The Fragment System: Further Specification

Mjglner Informatics Report
MIA 99-42
February 2002

Copyright © 1999-2002 Mjglner Informatics.
All rights reserved.
No part of this document may be copied or distributed
without the prior written permission of Mjglner Informatics

http://www.mjolner.com

The Fragment System: Further Specification

Table of Contents

1 The Fragment System: Further SpecifiCationccccccviviiiiiiiiii 1
00 1 0 Yo 18 ox 1T o USSR PPPPPRRPRN 1
1.2 RESHICHIONS. ...ettie e ettt ettt e ettt e e e e e s ettt e e e e e e e e bbbt e e e e e e e s annnbbtneeeaaeeenanne 1
1.3 Fragment LanQUAGE SYNTAX.....couuuuiiiiiiiieeeeii e et e e et e e e eet s e e e et s e e e essnaeseessaeeeessaaaaees 1
1.4 Fragment DeNotatioNS..........ooovviiiiiiiieeeee e, 5
1.5 Fragment Propertiesoooviiiiiiiiieee e 5
1.6 Modularization Of Data StIUCIUIES.......cceeiiiiiiiiiiiiee et e e e e anes 7
1.7 Modularization With INNER............uuuiiiiiiiiiiiiiiee et e e e ee e e e e e e aannes 8
1.8 Formal Syntax of Fragment LangQUage............oooooiiiiiiiiiii e 10
1.9 File NAME RESIICHONS .. .ceiiiiiiiiiiiiiii ettt e e e e e e s e e e e e e e reeeeeeeeeans 10

100 = PSPPI 12
PSP PPPPPRPR 12
PSP PPPPPRPPR 12
... 12
PR PPRPTR 12
PP PPRRRP 12
o TR PPPURT 12
15 PP PPRRTR 12
PR PPPRRT 12
PP PPPPPPRPPR 13
TP PPRRRR 13
PP PEPRRT 13
PP PPRURR 13
PP PUPPPPPPRRR 13
PP PPPRRT 13
PP PPRRTR 13
S PP PPPPPPPRRP 13
PP 13
PP PPRRTR 13
PP PPPRRP 14
L PR PPRPTR 14

1 The Fragment System: Further Specification

1.1 Introduction

The Mjglner System is based on the notion of fragment. The fragment system must be used for
splitting a large program into smaller units (fragments). The fragment system is used to support
modularization, separation of interface and implementation parts, variant control and separate
compilation. It is highly recommended to use the fragment system, since this may improve the
structure of the program.

The principles of the fragment system are described in [MMN93,Chapter 17]. Chapter 17 of
[MMN93] is also published in [Knudsen 94]. In the following it is assumed that the reader is familiar
with this description.

The description in [MMN93] is slightly more idealized than the actual implementation in the Mjglner
System: In [MMN93], the syntax of the fragment language is given in terms of diagrams. The
fragment language implemented by the Mjglner System has a textual syntax. In this paper, the
textual syntax corresponding to the diagrams in [MMN93] is presented.

The description of the fragment system in [MMN93] is further specified, including a description of
implementation restrictions compared to [MMN93].

1.2 Restrictions

The following restrictions apply for the implementation of the fragment system:

« In the Mjglner System, slots have been implemented for the syntactic categories:

<<objectDescriptor>>
<<mainPart>>
<<doPart>>
<<attributes>>

» The alias descriptor can be used instead of objectDescriptor.

A fragment form of the category <<attributes>>, may only contain pattern declarations.

It cannot contain any other kind of declarations, including virtual pattern declarations, virtual
pattern bindings, static or dynamic declarations.

« In the current system, fragments are organized in groups. A group is stored as a file. The
BETA compiler accepts a BETA program in the form of one or more files. Each file must
contain a group of fragments (i.e. one or more fragments).

« A pattern where the object descriptor is described as a slot cannot be used as a
super—pattern. l.e. the following is illegal:

A: <<SLOT Pdesc: descriptor>>;
B: A(# ... #); (*illegal *)

Instead the following can often be used:

C: (# do <<SLOT Pdesc: descriptor>> #)
D: C(# ... #); (* legal *)

1.3 Fragment Language Syntax

In the following some of the examples of fragments using the diagrammatic syntax from [MMN93]
will be given followed by the syntax used by the Mjglner System. The first example shows the

1 The Fragment System: Further Specification

#mmn93
#mmn93
#knudsen94

The Fragment System: Further Specification

simplest possible BETA fragment-group:

NAME 'minil'
ORIGIN 'betaenv'

PROGRAM: descriptor

#
do 'Hello world!" => PutLine
#)

The fragment—group is stored in the file minil.bet, which is also the name of the
fragment—group. The following syntax is used by the Mjglner System:

ORIGIN '~beta/basiclib/betaenv'
—— program: descriptor ——

#

do 'Hello world!'->PutLine

#)

The origin betaenv has been expanded into a complete file name for betaenv.

