The Mjglner System

Process Library
Reference Manual

Mjelner Informatics Report
MIA 94-29 (1.2)
October 1997

Copyright © 1990-97 Mjginer Informatics ApS.
All rights reserved.
No part of this document may be copied or distributed
without the prior written permission of Mj@iner Informatics

Contents

1 INTRODUGCTION. ...ttt ettt sttt ee sttt estestesseeneestestesseenseseessesseenseseesseeneensensens 3
2 MANIPULATING PROCESSES.......cooi ittt nee e 4
2.1 CHILD PROCESSES.......cciicttttttteeesiiittiteeteessssisttaeesaesssaastaeeeaaessaastaeeeeaesssasntaeeeeaesssannsrennees 4
2.2 THISPROCESS AND ITSENVIRONMENT......cccitttitieeieiiitieree e e e e s ssrrree e e e e e s s sannneee e e e e s s nnnrneeeas 5

3 COMMUNICATING WITH OTHER PROCESSES.........ccocoiiiieeee e 6
3.1 COMMUNICATION CONCEPTS......ccctttiieie e e e iiittree e e e e s s ssatree e e e e e e s ssantaaeeeaeessssantaeeesaeessannrrnees 6
3.2 SCHEDULING......cutttiitie i it ittt e e e e e s ettt e e e e e e s st e e e e e s s s s atbeeeeeeeesaansttaeeeaeessaannteeeeeeeessnnsrennens 7
3.3 THETWO FAMILIES OF SOCKETS.....utttttieeiiiiiiiieeeeeeesiistieeeesesssssstsenesaesssssnssssessessssnnnsssseees 8
3.4 THE FRAGMENT BASICSOCKETuttiiiiieeeiiiittreeeeeeesssntreeeseeessssassseseeaeessssnnssseesesessnnnssssees 8
34.1 The Patterns of DASICSOCKEL.........coiieiieriiee ettt e 8

3.5 THE FRAGMENT BINARY SOCKETuutttittieeiiiiiiiteeeeeessisistsneeesessssssssssssessssssssssssssssassssnnnnes 10
351 The Patterns of DiNArySOCKEL...........ccouiiiiiiiiii e 10

3.6 THE FRAGMENT STREAMSOCKETutttitiieeiiiiitieeereeessiisutrneeeeessssssssssssessssssnssssseseassssnnnnes 10
3.7 THE FRAGMENT COMMPIPEcciiiiitittetee e e s setiteee e e e e s st e e e e e e s ssnstaeeesaesssnnnsseeeeaeessnnnnes 11
3.8 SOCKETGENERATORS.......utttiitiieeiiiiitttteeeee st isntteeeeeessssssstaeeeeaeessaaasstsseeseesssasssseeeeaesssnnnes 11
3.8.1 The patterns of SOCKEIGENEr G0Nciveiiieiiiieriie e 11

3.8.2 The patterns of streamgenerator and binarygenerator............cccoceveeneeneeneeneeneeneen, 11

3.9 ERROR HANDLING.....iiiii ittt e e e e s ettt e e e e e sttt e e e e e e s s s eabtae e e e e e e s s nnstaeeeeeeesaannbreeeeaeessannnes 12
391 EXror CallDACKS.......ccueiiuiiiiieiiie sttt bbb 12

3.9.2 EIror Propagation.........coueeieeieeiienieesiee ettt sttt see e nae e sa e 12

3.9.3 CalEgOriES Of EITOS...cciuiiitieitieitee sttt sttt sttt sttt sb e bbb b b saeesaeas 13

3.10 TIMEOUT MANAGEMENTutiiiieeiiiiiiieee e e e e s s sttre e e e e e e s s ssantaaeeeaeeesssnnsraeeesaeessannnraneeeaeeean 13

A ADDRESSES.......ccotiteiertestestee ettt ettt a et te et et e ate Rt st e nteebeereeneenteereeneetenreas 15
4.1 SPECIFICATION OF CONNECTION REQUIREMENTS.......ccttiiiiireeitieeessrieeesneieeeesneeeessneens 15
4.2 THEABSTRACT LEVEL .coii oottt e ettt ettt et e e s s st e e e e e e s snnnntae e e e e e e s s nnnntrneeaaeeean 16
4.3 THE CONCRETE LEVEL.....cciicctittieie e e e ccititee e e e e e s ettt e e e e e s s sttta e e s e e e e s snnnttaeeeaaeessnnnnrnneeaaenean 16

