeList: @list(# element:: node #);
     ...
  #);

7 Virtual Patterns and Final Patterns as Superpatterns 21



8 The Use of this(P) for Component Objects
Consider the following example:

P: (#  A: (# X: ^P; (* reference to item qualified by P *)
       B: ^|P (* reference to component qualified by P *)
   do this(P)[] −> X[];   (* legal use of this(P)[] *)
      this(P)[] −> R[];   (* illegal use of this(P)[] *)
   #)

The compiler assumes that this(P)[] is a reference to an item object. Since an item reference
cannot be assigned to a component reference the evaluation this(P)[] −> R[] is illegal.

It is, however, possible to use a run−time routine to convert an item reference to a component
reference, provided that the item is part of a component. Consider:

(# P: (# B: |^ P
      do this(P)[] −> objectToComponent −> B[] 
      #);
   X: |@ P;
   Y: @ P;
do X;  (* OK *)
   Y; (* a run−time error will happen *)
#)

When X is executed, the P−object is part of the component X and objectToComponent will return
a reference to X.

When Y is executed, the P−object is not part of a component and objectToComponent will fail.

It is also possible to get a reference to the item−part of a component by using the pattern
componentToObject as shown in:

X[] −> componentToObject

The patterns objectToComponent and componentToObject are placed in the library:

sysutils/objinterface.bet

8 The Use of this(P) for Component Objects 22



9 Dynamic denotations
In declarations like:

P: <AD>(# ... #);
X: @<AD>;
Y: ^<AD>;

it is checked that <AD> is a static denotation, where static is defined as follows:

• A name A is always static
• In a remote−name R.A, R must be a static object
• Use of THIS(A).T is static
• Only in Y: ^P.T, can P be a pattern
• Denotations using R[e], and (foo).bar are not static
• This means that e.g. descriptors like:

R[e].A(# ... #)
(foo).bar(# ... #)
R.P(# ... #) where 'R' is a dynamic ref.

are only allowed in imperatives.

For Y: ^R.P where R is a dynamic reference, the compiler will currently report a warning and
suggest to use

Y: ^A.P where A is the qualification of R.

Note: that when using −−noWarnQua, this warning will not be printed. A future release may change
the warning to an error.

9 Dynamic denotations 23



10 Concurrency
There are some deviations with respect to the implementation of concurrency. Please consult
[MIA90−8] before using the concurrency.

10 Concurrency 24



11 Exception Handling
The Program pattern as described in the chapter on exception handling in [MMN93] has not been
implemented. 

11 Exception Handling 25



12 Pattern Variables/Structure Objects
If P is a pattern then P## is a structure object denoting the pattern P.

Similarly if R is an object, then according to the BETA book, a structure object corresponding to the
descriptor/pattern used to instantiate R may be obtained using P._struc.

The expression R##, may also be used instead of P._struc.

12 Pattern Variables/Structure Objects 26



13 Mjølner BETA Low Level Primitives
• Introduction
• Low Level Operations
• Syntax
• Addressing Conventions
• Operations

♦ Bitwise logical complement (one's complement)
♦ Bitwise logical and, or, exclusive or
♦ Shift of a long
♦ Get byte/short from a long
♦ Put byte/short into a long
♦ Get bits from a long
♦ Put bits into a long
♦ This object

13.1 Introduction

This document describes the semantics of the low−level primitives available in the Mjølner
implementation of the BETA language. There are currently some syntactic inconveniences. These
may be fixed with a grammar change in a future version.

13.2 Low Level Operations

Low level operations on bits, bytes and words are available as described below. Use of these
operations may in general be platform dependent.

13.3 Syntax

The syntax is as follows

%op

i.e., the % indicates, that op is a special low−level operation.

In the following, E, val, and inx are assumed to be integer evaluations, A is an integer object, and
R is a repetition object.

13.4 Addressing Conventions

The addressing conventions of bytes, words, longs and bitfields follow the big−endian (Motorola,
SPARC etc.) conventions:

   |−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−|  
   |31                         long[0]                         0|  
   |−−−−−−−−−−−−−−−−−−−−−−−−−−−−−|−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−|  
   |15         word[0]          0|15          word[1]          0|  
   |−−−−−−−−−−−−−−|−−−−−−−−−−−−−−|−−−−−−−−−−−−−−|−−−−−−−−−−−−−−−|  
   |7   byte[0]  0|7   byte[1]  0|7   byte[2]  0|7   byte[3]   0|  
   |−−−−−−−−−−−−−−|−−−−−−−−−−−−−−|−−−−−−−−−−−−−−|−−−−−−−−−−−−−−−|  
    0                                                         31   
    BitOffset Big−endian −−>

13 Mjølner BETA Low Level Primitives 27



                                     BitOffset Little−endian <−−

   |              |              |              |        
   BaseAddr       BaseAddr+1     BaseAddr+2     BaseAddr+3

Notice that a BitOffset is addressed from the most significant bit on big−endian architectures, and
from the the least significant bit on little−endian architectures (nti, linux).

13.5 Operations

The following operations are available.

13.5.1 Bitwise logical complement (one's complement)

OP:      %Bnot 
usage:   %Bnot E

13.5.2 Bitwise logical and, or, exclusive or

OP:     %Band, %Bor, %Bxor
usage:  E1 OP E2
ex:     E1 %Band E2

Note the B in these operations − B stands for bitwise. A future version may use the syntax %and.