The next example is an example defining a library fragment:

NAME 'mylib’
ORIGIN 'betaenv'

LIB: attributes

Hello: (# do 'Hello' —> PutText #);
World: (# do 'World' —> PutText #)

This fragment is stored in a file mylib.bet and the corresponding syntax in the Mjglner System is:

ORIGIN '~beta/basiclib/betaenv’
—— LIB: attributes ——

Hello: (# do 'Hello' —> PutText #);
World: (# do 'World' —> PutText #)

The following fragments is an example of a fragment including the library: mylib.bet

NAME 'mini2'

ORIGIN 'betaenv'
INCLUDE 'mylib’
PROGRAM: descriptor

#
do Hello; World; newLine
#)

This fragment is stored in a file mini2.bet and has the following syntax:

ORIGIN '~beta/basiclib/betaenv’;
INCLUDE 'mylib’;
—— program: descriptor ——

1 The Fragment System: Further Specification

The Fragment System: Further Specification

#
do Hello; World; newLine
#)

The following example shows a fragment with a body:

NAME 'textlib’

ORIGIN 'betaenv'

INCLUDE 'mylib'

LIB: attributes

SpreadText:
{A blank is inserted between all chars in the text 'T'}
(#T: @text>
enter T
<<SLOT SpreadText:DoPart>>
exit T
#);
BreakintoLines:
{T' refers to a text which is to be split into lines.}
{w'is the width of the lines.}
(# T: " Text; w: @ Integer
enter(T[],w)
<<SLOT BreaklintoLines: DoPart>>
#)

It is stored in a file textlib.bet and has the following syntax:

ORIGIN '~beta/basiclib/betaenv’;
BODY 'textlibbody’;
——-LIB: attributes——-
SpreadText:
(* A blank is inserted between all chars in the text 'T' *)
(#T: @text
enter T
<<SLOT SpreadText: DoPart>>
exit T
#);
BreakintoLines:
(* 'T' refers to the text to be split into lines. *)
(* 'w' is the width of the lines. *)
(# T: N Text; w: @ Integer
enter(T[],w)
<<SLOT BreaklIntoLines: DoPart>>
#)

The body of textlib is shown in the next example:

NAME 'textlibbody’

ORIGIN 'textlib'

SpreadText: DoPart

do (# L: @integer
do (for i: (T.length—>L)-1 repeat
(' ',L=i+1) —> T.InsertCh
for)
#)

1 The Fragment System: Further Specification

The Fragment System: Further Specification

BreakIntoLines: DoPart

do T.scan (# seplnx,i,l: @integer; do i+1->i; I+1->l; (if (ch<="") then i->seplnx if);
(if I=w then (nl,seplnx)—>T.InxPut; i-seplnx—>l if); #); T.newline;

This fragment is stored in a file textlibbody.bet. The corresponding syntax is:

ORIGIN 'textlib’
—— Spreadtext: DoPart ——
do (# L: @Integer
do ...
#)
——BreaklIntoLines: DoPart ——
do...

Notice, that when local variables are needed in a DoPart slot, it may be necessary to make an
inserted item in the DoPart. Alternatively a Private descriptor slot may be declared in the interface,
and the L attribute moved to the Private fragment, which should then be placed in textlibbody.bet
too.

Finally a general outline of a fragment group with several include, body and fragments is shown in
the next example:

NAME F
ORIGIN G
INCLUDE Al
INCLUDE A2

INCLUDE Am
BODY B1
BODY B2

BODY Bk
F1:S1
ff1
F2:S2
ff2

Fn: Sn
ffn

This fragment group is stored in a file F.bet and the syntax is:

ORIGIN 'G};

INCLUDE 'Al1''A2'... 'Am;
BODY 'B1''B2' ... 'BK;;
Prop1; Prop2; ... Propl
-—F1:S1 —

1 The Fragment System: Further Specification

Propl,

The Fragment System: Further Specification

ff1
—-F2:52 -
ff2

-—Fn: Sn —
ffn

Prop2, ..., Propl are properties that may be defined for a fragment. Formally the

ORIGIN, INCLUDE, and BODY parts are also properties. In section 5 a list of possible properties is

given.

