
CHAPTER 2

The Mjølner BETA system

Peter Andersen, Lars Bak, Søren Brandt, Jørgen Lindskov 
Knudsen, Ole Lehrmann Madsen, Kim Jensen Møller, Claus 
Nørgaard, Elmer Sandvad

The Mjølner BETA System is an integrated and interactive general-purpose soft-
ware development environment that supports industrial strength programming,
using object-oriented programming in the BETA programming language. The aim
of the environment is to support the entire software development process, inclu-
ding object-oriented design and implementation, user interface construction, per-
sistence, database construction and maintenance, graphics programming,
distributed systems, and documentation.

The integration of the various tools in the Mjølner BETA System is established
by insisting that all tools in the system utilize one single representation of the pro-
gram in the form of abstract syntax trees (ASTs). All manipulations of the ASTs by
the various tools are done by utilizing the metaprogramming system, which defines
an interface to the AST and ways to manipulate the AST (as illustrated in figure
2.1).

CompilerParser Pretty
printer

Editor User Interface
Toolkit

Fragment system

Meta
programming system

AST

Fragment Library

Operating system, file system, I/O system, window system, etc.

Graphics
System

Executable

Debugger

Text files

Integrated Control

Figure 2.1 The Mjølner BETA System architecture

FakePart I
FakePartTitle Software development environments



The Mjølner BETA system 25

The Mjølner BETA System includes an implementation of the BETA language, a
series of libraries and application frameworks, a set of development tools, and a
metaprogramming system. All components in the Mjølner BETA System are con-
structed in the BETA programming language (except the run-time system and a
few other routines written in C and assembly language).

Major parts of the system (e.g. editor, parser, pretty-printer, metaprogramming
system, fragment system) are grammar-based in the sense that tool generators
exist that, given a specific grammar for a language, will define a specific tool that is
able to manipulate programs written in that specific language. Such language spe-
cific tools have been generated for the BETA language, and form the basis for the
Mjølner BETA System. Furthermore, the generators have been used to create tools
for many other languages.

In the following, we will give a brief introduction to these different aspects of the
Mjølner BETA System, focusing on the usages of the different components. Most
components will be described in greater detail in later chapters of this book.

2.1 The BETA programming language

The BETA language constructs are directly designed to enable the construction of
effective solutions to software construction using “state-of-the-art” object-oriented
language constructs. BETA is a modern object-oriented language from the Scandi-
navian school of object-orientation where the first object-oriented language, Simula
(see chapter 5), was developed. BETA is a strongly typed language like Eiffel
[Mey89a] and C++ [Str86a], with an optimum balance between compile-time type
checking and run-time type checking. 

The language consists of a small number of concepts and the power of the lan-
guage is the orthogonality of these concepts. This implies that the language is easy
to learn, since there are few basic constructs to learn, and thus only a small set of
rules for combining these constructs. Table 2.1 illustrates some of the mechanisms
of BETA. The basic constructs of the BETA language are patterns and objects. Pat-
terns are used to describe classes, procedures, functions, coroutines, processes,
exceptions, etc., and objects are the instances of these patterns. That is, objects are
used to describe procedure and function invocations, coroutine executions, concur-
rent or alternating processes, exception occurrences, etc. In addition to the pattern
mechanism, BETA has mechanisms for specifying subpatterns, virtual patterns

Table 2.1 The BETA language matrix

class procedure function coroutine process exception

pattern √ √ √ √ √ √

subpattern √ √ √ √ √ √

nested patterns √ √ √ √ √ √

virtual pattern √ √ √ √ √ √

pattern variable √ √ √ √ √ √



26 Software development environments

and pattern variables. Furthermore, BETA defines means for describing whole/
part objects, reference attributes, and general block structure. The BETA language
is described in more detail in chapter 6.

2.1.1 The fragment system

The fragment system is a unique system for handling issues related to separate
compilation, modularization, information hiding, variant handling and separating
of interface and implementation. In contrast to most other modularization and sep-
arate compilation systems, the granularity of modularization and separate compi-
lation is controlled by the programmer. The basis of the fragment system is that
the programmer defines which parts of the program should be separated into dis-
tinct modules (called fragments). This implies that the fragment system allows the
modularization that fits the problem at hand, resulting in more elegant and intui-
tive modularization. The fragments are specified by the programmer, including
specification of the interdependencies between the fragments, such that the com-
piler is able to avoid compilation of already compiled fragments and only recompile
these fragments if they have been changed since the last compilation. This implies
that the software development is relieved from maintaining huge make-files, speci-
fying the interdependencies between files.