5 MANAGING A POOL OF CONNECTIONS ..ottt 18
L I o 1 B Y @ I I T 20
7.1 PIPELINE, CONSUMER AND PRODUCER.........ccccttttitieeesiiiiieeeeeeeesssnsreeeeeeessssnssseeesaesssnnnes 20
7.2 FIRSTPROGRAM AND OTHERPROGRAMcccctttitteee st ciitieee e e e e e s ssireeee e e e e s ssnnnreeeeaeessnnnnes 20
7.3 STREAMCOUNTERSERVER AND STREAMCOUNTERCLIENT ..oeecvieieiiieeeeceieeesseieee e 20
7.4 BINARYCOUNTERSERVER AND BINARYCOUNTERCLIENT ...ccccoiiiitiiieeee e e e ccvieeee e e e e 21
7.5 XPILOTGAMESctttiiiii e e ittt e e e et et e e e e e e e st st e e e e e e s s s aateaeeeeeeessansbbeeeeeeessanstreeeeaeesannnes 21
7.6 REPCHATCLIENT AND REPCHATSERVERcutiiiiiieiiiiiiiiieee e e e e s sseitaee e e e e e s ssnnnsneeeaeessnnnnes 21

8 KNOWN BUGS AND INCONVENIENCES.........ccccoiiiiieniienee ettt 22
ST A 1 N ISR 22
8.2 WWINDOWSottt et e e s s e e e e e e e s s et e e e e e e e e s saataaeeeaeeessanstaaeeeeeesaansbreeeeaessannnes 23

S TR I X @ N @ S SRRt 23

9 INTERFACE DESCRIPTION ..ottt ettt e st e e nee e 24
0.1 COMMADDRESS.......ccttiitiiiitttteetee e s i sttt ereeaeeesaaatreeeeeaeesaassttaereeeessaaasstsaeeeaesssaastreeeeeessannnnes 24
0.2 ERRORCALLBACK ...ceiitii ittt e e e e s st ee e e e e e e s ssatteeeeeaesssaataaeeeeeeesaasstaaeeeeesssasnstsneeeaesssnnnnes 30
0.3 BASICSOCKET ...uuuttiiiiiieeiiiitttteete e e s s sttt teeeeeeeessastteeeeeaesssasstaeeeeeessaaassteaeeeeesssaanssseeeeaesssnnnnes 31

Lo I = 1 S 1 1 = SRRt 33
0.5 STREAMSOCKET ..uttiiiiieiiiiittieeeteeesssittieeeeeeeessastteeeeeaessaasstsaeeeaeesssaassssseeeeesssaassseeeeaesssnnnses 35
9.6 SOCKETGENERATOR.......cccttttitteeeeiiittiereeeeessssstteeeeeaesssassssaeeeeaeesaaasstseeeeeesssassssseeeeaesssnnnnes 37

Process Library

0.7 BINARY GENERATOR.....cottiittiteeitietesstteeee sttt e s stteeesssteeeesasteeesanseeeesassanesaasseeessnsseeesassenessns 40
0.8 STREAMGENERATORcoiitiiitititet sttt st et e st ssre e st e s n e e s ee e snne e sareesne e s nneeesnneesnneenas 40
0.9 COMMPOOL ...eiitiiitit ettt ettt ettt et et b et s ab e s bt e s b e e e b e e e ss et e sare e sare e e ane e e nnneennneena 40
9.10 SYSTEMCOMM .o 43
911 PROCESSMANAGERutttiiiiiii e 43
9.12 COMMEPIPE ...t e e e e e e e e e e e e e e e e e e aaees 45
REFERENGCES..... ..ottt et e e e et e e s s n e e e s st e e e e enbae e e snntee e e snaeeeesnnes 47

1 Introduction

This document describes the version 1.6 of the process library in the Mjglner System.
This library implements support for manipulating operating system processes and for
communicating with them. All fragments in the process library demand that the
program uses the BETA simulated concurrency, i.e. the slot program descri pt or
must be a specidization of systenenv. In return, one does not have to explicitly
transfer the thread of control by suspending when an operation is about to block - the
syst enenv scheduler and the process library cooperate to make it look like implicit
scheduling. This ensures that co-routines which can proceed with their work will
never be prevented from this because of a blocking communication operation in some
other co-routine.

The fragment dealing with the manipulation of processes is processmanager .
Processmanager supports starting a child process, stopping it, and similar things.

The fragments dealing with communication between processes are basi csocket,
streamsocket, socket generator and afew variations hereof.

Some aspects of support for the communication between processes have been sepa-
rated into the fragments conmaddr ess and error cal | back. conmaddr ess defines a
hierarchy of patterns, which model addresses (destinations for communications) in a
platform independent way. errorcal | back defines a few patterns used for error
handling in this library.

