
CHAPTER 6

An overview of BETA

Ole Lehrmann Madsen

BETA is a modern object-oriented language from the Scandinavian school of object-
orientation where the first object-oriented language Simula [DMN70] was devel-
oped. BETA supports the object-oriented perspective on programming and contains
comprehensive facilities for procedural and functional programming. BETA has
powerful abstraction mechanisms for supporting identification of objects, classifi-
cation and composition. BETA is a strongly typed language like Simula, Eiffel
[Mey88] and C++ [Str86a], with most type checking being carried out at compile-
time. It is well known that it is not possible to obtain all type checking at compile
time without sacrificing the expressiveness of the language. BETA has an optimum
balance between compile-time type checking and run-time type checking.

The purpose of this chapter is to present an overview of the BETA language and
give examples on the use of most constructs. The reader is assumed to be familiar
with one or more object-oriented languages like Simula, Eiffel, C++, or Smalltalk
[GR83]. For more details about BETA see [KMM+83b,KKM+87b,MMN93].

Powerful abstraction mechanisms
BETA has powerful abstraction mechanisms that provide excellent support for
design and implementation, including data definition for persistent data. The pow-
erful abstraction mechanisms greatly enhance reusability of designs and imple-
mentations.

The abstraction mechanisms include class, procedure, function, coroutine, pro-
cess, exception and many more, all unified into the ultimate abstraction mecha-
nism: the pattern. In addition to the pattern, BETA has subpattern, virtual pattern
and pattern variable. This unification gives a uniform treatment of abstraction
mechanisms and a number of new ones. Most object-oriented languages have
classes, subclasses and virtual procedures, and some have procedure variables.
Since a pattern is a generalization of abstraction mechanisms like class, procedure,
function, etc., the notions of subpattern, virtual pattern and pattern variable also
apply to these abstraction mechanisms. In addition to the above mentioned
abstraction mechanisms, the pattern subsumes notions such as generic package
and task type as known from Ada.

The subpattern covers subclasses as in most other object-oriented languages. In
addition, procedures may be organized in a subprocedure hierarchy in the same

FakePart II
FakePartTitle Modeling and programming languages

100 Modeling and programming languages

way as classes may be organized in a subclass hierarchy. Since patterns may also
be used to describe functions, coroutines, concurrent processes, and exceptions,
these may also be organized in a pattern hierarchy.

The notion of virtual pattern covers virtual procedures as in Simula, Eiffel and
C++. In addition, virtual patterns cover virtual classes, virtual coroutines, virtual
concurrent processes, and virtual exceptions. Virtual classes provide a more gen-
eral alternative to generic classes as in Eiffel or templates as in C++.

BETA includes the notion of pattern variable. This implies that patterns are
first class values, that may be passed around as parameters to other patterns. By
using pattern variables instead of virtual patterns, it is possible dynamically to
change the behavior of an object after its generation. Pattern variables cover proce-
dure variables (i.e. a variable that may be assigned different procedures). Since
patterns may be used as classes, it is also possible to have variables that can be
assigned classes, etc.

BETA does not only allow for passive objects as in Smalltalk, C++, and Eiffel.
BETA objects may also act as coroutines, making it possible to model alternating
sequential processes and quasi-parallel processes. BETA coroutines may be exe-
cuted concurrent (non pre-emptive scheduling in current implementation). The
basic mechanism for synchronization is semaphores, but high-level abstractions for
synchronization and communication, hiding all details about semaphores, are easy
to implement, and the standard library includes monitors, and Ada-like rendez-
vous. The user may easily define new concurrency abstractions including schedul-
ers for processes.

BETA supports the three main subfunctions of abstraction: identification, clas-
sification, and composition.

Identification of objects
It is possible to describe objects that are not generated as instances of a class pat-
tern, so-called “class-less objects”. This is in many cases useful when there is only
one object of a kind. In most object-oriented languages, it is necessary to define
superfluous classes for such objects. In analysis and design, it is absolutely neces-
sary to be able to describe singular objects without having them as instances of
classes.

Classification
Classification is supported by patterns, subpatterns, and virtual patterns that
make it possible to describe classification hierarchies of objects and patterns
(objects, classes, procedures, functions, coroutines, processes, exceptions, etc.).

Composition (aggregation)
Objects and patterns may be defined as a composition of other objects and pat-
terns. The support for composition includes:

• Whole-part composition: an attribute of an object may be a part-object. This
makes it possible to describe objects in terms of their physical parts.

• Reference composition: an attribute may be a reference to an object. Refer-
ence composition is the basis for modeling arbitrary relations between
objects.

An overview of BETA 101

• Localization: an attribute of an object may be a (nested) pattern. This is
known from Algol 60 as block-structure. The block-structure makes it easy to
create arbitrary nested pattern. This makes it possible for objects to have
local patterns used as classes, procedures, etc. Local patterns greatly
enhance the modeling capabilities of an object-oriented language.