The flexibility of the fragment system is also important in relation to informa-
tion hiding and separation of interface and implementation. Since the programmer
is in control of the granularity of the fragments, he is thereby also in control of the
information hiding and separation of interface and implementation. This implies
that the programmer may choose to define the information hiding as demanded by
the problem, since he may choose to take a mixture of patterns and objects, and
view them as one module (or subsystem) with joint information hiding (e.g. only
one or two of the components visible to the outside), or he can choose to make each
component (pattern or object) into a module, controlling the visibility concerning
each component individually. 

The fragment system is also a valuable tool for the specification of program vari-
ants, especially for maintaining variants for different machine types (on the same
file system). The compiler actually uses this part of the fragment system to auto-
matically select the proper variants when compiling on the different machine
types. The same facility can be used for cross-compiling onto another machine. The
fragment system is described in more detail in chapter 9.

2.1.2 The BETA compiler 

The BETA compiler is an effective implementation of the BETA language. The
main components of the compiler are the semantic analyzer and the code generator.
The semantic analyzer checks the correctness of the context sensitive syntax
(static semantics) of an AST, and performs storage allocation. The code generator
translates an AST into executable code (native machine code). The code generator
is divided into two components: the synthesizer and the coder. The synthesizer
defines a machine independent model of the code generation, and the coder takes



The Mjølner BETA system 27

care of the machine dependent parts of the code generation. The synthesizer is the
largest part of the code generator. This implies that porting the compiler to another
machine can be done with a reasonable effort. A symbol table is constructed during
semantic analysis. The symbol table is defined by means of the semantic level of
the metaprogramming system, i.e. the AST decorated with semantic attributes. In
this way the symbol table information is an integrated part of the AST and thereby
available for other tools accessing the AST (e.g. the editor). In order to manipulate
the ASTs, the compiler makes extensive use of the metaprogramming system. Fur-
thermore, in order to generate ASTs from textual program representations, the
compiler makes use of the parser. Finally, the compiler makes use of the pretty-
printer to generate a textual representation of parts of the AST (e.g. in order to
indicate program errors). The compiler uses the fragment system to enable pro-
grams to be divided into smaller fragments for separate compilation. The compiler
makes an automatic dependency analysis on the fragment structure. When a frag-
ment has been changed, the system keeps track of the dependent fragments that
must be recompiled.

The Mjølner BETA compiler generates native code for the target machine, and
the BETA runtime system takes care of the allocation of objects and the manage-
ment of the execution of the actions associated with the individual objects. The
runtime system realizes automatic garbage collection of objects when they are no
longer reachable by any other object. The compiler also offers powerful means for
interfacing to external code and data specified in assembly, C and Pascal. This
implies that a BETA program may invoke external functions and access externally
allocated data structures. On the other hand, BETA objects may be invoked or
manipulated from the external code.

2.2 Libraries and application frameworks

The Mjølner BETA System includes a series of libraries and application frame-
works for the construction of high-quality programs. These libraries and applica-
tion frameworks have many predefined functionalities, ready for reuse by the
application programmer. These components are aimed at automating many very
common programming problems such that the application programmer can concen-
trate on the problem domain. The libraries include:

Basic libraries including facilities for text manipulation, exception handling,
stream-based communication (I/O), file system access, and external language inter-
faces. These libraries are the very basics of any program. They offer the basic data
structures and interfaces to the operating system.

Container libraries is a set of libraries, implementing the most common data
structures, ready for use in application programs. The available data structures
are illustrated in figure 2.2.

Persistent store implements a fully orthogonal persistence system for BETA
objects. The BETA persistence is very simple to use, yet provides type-safe and
reliable secondary storage for BETA objects without the application programmer



28 Software development environments

writing any tedious code to transform the BETA objects into some storage form.
The only thing the programmer needs to do is to open the persistent store, and
mark the persistent root of the objects to be stored in that persistent store. The
persistence store will then ensure that the objects are stored on secondary storage
in a form that makes it possible for the persistent store to establish the objects
again in another program execution (or in another program). When saving (and
restoring) BETA objects, the entire transitive closure of the object is stored in (or
restored from) the persistent store (i.e. the object is stored along with all objects
that are referenced from the object – through references). The persistence library
offers an elegant solution to the storage of application data between program exe-
cutions, or as a communication means between different programs, manipulating
some common information structures. The persistent store is described in more
detail in chapter 12.