1.4 Fragment Denotations

In the examples above, terms like

INCLUDE '~beta/basiclib/betaenv'

were used. Below we will use the term FragmentDenotation for the 'fragment path' given in, e.g.,
the INCLUDE property. The other properties, that accept FragmentDenotations as arguments are
explained in section 5.

Notice that a FragmentDenotation is not the same as a file name, although it resembles a UNIX file
path, and although it normally corresponds directly to a (set of) file(s):

1.

2.

The separator in the FragmentDenotation is always the '/' character. Although this is a
UNIX convention, the '/' must also be used on Macintosh and Windows.

As explained in section 3, the notation '~beta’ is legal in FragmentDenotations on all
platforms, and simply means 'the place BETA is installed'. As mentioned, the meaning of
'~beta’ can be controlled by using the BETALIB environment variable, please consult
[MIA 99-36] for details.

. The notation '." means 'current directory/folder' on all platforms, and the

notation '.." means ‘father directory/folder', i.e. the directory containing a
given directory.

. Itis not allowed to specify an file—extension (e.g. ".bet' or ".ast’) in a

FragmentDenotation.

There are some restrictions in the legal fragment file names, which also apply to the
FragmentDenotations, please see section 9.

1.5 Fragment Properties

The fragment system allows arbitrary properties to be associated with fragments. The BETA
compiler recognizes the following properties: For most users, only ORIGIN, INCLUDE, and
BODY are relevant.

ORIGIN <TextConst>

The origin of a fragment is a fragment which is used when binding fragment-forms to slots.

INCLUDE <StringList>

1.4 Fragment Denotations

#mia99-36
#mia99-36

The Fragment System: Further Specification

Specifies one or more fragments that are always included when using this fragment.
BODY <StringList>

Specifies one or more fragments that fills the slots in this fragment file, but are not visible.
MDBODY <MachineSpecificationList>

Specifies one or more machine dependent fragments that fills the slots in this fragment file
dependent on the machine type. See section 9 for further description.

BUILD <MachineSpecificationList>

The BUILDProperty is used to specify rules for keeping external (i.e. non—-BETA) sources up to
date, and to include the external files in the link directive. The BUILD property unifies the
OBJFILE and MAKE properties.

OBJFILE <MachineSpecificationList>

The object file is included in the linker—directive. This is typically an External library which is
interfaced to via the External interface described in [MIA90-8]. See also BUILD and section 9.

BETARUN <MachineSpecificationList>

The standard BETA run—time system is replaced with the one in the object-file. See also section 9.
MAKE <MachineSpecificationList>

Specifies one or more makefiles to be executed before linking. See also section 9. The Makefile is

executed relative to the directory, where the file containing the MAKE property is placed. See also

BUILD

RESOURCE <MachineSpecificationList>

Specifies one or more resource files to be included in the applicatiiton. Only used on Macintosh and
Windows NT platforms. See also section 9.

LIBFILE <MachineSpecificationList>
Is similar to OBJFILE, but specifies inclusion of a library. See also section 9.
LINKOPT <MachineSpecificationList>

Machine dependent options to append to link directive for programs using the fragment. Only used
on UNIX platforms. See also section 9.

The terms <MachineSpecificationList>, <StringList>, and <TextConst> are
syntactically explained in the grammar:

* Property Grammar

1.4 Fragment Denotations 6

#build
property.html

The Fragment System: Further Specification

1.6 Modularization of Data Structures

This section gives some advices that can be used when modularizing data structures. Consider the
following program library (stack.bet):

ORIGIN '~beta/basiclib/betaenv'
——— Lib: attributes ———
stack:

(# element:< object;
A: [100] “element;
top: @integer;
push:

(# e: "element;
enter e[]
do top+1->top;
e[l —> Altop][];
#);
pop:
(# e: "element;
do Aftop][] > ell;
top—1—>top;
exit e]]
#);
top:
(# e: "element;
do Aftop][]—>ell;
exit e]]
#);
#)

If we want to separate the interface and the implementation, this can be modularized in the
following way:

Introduce the following SLOTSs:

ORIGIN '~beta/basiclib/betaenv’;

BODY 'stacklmpl'

——- Lib: attributes ——-

stack:

(# element:< object;
private: @<<SLOT private: descriptor>>;
push:
(# e: "element;
enter €[]
<<SLOT pushBody: DoPart>>
#);
pop:
(# e: "element;
<<SLOT popBody: DoPart>>
exit ef]
#);
top:
(# e: “element;
<<SLOT topBody: DoPart>>
exit ef]
#);
#)