Inheritance
In BETA, inheritance is not only restricted to inheritance from superpatterns. It is
also possible to inherit from a part-object. Virtual patterns in the part-object may
be redefined to influence the enclosing object. Multiple inheritance is supported
through inheritance from multiple part-objects. This gives a much cleaner struc-
ture than inheritance from multiple superpatterns.

Conceptual framework
BETA is intended for modeling and design as well as implementation. During the
design of BETA the development of the underlying conceptual framework has been
just as important as the language itself. For a description of the conceptual frame-
work, see chapter 4.

6.1 Patterns and objects

Most object-oriented languages supporting the object-oriented perspective have
constructs such as class, subclass, virtual procedure, and qualified reference vari-
able. These constructs all originated with Simula. Eiffel and C++ include these
constructs although a different terminology is used. The constructs mentioned are
also the basic elements of Smalltalk. Virtual procedure corresponds to method, and
qualified reference to instance variable. For the latter a major difference is that
instance variables have no qualification (type). In addition to virtual procedures,
Simula, C++, and BETA have non-virtual procedures.

In this section, the BETA version of the above constructs will be described and
compared with other languages using the Simula terminology. The example used
in the following is a company with different kinds of employees, including sales-
men and workers. Employee is an abstract superpattern describing the common
properties of all employees.

Employee:
(# name: @ Text;

birthday: @ Date;
dept: ^ Department;
totalHours: @ Integer;
RegisterWork:

(# noOfHours: @ Integer
enter noOfHours
do noOfHours + totalhours → totalHours
#);

ComputeSalary:<
(# salary: @ integer

102 Modeling and programming languages

do inner
exit salary
#);

#);

 The elements of the Employee pattern have the following meaning:

• The attributes name, birthday, dept and totalHours are reference attributes
denoting instances of the patterns Text, Date, Department and Integer respec-
tively.

• Name, birthday, and totalHours refer to part-objects. A part-object is a fixed
part of its enclosed object and is generated together with the enclosing object.
Part-objects are found in Eiffel and C++, but not in Simula and Smalltalk.

• Dept is a dynamic reference that either has the value NONE or refers to a sep-
arate instance of the pattern Department. A dynamic reference is similar to a
qualified reference in Simula.

• The attributes RegisterWork, and ComputeSalary are pattern attributes
describing actions to be executed. They correspond to procedures in most
other languages. The enter-part describes the input-parameters of a pattern
and the exit-part describes its output parameters. RegisterWork has one
input parameter noOfHours and ComputeSalary has one output parameter,
salary.

• RegisterWork is a non-virtual pattern attribute. This means that its complete
description is given as part of the description of Employee. It is similar to
non-virtual procedure attributes in Simula.

• ComputeSalary is a virtual pattern attribute. Only part of its description is
given since the computation of the salary is different for salesmen and work-
ers. The description of a virtual pattern may be extended in subpatterns of
Employee. A virtual pattern attribute is similar to a virtual procedure in Sim-
ula.

• Employee, RegisterWork and ComputeSalary are all examples of patterns.
Employee is an example of a pattern used as a class and is therefore called a
class pattern. RegisterWork and ComputeSalary are examples of patterns
used as procedures and are therefore called procedure patterns. Technically
there is no difference between class patterns and procedure patterns.

The following patterns are subpatterns of Employee corresponding to salesmen
and workers.

Worker: Employee
(# seniority: @ integer;

ComputeSalary::<
(#do noOfHours*80+seniority*4 →salary; 0→totalHours #)

#);
Salesman: Employee

(# noOfSoldUnits: @ integer;
ComputeSalary::<

(#do noOfHours*80+noOfSoldUnits*6→salary;

An overview of BETA 103

0→noOfSoldUnits→totalHours
#)

#)

• The class pattern Worker adds the attribute seniority and extends the defini-
tion of ComputeSalary. The salary for a worker is a function of the noOfHours
being worked and the seniority of the worker.

• The class pattern Salesman adds the attribute noOfSoldUnits and describes
another extension of ComputeSalary. The salary for a salesman is a function
of the noOfHours being worked and the noOfSoldUnits.

• The symbols ::< describe the fact that the definition of ComputeSalary from
the superpattern Employee is extended. The extension of a virtual pattern is
in this example similar to redefining a virtual procedure in Simula. Note,
however, that the virtual concept of BETA differs in an important way from
that of most object-oriented languages. Further details are given below.