Object browser library implements an elegant ability to realize browsing in
objects of the application. If an application program needs to supply browsing facil-
ities for some information structures in the program (such as organizational data
in a business application), the object browser library gives one solution. Given an
object reference, the object browser library is able to display that object and all
objects referenced by that object, using windows to display the individual objects
and their state, and the unfolding of object references is totally controlled by the
user of the application. Figure 2.3 contains an example of usage of the object
browser to display the objects located in a persistent store (in this case, the persis-
tent store named GreatBelt). In the left window, all objects in GreatBelt are dis-
played (e.g. the object GreatBeltLink) along with information on the type of the
objects (e.g. Department). In the right window, the details of the GreatBeltLink object
are displayed, such as information on the attribute DistinguishedName, along with
the associated value Great Belt Link Ltd.

Concurrency library offers a whole range of pattern abstractions for concur-
rency in far more structured ways than the build-in language mechanisms (fork
and semaphores).

The concurrency library includes patterns implementing monitors with both
exclusive access control, and single writer/multiple readers access control. The
monitors pattern also includes facilities for medium-term scheduling in the form of
a wait-imperative.

container

arrayContainer listcollection sequentialContainer

set

multiSet hashTable

classificationSet

stack queue deque prioQueue

extensibleHashTable

recList

Figure 2.2 The Containers library hierarchy



The Mjølner BETA system 29

Besides monitor-based communication, the concurrency library includes facili-
ties for rendezvous-like remote procedure communication. This is realized in the
form of a port concept, which controls the concurrent access to a set of operations,
allowing only the proper objects to invoke these operations remotely (with mutual
exclusion). Ports are defined for three often used concurrency control patterns:
communication with any other object, communication with objects that are
instances of a specific pattern (or a subpattern thereof), and finally communication
with a specific object. In all three cases, the ports offer two possible operation
semantics: mutual exclusion, or single writer/multiple readers semantics.

The concurrency library is an excellent system for object-oriented concurrent
programming, and more importantly, the concurrency control facilities are flexible,
allowing the application programmer to define an alternative concurrency control
mechanism that suits the needs of the application.

Besides these libraries, the Mjølner BETA System includes application frame-
works for helping the construction of advanced software:

XtEnv is an application framework for the construction of user interfaces using
the X Window System. The XtEnv framework is based on X Toolkit, and is avail-
able in two variants: AwEnv and MotifEnv. AwEnv is based on the Athena widget
set, and MotifEnv is based on the Motif widget set. Both implement a BETA object-
oriented model, based on the underlying widget-based object model. This implies

Figure 2.3 Object Browser windows



30 Software development environments

that the application programmers should be able to use their insights into these
widget sets when programming user interfaces using either AwEnv or MotifEnv. 

The BETA object-oriented model of these widget sets is far more elegant than
the original C-based object models, and the usage of these frameworks makes the
construction of advanced user interfaces easier and more intuitive than when
using the C-based object models.

MacEnv is the XtEnv equivalent framework for the Macintosh. In this case, the
BETA object-oriented model is designed as part of the MacEnv design effort, and
therefore not based on any existing object model. MacEnv makes the construction
of advanced user interfaces for the Macintosh family of computers fairly straight-
forward and intuitive. All event handling and other tedious programming tasks,
based on the Macintosh Toolbox, are fully taken care of by the MacEnv framework.
The XtEnv and MacEnv libraries are described in more detail in chapter 15.

Bifrost graphics library is a device independent, interactive, extensible, and tai-
lorable 2D graphics system based on the stencil and paint imaging model. The
graphics system defines an object-oriented model for graphics modeling, interac-
tion with graphics (creation, reshaping, translation, scaling, and rotation), graph-
ics contexts (local, shared and global), and automatic damage repair. The
interactive facilities are an intrinsic part of the graphics model, such that every
graphics object that may be displayed on the screen is capable of sensing and
responding to interaction from the user using the mouse and keyboard. The Bifrost
graphics library is designed such that it cooperates with the MacEnv and XtEnv
application frameworks. The Bifrost graphics library is described in more detail in
chapter 16.

Distributed objects system is an experimental system for distributing BETA
objects onto different computers, and enabling transparent remote procedure invo-
cation in the distributed objects. The distributed object model is based on proxy
objects (as illustrated in Figure 2.4), and the application programmer only needs to
write specialized code for locating the distributed object. When located (and a refer-
ence to the proxy object has been established through the distributed object sys-
tem), the handling of the distributed system is totally transparent.