Create a new fragment file stackimpl.bet:

1.6 Modularization of Data Structures

The Fragment System: Further Specification

ORIGIN 'stack’;

—— private: descriptor ——

(# A: [100] ~element;
top: @integer;

#)

—— pushBody: DoPart ——

do private.top+1->private.top;
e[] —> private.A[private.top][];

—— popBody: DoPart ——

do private.A[private.top][] —> €[];
private.top—1->private.top;

—- topBody: DoPart ——

do private.A[private.top][]—>€[]

The reason why the data representation (A and Top) is put into a descriptor slot instead of an
attributes slot is that attributes slots may only contain patterns, no static items (objects) or object
references. This is due to the implementation of separate compilation. Therefore it is necessary to
put static items into an attribute (in this case private) that is declared by means of a descriptor slot.
Because of this all accesses to the representation must be done via the private variable (see
pushBody, popBody and topBody). Notice that the parameters are visible in the interface. If the
operations had local variables they should not be shown in the interface.

1.7 Modularization with INNER

Programs fragments with do—parts that contain an INNER imperative e.g.:

ORIGIN '~beta/basiclib/betaenv’;
——— lib: attributes ———
A: (# do impl; imp2; INNER; imp3 #)

can be modularized in the following two ways depending on whether the INNER imperative should
be visible in the interface or not.

If the INNER is preferred visible in the interface, the interface fragment could look like
(fooLibl.bet):

ORIGIN '~beta/basiclib/betaenv';
BODY ‘foolmpll'
—— lib: attributes ——
A: (#
do <<SLOT imp12slot: descriptor>>;
INNER,;
<<SLOT imp3slot: descriptor>>
#)

and the implementation fragment (foolmpl1.bet):

ORIGIN *fooLibl'

—— imp12slot: descriptor ——
(# do impl; imp2 #)

—— imp3slot: descriptor ——
(# do imp3 #)

In this case a DoPart slot might be used instead (fooLib2.bet):

1.7 Modularization with INNER

The Fragment System: Further Specification

ORIGIN '~beta/basiclib/betaenv';
BODY ‘foolmpl2'

—— lib: attributes ——

A: (# <<SLOT imp12slot: DoPart>> #)

with the implementation fragment (foolmpl2.bet):

ORIGIN *fooLib2'
—— imp12slot: DoPart ——
do impl; imp2; INNER; imp3

Using do—parts like this, then although the INNER is not visible in the interface, the A pattern may
still be specialized and behave as if the INNER was in the interface. Notice, that when specializing
a pattern with no INNER in the do—part, the compiler will normally complain about this. But when
the pattern being specialized contains a SLOT, the compiler will assume, that the SLOT contains an
INNER. Thus it is possible to specialize the A pattern in foolib2.

But if the INNER imperative is placed 'inside' some structure e.g.:

A: (#
do (if E1
/I E2 then INNER
/I E3 then imp
if)
#)

you might not want to show the if imperative in the interface. In this case a variant of the
INNER construct may be used, in which case the interface fragment could be (fooLib3.bet):

ORIGIN '~beta/basiclib/betaenv';

BODY 'foolmpl3'

——— lib: attributes ——-—

A: (# do <<SLOT Abody: descriptor>> #);

and the implementation fragment (foolmpl3.bet):

ORIGIN ‘fooLib3'
——— Abody: descriptor ———
#
do (if E1
/I E2 then INNER A
/I E3 then imp
if)
#)

If a 'normal’ INNER had been used instead of INNER A, it would mean that specializations of the
pattern containing the INNER in the do—part combine the actions at this point. But the pattern
containing the INNER in the do—part, in this case would be the anonymous pattern in the

ABody descriptor fragment. By using INNER A, it is ensured, that the control flow descents to the
specialization of A although the INNER is inside the ABody descriptor.

A DoPart slot could also be used here, as in the previous example.

1.7 Modularization with INNER 9

The Fragment System: Further Specification

1.8 Formal Syntax of Fragment Language

The formal syntax of the BETA fragment-system is:

<TranslationUnit> ::= <Properties> <FormPart>
<FormPart> :* <FormDef>
<FormDef> ::= —— <FormDefinition>
<FormDefinition> ::| <DescriptorForm>

| <AttributesForm>

| <DopartForm>

| <MainpartForm>
<DescriptorForm> ::= <NameDcl> : descriptor —— <ObjectDescriptor>
<AttributesForm> ::= <NameDcl> : attributes —— <Attributes>
<DopartForm> ::= <NameDcl> : doPart —— <DoPart>
<MainpartForm> ::= <NameDcl> : mainPart —— <MainPart>

The grammar for <Properties> may be found at:
* Property Grammar
Notes:

* The symbol —— may consist of two or more dashes (-).
» The old style INCLUDE and fragment syntax (——INCLUDE fragment) is no longer supported.