The above examples have shown instantiating patterns in the form of part-object
attributes (like birthday: @ Date). An instance of, say Worker, may in a similar way
be generated by a declaration of the form:

mary: @ Worker

The above examples have also shown a dynamic reference (like dept: ^Department).
Such a reference is initially NONE, i.e. it refers to no object. A dynamic reference to
instances of Worker may be declared as follows:

theForeman: ^ Worker

TheForeman may be assigned a reference to the object referred by mary by execu-
tion of the following imperative:

mary[] → theForeman[]

Note that the opposite assignment (theForeman[]→mary[]) is not legal since mary is
a constant reference. An instance of Worker may be generated and its reference
assigned to theForeman by executing the following imperative:

&Worker[] → theForeman[]

A few additional comments about constructs used so far:

• The symbol & means new.
• The symbol → is used for assignment of state.
• An expression R[] denotes the reference to the object referred by R whereas

an expression R denotes the object itself. The above assignment thus means
that the qualified reference theForeman is assigned a reference to the gener-
ated instance of Worker.

104 Modeling and programming languages

• An assignment of the form mary→theForeman means that the state of the
object referred by mary is enforced upon the state of the object referred by the-
Foreman. This form of assignment is called value assignment. In this chapter
it will only be used for instances of simple patterns like Integer. If X and Y are
Integer objects then X → Y means that the value of X is assigned to the object
Y.

In this section, it was shown how the most common OO constructs may be
expressed in BETA. In the following sections, examples of the more unique con-
structs will be given.

6.2 Singular objects

Often there is only one object of a given type. In most languages it is still necessary
to make a class and generate a single instance. In BETA it is possible to describe a
singular object directly. There is only one president of our company and he may be
described as the following singular object:

president: @ Employee(#ComputeSalary::< (#do BIG →salary #) #)

The declaration president is similar to the declaration of mary. The difference is
that in the declaration of mary, a pattern name (Worker) describes the objects
whereas a complete object description is used to describe the president.

The president object is an example of a singular data object corresponding to an
instance of a class pattern. It is also possible to describe singular action objects cor-
responding to an instance of a procedure pattern. Singular action objects are simi-
lar to blocks in Algol 60 and Simula. Examples of singular action objects are given
below in section 6.4.

6.3 Subprocedure

The previous section has shown examples of patterns used as classes and proce-
dures. For class patterns, examples of subpatterns have been given. Subpatterns
may also be used for procedure patterns. For attributes, subpatterns may add new
attributes and extend definitions of virtual patterns in the superpattern. In addi-
tion a subpattern may specify further imperatives which have to be combined with
the imperatives of the superpattern. The combination of the imperatives is han-
dled by the inner construct. Consider the following objects:

mutex: @ Semaphore; sharedVar: @ Integer

The variable sharedVar is shared by a number of concurrent processes. Mutual
access to the variable is handled by the semaphore mutex. Update of shared should
then be performed as follows:

mutex.P; m+sharedVar → sharedVar; mutex.V

An overview of BETA 105

This pattern of actions must be used whenever shared and other shared objects
have to be accessed. Instead of manipulating the semaphore directly it is possible
to encapsulate these operations in an abstract procedure pattern. Consider the fol-
lowing pattern entry:

entry: (#do mutex.P; inner; mutex.V #)

Execution of entry locks mutex before the inner and releases it afterwards. inner
may then in subpatterns of entry be replaced by arbitrary imperatives. Consider
the following subpattern of entry:

updateShared: entry(# m: @ integer enter m do sharedVar+m→ sharedVar #)

Execution of an imperative

123 → updateShared

will then result in execution of the actions

mutex.P; sharedVar+123→sharedVar; mutex.V

We may now define an abstract superpattern corresponding to a monitor:

monitor:
(# mutex: @ semaphore;

entry: (#do mutex.P; inner; mutex.V #);
init:< (#do mutex.V{initially open}; inner #)

#);

A (singular) monitor object may now be declared as follows:

shared: @ monitor
(# var: @ Integer;

update: entry(# m: @ Integer enter m do var+m→var #);
get: entry(# v: @ Integer do var→v exit v #)

#)

Semaphores are the basic mechanism in BETA for synchronization. They can
express most synchronization problems, but may be complicated to use. It is there-
fore mandatory that high level abstraction mechanisms like monitor can be defined.
In section 6.7 below, further details about concurrency in BETA will be given.

6.4 Control patterns

Sub (procedure) patterns are used intensively in BETA for defining control pat-
terns (control structures). This includes simple control patterns like cycle, forTo,

106 Modeling and programming languages

etc. It also includes so-called iterators on data objects like list, set and register. A
pattern describing a register of objects may have the following interface:

Register:
(# has: (# E: ^ type; B: @ boolean enter E[] do ... exit B #);

insert: (# E: ^type enter E[] do ... #);
delete: (# E: ^type enter E[] do ... #);
scan: (# thisElm: ^ type do ... inner ... #);
...