13.5.3 Shift of a long

OP:     %srl       shift right logical
        %sll       shift left logical
        %sra       shift right arithemetic 
        %sla       shift left arithemetic 
        %ror       rotate right
        %rol       rotate left
usage   E1 OP E2
ex:     E1 %sll E2

13.5.4 Get byte/short from a long

OP:     byteNo  −> A.%getByte
        shortNo −> A.%getShort
        longNo  −> A.%getLong
        byteNo  −> A.%getSignedByte 
        shortNo −> A.%getSignedShort

where byteNo is an integer−evaluation in [0,3], shortNo in [0,1] and longNo in [0]. 

Usage:  E1 −> A1.%getByte −> A2
Ex:     1 −> A.%getByte −> B

Note: byteNo −> A.%getLong is the same as A.

 BETA Language Modifications − Reference Manual

13.5  Operations 28



13.5.5 Put byte/short into a long

OP:     (val,byteNo)  −> A.%putByte
        (val,shortNo) −> A.%putShort
        (val,longNo)  −> A.%putLong

The same restrictions for byteNo  etc. as in Get byte/short from a long apply here.

usage:  (val,E) −> A.OP
ex.:    (val,3) −> A.%putByte

The same restrictions for byteNo  etc. as in Get byte/short from a long apply here.

Note: (val,E)−>A.%putLong is the same as val−>A.

13.5.6 Get bits from a long

OP:     (pos,width) −> A.%getBits
        (pos,width) −> A.%getSignedBits

where pos, width in [0,31] are integer−evaluations.

usage: (pos,width) −> A.%getBits −> V

13.5.7 Put bits into a long

OP:     (val,pos,width) −> A.%putBits

where pos, width in [0,31] are integer−evaluations.

usage:  (V,12,4) −> A.%putBits

13.5.8 This object

Note: This operation is needed in some cases where THIS(P) cannot be used. E.g. inside singular
objects in the do−part.
Notice that THIS(Object) will NOT work, you must use the operation below:

OP:     %thiss object

A reference to the current object is returned.

Usage:  %thiss object −> S[]

where S is declared as S: ^Object. 

 BETA Language Modifications − Reference Manual

13.5.5 Put byte/short into a long 29



14 The Fragment System
A further specification including modifications of the fragment system is given in:

• The Fragment System: Further Specification

14 The Fragment System 30

fragment.html


Index
The entries in the alphabetic index consists of selected words and symbols from the body files of
this manual − these are in bold font − as well as the identifiers defined in the public interfaces of
the libraries − set in regular font. 
In the manual, the entries, which can be found in the index are typeset like this. This can help
localizing the identifier, when the link from the index if followed − especially in the case where the
browser does not scroll the line to the top, e.g. because there is less than a page of text left. 
In the small table of letters and symbols below, each entry links directly to the section of the index
containing entries starting with the corresponding letter or symbol.

\ A B C D E F G H I J K L M  N O P Q R S T U V W X Y Z

\

\"
\'
\?
\\

\a
\b
\f
\n

\ooo
\r
\t
\v

A

alert (bell) character Arithmetic Operators

B

backslash backspace

C

carriage return

D

double quote

F

formfeed

H

horizontal tab

N

newline

Index 31



O

octal number

Q

question mark

S

short−circuit boolean
expressions
Simple If Imperative

single quote
special characters

V

vertical tab

 BETA Language Modifications − Reference Manual

O 32


	Table of Contents
	1 Introduction
	2 Basic Patterns
	3 Operations on Basic Patterns and References
	3.1 Assignment 
	3.2 Relational Operators
	3.2.1 Restrictions on Relational Expressions 
	3.2.2 Type Rules for Relational Expressions 

	3.3 Arithmetic Operators.
	3.4 Boolean Operators 
	3.4.1 Xor Primitive
	3.4.2 Short-circuit Boolean Expressions
	3.4.3 Type rules for boolean expressions 
	3.4.4 Unary Operators: 


	4 Repetition Constructors
	4.1 Value Repetitions
	4.2 Example
	4.3 Variable number of enter parameters

	5 Pattern text and wtext
	5.1 String Literals as References
	5.2 Special Characters in String Literals
	5.3 Text Literal Concatenation 
	5.4 Text literals 

	6 Imperatives 
	6.1 General If-Imperative 
	6.2 Simple If-Imperative
	6.3 The labeled compound imperative 
	6.4 Leave- and Restart Imperative 
	6.5 Inserted items

	7 Virtual Patterns and Final Patterns as Superpatterns 
	8 The Use of this(P) for Component Objects 
	9 Dynamic denotations 
	10 Concurrency 
	11 Exception Handling 
	12 Pattern Variables/Structure Objects 
	13 Mjølner BETA Low Level Primitives
	13.1 Introduction
	13.2 Low Level Operations
	13.3 Syntax
	13.4 Addressing Conventions
	13.5  Operations
	13.5.1 Bitwise logical complement (one's complement)
	13.5.2 Bitwise logical and, or, exclusive or
	13.5.3 Shift of a long
	13.5.4 Get byte/short from a long
	13.5.5 Put byte/short into a long
	13.5.6 Get bits from a long
	13.5.7 Put bits into a long
	13.5.8 This object


	14 The Fragment System 
	Index
	\
	A
	B
	C
	D
	F
	H
	N
	O
	Q
	S
	V