1.9 File Name Restrictions

Because of implementations details, the current version of the fragment system imposes the
following restrictions on file names used for BETA programs.

1. It is not allowed for a program to use two files with the same name, say foo.bet (ignoring
case), which both contains fragments of category Attributes.

2. It is not allowed for a program to use a file named, say, foo.bet, if foo.bet contains a
fragment of category Attributes, and if there is a SLOT of category
ObjectDescriptor/Descriptor or DoPart named foo in any of the files involved in the
program. Again case is irrelevant.

3. Itis not allowed to use the '-' (dash) character in fragment file names.

4. Because the FragmentDenotation separator character is '/' it is not allowed to use the
"' in fragment file names, not even on platforms where the file system would allow it.

5. In general, it is advisable to restrict the characters used in the fragment file names to be: a-z,
A-Z,0-9,and ' . If other characters are used in the fragment file names, there is a danger, that
the supporting tools (such as linkers) will complain.

The symptom on breaking rule 1 or 2 is typically a 'Multiple defined symbol M1FOO' and

the like, in the linking phase, the symptom for breaking rule 3 is that the compiler or the mjolner tool
(IMIA 99-39], [MIA 99-40], [MIA 99-34]) may become confused. Finally the symptom on breaking
rule 5 may be a complaint from the assembler about illegal characters.

Except for rule 3, these restrictions only apply to the file names. The directories / folders containing

1.8 Formal Syntax of Fragment Language 10

property.html
#mia99-39
#mia99-40
#mia99-34

The Fragment System: Further Specification

the files, may be freely named. A pattern where the object descriptor is described as a slot cannot
be used as a super—pattern. l.e. the following is illegal:

A: <<SLOT Pdesc: descriptor>>;
B: P(# ... #); (*illegal *)

Instead the following can often be used:

C: (# do <<SLOT Pdesc: descriptor>> #)
D: P(# ... #); (* legal *)

1.8 Formal Syntax of Fragment Language

11

Index

The entries in the alphabetic index consists of selected words and symbols from the body files of
this manual - these are in bold font — as well as the identifiers defined in the public interfaces of

the libraries — set in regular font.

In the manual, the entries, which can be found in the index are typeset like this. This can help
localizing the identifier, when the link from the index if followed — especially in the case where the
browser does not scroll the line to the top, e.g. because there is less than a page of text left.

In the small table of letters and symbols below, each entry links directly to the section of the index
containing entries starting with the corresponding letter or symbol.

'- . /ABCDEFGHIJKLMNOPQRSTUVWXYZ-~

attributes [2]

B

BETALIB
BETARUN

D

dash
descriptor

F

File Name Restrictions
file—extension
file

Index

——INCLUDE

body BUILD
BODY

doPart
DoPart

fragment group fragment
fragment path FragmentDenotation
Fragment Properties

12

Fragment Denotations

G

group

illegal characters
INCLUDE

L

LIBFILE
library fragment

M

MachineSpecificationList
Macintosh
mainPart

O

objectDescriptor [2]

P

Private descriptor

R

RESOURCE

S

separate compilation [2]
separation of interface and
implementation

slots

T

TextConst

U

UNIX file path

fragment system

INNER A
INNER [2]

LINKOPT
local variables

MAKE
MDBODY
modularization

OBJFILE

properties

restrictions

StringList
super—pattern

Syntax of Fragment Language

textual syntax

UNIX

The Fragment System: Further Specification

Modularization
Multiple defined symbol

ORIGIN

syntax

13

\Y

variant control

W

Windows

~beta

The Fragment System: Further Specification

14

	Table of Contents
	1 The Fragment System: Further Specification
	1.1 Introduction
	1.2 Restrictions
	1.3 Fragment Language Syntax
	1.4 Fragment Denotations
	1.5 Fragment Properties
	1.6 Modularization of Data Structures
	1.7 Modularization with INNER
	1.8 Formal Syntax of Fragment Language
	1.9 File Name Restrictions

	Index
	'
	-
	.
	/
	A
	B
	D
	F
	G
	I
	L
	M
	O
	P
	R
	S
	T
	U
	V
	W
	~