C

C

D

A

B

Client Server
network

proxy object
communication
system

Figure 2.4 Distributed object system architecture



The Mjølner BETA system 31

Object-oriented database system for BETA objects has been implemented on
top of the persistent store library (and a database engine). The OODB implements
nested transactions, concurrency control, localization and query processing in the
form of a library of BETA patterns. Furthermore, the OODB defines an extensive
notification mechanism, enabling the client to subscribe to modifications in the
connected logical databases (such as establishment of other connections to the
OODB, creation of new objects, modifications of objects, deletion of objects, etc.). 

The database is based on a distributed client/server model in which a client
application may have access to several different logical databases (distributed on
different database servers), and a database server may control several different
logical databases (illustrated in figure 2.5).

2.3 Development tools

The Mjølner BETA System includes a number of development tools, such as
source-level debugger, hyper structure editor, and design tool. The Mjølner BETA
System allows the utilization of regular text editors as program editors, if the app-
lication programmer prefers it. The different development tools are:

Source level debugger for BETA with facilities for setting breakpoints, for
browsing in the stacks and heaps of the suspended program, for browsing in the
object structure of the suspended program, for browsing in the program structure
(patterns and code) of the suspended program, etc.

The source-level debugger is an efficient tool for finding errors in running pro-
grams. The facilities for browsing in both the runtime structures as well as the
compile-time structures give the application programmer effective means for locat-
ing and fixing program errors. Figure 2.6 illustrates the user interface of the
debugger. The upper window is the main window, controlling the BETA program
being debugged. The OBJECT window displays the current state of an object and
the STACK VIEW window displays the current stack. The CODE window displays
the code of some object, and in this case the position, where the execution has
halted. In any debugging session, several OBJECT and CODE windows may be
opened at the same time, giving the ability to inspect the state and code of several
objects at the same time.

Figure 2.5 Distributed object-oriented database architecture

Client1 Client2Client2

OODBserver1 OODBserver2

persistent store1 persistent store2 persistent store3



32 Software development environments

Hyper structure editor is the editor for BETA application programming. The
hyper structure editor is a structure-oriented editor with free textual editing facili-
ties, such that the application programmer may freely choose to use text editing or
structure editing. Immediately after termination of textual editing, the editor will
parse the entered (or modified) text incrementally, and report possible parse errors
to the programmer to allow him to correct the errors. The editor has a number of
other advanced features: abstract presentation, browsing, and linking.

Abstract presentation enables the suppression of details of a given program, such
that only placeholders (usually visualized by means of three dots: “…”) for this
information are shown in the editor window. The suppression of details is totally
controlled by the programmer, and gives the programmer total control over which
parts of the program are shown in the editor window. The advantage of abstract
presentation is that more relevant information can be displayed on the screen at
the time, since the irrelevant parts are suppressed by the programmer. Abstract
presentation is also applied to comments, since the editor by default merely places
a marker where a comment appears in the program. Again this is done in order to
keep as much information as possible on the screen at any time, and to encourage
programmers to make proper and meaningful comments, which do not hinder the
readability of the program during program development. Should the programmer
wish to see the comment, he needs only click on the comment marker, and the edi-
tor opens a window with the comment, ready for editing. The programmer may
also choose to have the comment displayed directly in the editor window as part of
the program text.

Figure 2.6 Source-level debugger windows



The Mjølner BETA system 33

Browsing enables the application programmer to use the semantic information in
the program, e.g. to find the definition of an identifier or find the fragments that a
program is dependent on. The browsing facilities include means for opening an edi-
tor on the located definitions/fragments, if they are not either part of the current
program, or already open. The advantages of these browsing facilities are obvi-
ously that the programmer may find information quickly, and spot errors in his
understanding of the program (e.g. the identifier is not defined as expected by the
programmer).

Linking enables the programmer to make hypertext links within programs,
between programs, and in general within and between any document that the edi-
tor is capable of handling. Links are bidirectional such that they can be followed in
either direction. This general facility can be used by the programmer to link
related program pieces for future reference, or for linking a program piece with the
documentation of that program piece, thus enhancing the information contents of
both the program and the documentation, and to enable quick reference in the
future development of this program.

The editor supports many document types, since it can handle any document
that can be described by a context-free grammar. This includes programming lan-
guages and many textual document types, such as reports, documentation, etc.,
since they are highly structured documents, consisting of chapters, sections, etc.
Note that certain document standards (e.g. SGML) actually enable parsing of such
documents.