#)

A number of details have been left out from the example. These include the repre-
sentation and implementation of the Register. A Register may include instances of
the pattern type, which has not been specified. Type is an example of a virtual class
pattern which will be introduced below. For the moment type is assumed to stand
for the pattern object which is a superclass of all patterns, i.e. a Register may
include instances of all patterns. An instance of Register may be declared and used
as follows:

employees: @ Register
...

mary[]→employees.insert;
(if boss[]→employees.has//true then ... if)

The control pattern scan may be used as follows:

0→totalSalary;
employees.scan(#do thisElm.computeSalary+totalSalary→totalSalary #);
totalSalary→screen.putInt

This works as follows:

• The imperative employees.scan(# ... #) is an example of a singular action
object as mentioned in section 6.2.

• The do-part of scan has an inner imperative which is executed for each ele-
ment in the register. The details of this are not shown, but it may be imple-
mented as a loop that steps through the elements of the register and executes
inner for each element.

• The attribute thisElm of scan is used as an index variable that for each itera-
tion refers to the current element of the register. This may be implemented
by assigning the reference of the current element to thisElm before inner is
executed.

• The effect of executing the above singular action object is that thisElm.com-
puteSalary→S is executed for each element in the register.

An overview of BETA 107

6.5 Nested patterns

One of the characteristics of Algol-like languages is block-structure, which allows
for arbitrary nesting of procedures. In Simula it is in addition possible to nest
classes although there are some restrictions when using nesting. The possibility of
nesting has been carried over to BETA where patterns can be arbitrarily nested.
Block-structure is a powerful mechanism that extends the modeling capabilities of
languages. However, besides Simula and BETA, none of the mainstream object-ori-
ented languages supports block-structure. In most object-oriented languages, an
object may be characterized by data attributes (instance variables) and procedure
attributes. In Simula and BETA, an object may in addition be characterized by
class pattern attributes.

In the examples presented so far, there have been two levels of nesting. The
outer level corresponds to class patterns, like Employee, and the inner level corre-
sponds to procedure patterns, like ComputeSalary. In procedural languages like
Algol and Pascal it is common practice to define procedures with local procedures.
This is of course also possible in BETA.

Nested class patterns
The possibility of nesting classes is a powerful feature which is not possible in lan-
guages like Smalltalk, C++ and Eiffel. The following example shows a class pattern
that describes a product of our company:

ProductDescription:
(# name: @ Text;

price: @ Integer;
noOfSoldUnits: @ Integer;
Order:

(# orderDate: @ Date;
c: ^ Customer;
Print:<

(#do {print name, price, noOfSoldUnits, orderDate, C}
inner

#)
#)

#);

One of the attributes of a productDescription object is the class pattern Order. An
instance of Order describes an order made on this product by some customer. The
attributes of an Order object include the date of the order, the number of units
ordered, the customer ordering the product, and a Print operation. Consider the
objects:

P1,P2: @ Product; o1,o2: @ P1.Order; o3,o4: @ P2.Order

The objects o1 and o2 are instances of P1.Order whereas o3 and o4 are instances of
P2.Order. The block-structure makes it possible to refer to global names in enclos-
ing objects. In the above example, the print operation refers to names in the enclos-

108 Modeling and programming languages

ing Order object. This resembles most object-oriented languages where operations
inside a procedure refer to names in the enclosing object. The Print operation, how-
ever, also refers to names in the surrounding ProductDescription object. Execution
of say o1.print will thus print the values of P1.name, P1.price, P1.noOfSoldUnits,
o1.orderDate, and o1.c.

6.6 Virtual pattern

In the example in section 6.1, it was mentioned that a redefinition of a virtual pro-
cedure pattern is not a redefinition (overriding) as in Simula. In fact a virtual pat-
tern in BETA can only be extended and cannot be completely redefined. The
rationale behind this is that a subpattern should have the same properties as its
superpattern including which imperatives are executed. Ideally a subpattern
should be behaviorally equivalent to its superpattern. This will, however, require a
correctness proof. The subpattern mechanism of BETA supports a form of struc-
tural equivalence between a subpattern and its superpattern.

Consider the following patterns:

A: (# V:< (# x: ...do I1; inner; I2 #) #);
AA: A(# V::< (# y: ...do I3; inner; I4#) #)

The pattern A has a virtual procedure attribute V. V has an attribute x and its do-
part contains the execution of I1; inner; I2. The subpattern AA of A extends the defi-
nition of V. The extended definition of V in AA corresponds to the following object-
descriptor (except for scope rules):

(# x: ...; y: ... do I1; I3; inner; I4; I2 #)

As may be seen the V attribute of AA has the attributes x and y and the do-part
consists of I1; I3; inner; I4; I2. The definition of V is an extension of the one from A
and not a replacement.

The subpattern AB of A describes another extension of V:

AB: A(# V::< (# z: ... do I5: inner; I6 #) #)

Here V corresponds to the following object descriptor:

V: (# x: ...; z: ... do I1; I5; inner; I6; I2 #)

The definition of V may be further extended in subpatterns of AA also as shown in
the definition AAA:

AAA: AA(# V::< (# q: ... do I7; inner; I8 #) #)

The definition of V corresponds to the following object descriptor:

V: (# x: ...; y: ...; q: ... do I1; I3; I7; inner; I8; I4; I2 #)

An overview of BETA 109

As may be seen, the pattern V is a combination of the definitions of V from A, AA
and AAA.

The virtual mechanism in BETA guarantees that behavior defined in a super-
pattern cannot be replaced in a subpattern. This form of structural equivalence is
useful when defining libraries of patterns that are supposed to execute a certain
sequence of actions. In Smalltalk the programmer must explicitly invoke the
actions from the superpattern by means of super. This is illustrated by the example
in the next section.

The inner construct is more general than shown above, since a pattern may have
more than one inner and inner may appear inside control structures and nested sin-
gular object descriptors. In Simula there may be only one inner in a class and it
must appear at the outermost level of imperatives.

6.6.1 Virtual procedure pattern

The attribute ComputeSalary of pattern Employee is an example of a virtual proce-
dure pattern. In this example the do-part of the virtual definition in Employee is
very simple, only consisting of an inner-imperative. The extended definitions of
ComputeSalary in Worker and Salesman both include the code noOfHours*80 and
0→totalHours. This code may instead be defined in the definition of ComputeSalary
in Employee as shown below:

Employee:
(# ...

ComputeSalary:<
(# salary: @ integer
do noOfHours*80→salary; inner; 0→totalHours
exit salary
#)

#);
Worker: Employee

(# ...
ComputeSalary::< (#do seniority*4+salary →salary; inner #)

#);
Salesman: Employee

(# ...
ComputeSalary::<
 (#do noOfSoldUnits*6+salary →salary; 0 →noOfSoldUnits; inner #)

#)

The extended definitions of ComputeSalary in Worker and Salesman have an inner
to enable further extensions of ComputeSalary in subpatterns of Worker and Sales-
man.

110 Modeling and programming languages

6.6.2 Virtual class pattern

Virtual patterns may also be used to parametrize general container patterns such
as the Register pattern described above. For the Register pattern we assumed the
existence of a type pattern defining the elements of the Register, i.e. elements of a
Register must be instances of the pattern type. The pattern type may be declared as
a virtual pattern attribute of Register as shown below:

Register:
(# type:< Object;

insert:< (# e: ^ type enter e[] do ...#)
...

#)

The declaration type:< Object specifies that type is either the pattern Object or
some subpattern of Object. In the definition of Register, type may be used as an
alias for Object, e.g. references qualified by type are known to be at least Objects.
Since Object is the most general superpattern, type may potentially be any other
pattern. The virtual attribute type may be bound to a subpattern of Object in sub-
patterns of Register. The following declaration shows a pattern WorkerRegister
which is a Register where the type attribute has been bound to Worker:

WorkerRegister: Register
(# type::< Worker;

findOldestSeniority:
(# old: @ Integer
do scan

(#do (if thisElm.seniority > old
// true then thisElm.seniority→old

if)#)
exit old
#)

#);

In the definition of WorkerRegister, the virtual pattern type may be used as a syn-
onym for the pattern Worker. This means that all references qualified by type may
be used as if they were qualified by Worker. The reference thisElm of the scan oper-
ation is used in this way by the operation findOldestSeniority which computes the
oldest seniority of the register. The expression thisElm.seniority is legal since this-
Elm is qualified by type which in WorkerRegister is at least a Worker.

In subpatterns of WorkerRegister it is possible to make further bindings of type
thereby restricting the possible members of the register. Suppose that Manager is a
subpattern of Worker. A manager register may then be defined as a subpattern of
WorkerRegister:

ManagerRegister: WorkerRegister(# type::< Manager #)

An overview of BETA 111

In the definition of ManagerRegister, type may be used as a synonym for manager,
i.e. all references qualified by type are also qualified by Manager.

Virtual patterns make it possible to define general parametrized patterns like
Register and to restrict the member type of the elements. In this way virtual class
patterns provide an alternative to generic classes as found in Eiffel. A further dis-
cussion of virtual class patterns may be found in [MM89].

6.7 Multiple threads

A BETA object may be the basis for an execution thread. Such a thread will consist
of a stack of objects currently being executed. An object which can be used as the
basis for an execution thread has to be declared as an object of kind component as
shown in the following declaration:

A: @ | Activity

The symbol “|” describes that the object A is a component. A component (thread)
may be executed as a coroutine or it may be forked as a concurrent process. Con-
sider the following description of Activity:

Activity:
(#
do cycle

(#
do GetOrder; suspend;

ProcessOrder; suspend;
DeliverOrder; suspend

#)#)

The component object may be invoked by an imperative

A

which implies that the do-part is executed. The execution of A is temporarily sus-
pended when A executes a suspend-imperative. In the above example this happens
after the execution of GetOrder. A subsequent invocation of A will resume execution
after the suspend-imperative. In the above example this means that ProcessOrder
will be executed. If B is also an instance of Activity, then the calling object may
alternate between executing A and B:

cycle(#do A; ... B; ... #)

The above example shows how to use components as deterministic coroutines in
the sense that the calling object controls the scheduling of the coroutines. In sec-
tion 6.7.1 below another example of using coroutines will be given.