The user interface of the editor is illustrated in figure 2.7. The HPUX8sif window
is the main window, controlling the editor, and the two other windows are two edit-
ing windows. The right window displays a BETA program, and illustrates the
menu for syntax-directed editing, abstract presentation and comment handling.
The other window illustrates the editor applied to a structured document, contain-
ing the documentation of part of the BETA system. Here also the linking facilities
are illustrated (the (^) markers at Streams and Exceptions).

Figure 2.7 Hyper structure editor windows



34 Software development environments

Object-oriented CASE tool is currently being developed for the design and con-
struction of BETA applications in which the usual reverse engineering problems of
standard CASE tools do not exist, since all tools work on the same common repre-
sentation: the abstract syntax trees. The object-oriented CASE tool is a means for
creating and manipulating diagrams that graphically view the inheritance struc-
ture, the attributes of patterns, and the fragment structure of BETA programs.
The hyper structure editor manipulates programs and structured text (e.g. pro-
gram documentation), and the object-oriented CASE tool manipulates diagrams,
exhibiting free vs. structured editing, abstract presentation, browsing, and linking
for three different document types: programs, diagrams, and documentation. The
linking facility will even work across these different document types. The user
interface of the combined CASE tool is illustrated in figure 2.8. The hyper struc-
ture editor and CASE tool are described in more detail in chapters 22–24.

2.4 Application-oriented language development tools 

The Mjølner BETA System also includes an advanced system for defining lan-
guages, such as general purpose programming languages (e.g. BETA, Simula,
Modula, Pascal, FelixPascal), specification languages (e.g. OSDL and GDMO), doc-
ument definition languages (e.g. SGML), database languages (e.g. SQL), and spe-
cial-purpose application-oriented languages. Examples of such languages are
macro languages, scripting languages, and control languages.

A number of tools in the Mjølner BETA System are metaprograms, i.e. programs
that manipulate other programs. The Mjølner BETA metaprogramming system is
grammar-based in the sense that a metaprogramming tool may be generated from
the grammar of any language. All metaprogramming tools in the Mjølner BETA
System manipulate programs through a common representation that is abstract

Figure 2.8 Object-oriented CASE tool interfaces



The Mjølner BETA system 35

syntax trees (ASTs). An object-oriented model of the ASTs has been developed as
part of the Mjølner BETA System. An AST is modeled as an instance of a pattern.
There is a pattern corresponding to each syntactic category (nonterminal) of the
grammar. ASTs derived from a syntactic category are then modeled as instances of
the corresponding pattern. The grammar hierarchy is modeled by a corresponding
pattern hierarchy. The pattern hierarchy is derived automatically from the con-
text-free grammar.

The grammar-based interface described above results in a set of patterns for
each language. A metaprogram using the grammar-based interface will thus be
language specific since it uses the set of patterns generated from the grammar of
the actual language. A number of tools are language specific in the sense that usu-
ally one exists for each language. Examples of tools that benefit from using the
grammar-based interface are semantic checkers, program analyzers, interpreters,
browsers, graphical presentation tools, and transformation tools.

The fragment system is accessible as part of the Mjølner BETA metaprogram-
ming system, and enables the management and manipulation of coherent ASTs
located in different files. The functionality of the fragment system allows splitting
of an AST into a number of sub-ASTs (sub-trees) by allowing some inferior nodes in
the original AST to be replaced by special nodes. The AST, originally positioned at
the position of that node, is called a fragment and may be located in a totally differ-
ent file.

Two tools exist for converting between textual and abstract syntax tree repre-
sentations of a program. Both tools are grammar-based and can be applied to any
language with a context-free grammar. The parser translates a text stream into an
AST and the pretty-printer translates an AST into a text stream. The parser is
based on LALR(1) parsing algorithms. The pretty-printer is an adaptive pretty-
printer using a pretty-printing specification to guide the format of the output. For
each production in the grammar, pretty-printing directives are given on the layout
of sentences, derived from that nonterminal. This specification can be specified by
the user. Both tools are used by the compiler and the editor.

In the Mjølner BETA metaprogramming system, an attempt has been made to
view traditional tools like the editor, compiler and debugger as metaprograms in
general. The advantage of this is that all tools including user programs access pro-
grams through a common representation. This leads to the integration of the gram-
mar-based interfaces with the tree level and semantic level described above. The
metaprogramming system is described in more detail in chapter 19.