It is also possible to execute component objects concurrently. By executing

112 Modeling and programming languages

A.fork; B.fork

the component objects A and B will be executed concurrently. As for the determinis-
tic coroutine situation, A and B will temporarily suspend execution when they exe-
cute a suspend-imperative. Further examples of concurrent objects will be given
below in section 6.7.2.

6.7.1 Coroutines

Deterministic coroutines have demonstrated their usefulness through many years
of usage in e.g. Simula. In [DH72] many examples are given. Further examples of
coroutines in BETA may be found in [KKM+88] and [MMN93]. Below we give a
typical example of using coroutines.

Suppose we have a register for the permanent workers and another one for the
hourly paid workers. Suppose also that it is possible to sort these registers accord-
ing to a given criterion like the total hours worked by the employee. Suppose that
we want to produce a list of names of all employees sorted according to the total
hours worked. This may be done by merging the two registers. A Register object
has a scan operation that makes it possible to go through all elements of the regis-
ter. Instead we define an operation of Register in the form of a coroutine getNext,
which delivers the next element of the register when called:

Register:
(# ...

getNext: | @
(# elm: ^ employee
do scan(#do thisElm[]→elm[]; suspend #);

none→elm[]
exit elm[]
#);

#);
pReg: @ PermanentRegister; hReg: @ HourlyPaidRegister;
...
pReg.getNext→e1[]; hReg.getnext→e2[];
L: cycle

(#
do (if e1[] // none then {empty hReg}; leave L if);

(if e2[] // none then {empty pReg}; leave L if);
(if e1.totalHours < e2.totalHours// true then

e1.print; pReg.getNext→e1[]
else e2.print; hReg.getNext→e2[]

if)
#)

The attributes getNext of the objects pReg and hReg have their own thread of exe-
cution. When called in an imperative like pReg.getNext→e1[], the thread is exe-
cuted until it either executes a suspend or terminates. If it executes a suspend, it

An overview of BETA 113

may be called again in which case it will resume execution at the point of suspend.
The first time getNext is called, it will start executing scan. For each element in the
register, it will suspend execution and exit the current element via the exit vari-
able elm[]. When the register is empty, NONE is returned.

6.7.2 Concurrency

As previously mentioned, it is possible to perform concurrent execution of compo-
nents by means of the fork operations as sketched in the following example:

(#S1: @ | (# ... do ... #);
S2: @ | (# ... do ... #);
S3: @ | (# ... do ... #)

do S1.fork; S2.fork; S3.fork; ...
#)

The execution of S1, S2 and S3 will take place concurrently with each other and
with the object executing the fork operations. Concurrent objects may access the
same shared objects without synchronization, but may synchronize access to
shared objects by means of semaphores. In section 6.3 above the pattern Sema-
phore has been described. It is well known that a semaphore is a low level synchro-
nization mechanism which may be difficult to use in other than simple situations.
For this reason the Mjølner BETA library has a number of patterns defining higher
level synchronization mechanisms. This library includes a Monitor pattern as
described in section 6.3 above. The library also includes patterns defining synchro-
nization in the form of rendezvous in CSP [Hoa74] and Ada [ADA82].

Monitor example
The following example describes a company with a number of salesmen, workers
and carriers. The salesmen obtain orders from customers and store them in an
order pool. The workers obtain orders from the order pool, process them and
deliver the resulting item in an item pool. The carriers pick up the items from the
item pool and bring them to the customer. Salesmen, workers and carriers are
described as active objects whereas the order- and item pools are represented as
monitor objects.

(#Salesman: Employee
(# getOrder: (# ... exit anOrder[] #)
do cycle(#do getOrder → JobPool.put #)
#);

S1,S2, ...: @ | Salesman;
JobPool: @ monitor

(#jobs: @ register(# type::< order #);
put: entry (# ord: ^ order enter ord[] do ord[] →jobs.insert #);
get:entry(# ord: ^ order do jobs.remove → ord[] exit ord[] #)

#);
Worker: Employee

114 Modeling and programming languages

(# processJob: (# ... enter anOrder[] do ... exit anItem[] #)
do cycle(#do JobPool.get → processJob → ItemPool.put #)
#);

W1,W2,...: @ | Worker;
ItemPool: @ monitor(# ... #);
Carrier: Employee

(# DeliverItem: (# enter anItem[] do ... #)
do cycle(#do ItemPool.get →DeliverItem #)
#);

C1,C2, ...: @ | Carrier;
do JobPool.init; ItemPool.init;

conc(#do S1.start; ... W1.start; ... C1.start; ... #)
#)

The procedure pattern conc is another example of a high-level concurrency pattern
from the Mjølner BETA library. It corresponds to the parbegin/parend imperative
of Dijkstra [Dij68] in the sense that it does not terminate execution until compo-
nents being started (by S1.start, etc.) have terminated their execution.

Rendezvous example
Next we show an example of using the library patterns for describing synchronized
rendezvous. The example shows a drink machine that provides coffee and soup. A
customer operates the machine by pushing either makeCoffee or makeSoup. If
makeCoffee has been pushed, then the customer may obtain the coffee by means of
getCoffee. Similarly if makeSoup has been pushed then the soup may be obtained
by means of getSoup.

The System pattern has a port attribute which may be used to define synchroni-
zation ports. The drink machine described below has three such ports, activate, cof-
feeReady, and soupReady. A port object has a pattern attribute entry which may be
used to define procedure patterns associated with port. For the port activate, two
procedure patterns makeCoffee and makeSoup are defined. For coffeeReady and
soupReady, the procedure patterns getCoffee and getSoup are defined.

An execution of a port-entry operation like aDrinkMachine.makeCoffee will only
be executed if the DrinkMachine has executed a corresponding accept by means of
activate.accept.

• Initially a DrinkMachine is ready to accept either makeCoffee or makeSoup.
• If e.g. makeCoffee is executed, then when “the coffee has been made”, the

DrinkMachine is willing to accept the operation getCoffee. This is signaled by
executing an accept on the port coffeeReady. Technically this is implemented
by assigning a reference to coffeeReady to the port reference drinkReady. The
do-part of DrinkMachine then makes an accept on drinkReady.

• When the operation getCoffe, has been executed, the DrinkMachine is again
ready to accept a new operation associated with the activate port.

DrinkMachine: System
(#activate: @ port;

makeCoffee: activate.entry(# do ... coffeeReady[]→drinkReady[] #);

An overview of BETA 115

makeSoup: activate.entry(# do ... soupReady[]→drinkReady[] #);
coffeeReady, soupReady: @ port;
getCoffee: coffeeReady.entry(# do ... exit someCoffee [] #);
getSoup: soupReady.entry(#do ... exit someSoup [] #);
drinkReady: ^ port

do cycle(#do activate.accept; drinkReady.accept #)
#)

The DrinkMachine may be used in the following way:

aDrinkMachine: @ | DrinkMachine
...
aDrinkMachine.makeCoffee; aDrinkMachine.getCoffee;
aDrinkMachine.makeSoup; aDrinkMachine.getSoup;

As may be seen the use of the patterns System, port and entry makes it possible to
describe a concurrent program in the style of Ada tasks that synchronize their exe-
cution by means of rendezvous. A port-object defines two semaphores for control-
ling the execution of the associated entry patterns. The actual details will not be
given in this chapter.

It is possible to specialize the DrinkMachine into a machine that accepts further
operations:

ExtendedDrinkMachine: DrinkMachine
(# makeTea: activate.entry(#do ... teaReady[]→drinkReady[] #);

teaReady: @ port;
getTea: teaReady.entry(# ... exit someTea[] #)

#)

The ExtendedDrinkMachine inherits the operations and protocol from DrinkMachine
and adds new operations to the protocol.

The basic mechanisms in BETA for providing concurrency are component-
objects (providing threads), the fork-imperative (for initiating concurrent execu-
tion) and the semaphore (for providing synchronization). As has been mentioned
already, these mechanisms are inadequate for many situations. The abstraction
mechanisms of BETA make it possible to define higher-level abstractions for con-
currency and synchronization. In this chapter some examples have been given.
Many researchers have proposed several alternative mechanisms for handling con-
currency and synchronization. The motivation for this is due to problems with cur-
rent proposals.

6.8 Inheritance

The subpattern mechanism combined with the possibility of redefining/extending
virtual procedures is widely recognized as a major benefit of object-oriented lan-
guages. This mechanism is often called inheritance since a subpattern is said to
inherit properties (code) from its superpattern. Inheritance makes it easy to define

116 Modeling and programming languages

new patterns from other patterns. In practice this has implied that subpatterns
are often used for sheer inheritance of code without any concern for the relation
between a pattern and its subpatterns in terms of generalization/specialization.
The use of multiple inheritance is in most cases justified in inheritance of code and
may lead to complicated inheritance structures.

In BETA subpatterns are intended for representing classification and inherit-
ance of code is a (useful) side effect. In BETA it is not possible to define a pattern
with multiple subpatterns corresponding to multiple inheritance. There are indeed
cases where it is useful to represent classification hierarchies that are not tree
structured. However, a technical solution that justifies the extra complexity has
not yet been found.

BETA does support multiple inheritance, but in the form of inheritance from
part-objects. A compound object inherits from its parts as well as its superpattern.
The reason that this has not been more widely explored/accepted is that in most
languages inheritance from part-objects lacks the possibility of redefining/extend-
ing virtual procedures in the same way as for inheritance from superpatterns.
Block-structure and singular objects make this possible in BETA.

Assume that we have a set of patterns for handling addresses. An address has
properties such as street name, street number, city, etc., and a virtual procedure
for printing the address. In addition we have a pattern defining an address regis-
ter.

Address:
(# streetName: @ text; streetNo: @ integer; city: @ text; ...

print:< (# do inner; streetName→putText; streetNo→putInt; {etc.} #);
#);

AddressRegister: Register(# element::< Address #)

We may use the Address pattern for defining part-objects of Employee/Company
objects:

Employee:
(# name: @ text; {the name of the employee}

adr: @ address(# print::< (#do name→putText #)#)
#);

Company:
(# name: @ text; {the name of the company}

adr: @ address(# print::<(# do name→putText #) #)
#);

The object adr of Employee is defined as a singular Address object where the virtual
print pattern is defined to print the name of the Employee. As can be seen it is pos-
sible to define a part-object and define its virtual procedures to have an effect on
the whole object. The Company pattern is defined in a similar way.

It is possible to handle the address aspect of employees and companies. An
example is an address register:

An overview of BETA 117

Areg: @ AddressRegister;
...
employee1.adr[]→Areg.insert; employee2.adr[]→Areg.insert;
company1.adr[]→Areg.insert; company2.adr[]→Areg.insert;
Areg.scan(#do thisAddress.print #)

The Areg register will contain Address objects which are part of either Employee
objects or Company objects. For the purpose of the register this does not matter.
When the print procedure of one of these Address objects is invoked it will call the
print procedure associated with either Employee or Company. The scanning of the
Areg register is an example of invoking the print pattern.

The example shows that in BETA inheritance from part-objects may be used as
an alternative to inheritance from superpatterns. The choice in a given situation
depends of course on the actual concepts and phenomena to be modeled. In the
above example it seems reasonable to model the address as a part instead of defin-
ing Employee and Company as specializations of Address.

In general it is possible to specify multiple inheritance from part-objects since it
is possible to have several part-objects like the Address object above. This form of
multiple inheritance provides most of the functionality of multiple inheritance
from C++ and Eiffel. It is simpler since the programmer must be explicit about the
combination of virtual operations. It does, however, not handle so-called overlap-
ping superclasses. The programmer must also explicitly redefine the attributes of
the component classes. This may be tedious if there is a large number of attributes.
However, a renaming mechanism for making this easier has been proposed. Multi-
ple inheritance from part-objects should be used when there is a part-of relation-
ship between the components and the compound. This also covers situations where
implementations are inherited. It should not be used as a replacement for multiple
specialization hierarchies. A more detailed discussion of using part-objects for
inheritance may be found in [MM92].

In [Øst90] it is shown how a common example of using multiple inheritance for
modeling windows with titles and borders may be handled using block structure.
Since a window may have a title, a border or both, the following class hierarchy
using multiple inheritance is often used:

In [Øst90] it is shown how such windows may be described using nested patterns:

Window:
(# Title: (# ... #);

Border: (# ... #);
...

Window

WindowWithTitle WindowWithBorder

WindowWithTitleAndBorder

118 Modeling and programming languages

#);
aWindow: @ Window(# T: @Title; B: @Border #)

The descriptions for title and border are made using nested patterns. For a given
window, like aWindow, a title object and a border object may be instantiated. If e.g.
two titles are needed, two instances of Title are made. For details see [Øst90]. This
example illustrates another situation where multiple inheritance may be avoided.

6.9 Other issues

BETA is a language for representing/modeling concepts and phenomena from the
application domain and for implementing such concepts and phenomena on a com-
puter system. Part of a BETA program describes objects and patterns that repre-
sent phenomena and concepts from the application model. This part is said to be
representative since BETA elements at this level are meaningful with respect to
the application domain. Other parts of a BETA program are non-representative,
since they do not correspond to elements of the application domain, but are
intended for realizing the model as a computer system.

The BETA language as presented in this chapter is for describing objects and
patterns. The objects and patterns constitute the logical structure of a program
execution. The physical structure of a program execution is handled by other com-
ponents of the Mjølner BETA System which is a programming environment sup-
porting BETA. The Mjølner BETA System provides the following:

• Mechanisms for splitting a large BETA program into a set of modules.
• Mechanisms for protecting the attributes of an object such as hidden, pro-

tected and private in Simula and C++. In addition there are mechanisms for
physically separating the interface of a pattern from its implementation.

• Mechanisms for defining alternative implementations/variants of a pattern.
• Mechanisms for defining which objects are persistent and which are tran-

sient.
• Mechanisms for assigning active objects to processors on a computer system,

i.e. handling of distribution.

For a description of the Mjølner BETA mechanism for modularization, including
separation of interface and implementation and alternative implementations, see
chapter 9. For a description of the support for persistent objects, see chapter 12.