On top of the support for single communication connections, commpool implements
support for holding a set of connections, and providing concurrency-secure access to
these connections by means of platform independent addresses, i.e. instances of
patterns in conmaddr ess. This abstracts away the need to open and close these
connections: if connections to the required destination is available, one of them will
be used, otherwise a new connection will automatically be opened. If the process hits
a maximum limit for the number of open connections, a least recently used (and
currently unused) connection will be closed.

Processmanager

Communication

Connections

Process Library

Process

Arguments and
instantiating

Inter-process
communication

2 Manipulating Processes

First, abit of terminology. A binary file is a diskfile, from which the operating system
is able to create a process, which is then called an instance of the binary. A processis
a dynamic entity within a computer which has an internal state and may interact with
other processes. So there may be more than one process which is instantiated from
any given binary file, and these processes are by no means the same thing. Here, each
BETA object which is an instance of the pattern pr ocess, models one process. If you
want to manipulate more than one instantiation of a given binary, use more than one
process object.

2.1 Child Processes

The fragment pr ocessmanager is concerned with child processes. An instance of the
process pattern in this fragment is attached to a binary file by initidizing it with a
file specification, like

"/ bin/someApplication' -> aProcess.init;

In the following, aProcess denotes an instance of the pattern process, which has
been attached to a binary file.

One has the option to set up arguments for an instantiation of the binary, using aPr o-
cess. ar gurment . append, once for each argument. Afterwards, the process can be in-
stantiated with aProcess. start . In the following, this instantiation is referred to as
the child process. When it has been started, it is possible to change its life cycle and to
adjust to it: aProcess.stop causes the child process to be killed, aPro-
cess. awai t St opped causes this process to sleep until the child process terminates,
and aProcess. sti || Runni ng is a predicate which returns true if the child process
has not yet terminated.

The onstart virtual is a hook, into which one can put code to be executed immedi-
ately after the child process has been started, and the onSt op virtual is a hook which
is executed when st op has stopped the process. Please notice that onSt op will NOT
be executed in the (typical) case when the child process terminates for any other rea-
son, e.g. when it terminates normally.

The remaining pattern attributes of process are concerned with inter-process com-
munication. The network of inter-process communication must be defined before the
child processes are started. Connect ToPr ocess and connect | nPi pe enter a reference
to another process object and connect the referred child processes in a pipeline.
redi rect FronFi | e arranges for the child process to take standard input from the
specified file, and redi rect ToFi | e makes it redirect standard output to the given
file.

Finally, redi r ect Fr onChannel enters the writeEnd of a pi pe and makes the child
process accept standard input from that pipe, and redirect ToChannel enters the

Communicating with other Processes

readEnd of a pi pe and makes the child process send standard output to it. The en-
tered parameter is declared to be a (specialization of @) stream. The reason for thisis
that a future release may accept a broader range of types of objects entered; it should,
for instance, be possible to use sockets.

2.2 This Process and its Environment

commaddr ess defines thi sHost, that returns the name and IP address on the
internet.

Scanning of the command line and other functions that used to be in the process
library are now supported in bet aenv.

Process Library

Pipes

Sockets

3 Communicating with
other Processes

3.1 Communication Concepts

Inter-process communication is usualy described as “message based” or as
“connection based”. In both cases, any primitive communication act has a number of
participants, playing roles as the receiving or the transmitting end. In this context,
there will always be exactly one transmitting party and one receiving party. There is
support for specifying a group address, but there is not currently any ready-made im-
plementation of a group communication protocol.

For a message based communication, each message is sent to an explicitly specified
receiver. For a connection based communication, at first a connection between two
parties is established. From that point, messages can be transmitted via this connec-
tion without any explicit reference to their destination. Here, the model of communi-
cation is connection oriented.

For operating systems that support a notion of standard channels for receiving input
and delivering output and possibly other things, it is possible for the communicating
processes to be unaware (i.e. independent) of the fact that standard input comes from
another process or that standard output goes to another process: It all looks the same
as if the data came from a keyboard and went to a display or whatever. On the other
hand, this level of abstraction implies that the connection lifetime will be the lifetime
of the process and that there cannot be more connections than standard channels. Like
standard output and standard input, each connection only supports sending data in one
direction. Pipes establish this kind of connections. Use the pattern pi pe.

To implement more elaborate patterns of communication, one must be able to create
and destroy connections during the execution of a process, and to explicitly choose
with whom to communicate. Sockets are used for this, and with sockets, every con-
nection is two-way. Sockets come in two main variants: passive and active. A passive
socket is used to define a name, which may be used by active sockets when establish-
ing an actual connection. The interplay is like:

Communicating with other Processes

Passive: "Here | aml My nane is Bob"

Active-1: "I want to speak wth Bob"
Passi ve(Bob): "OK, here's a connection"

Active-2: "I want to speak wth Bob"
Passi ve(Bob): "OK, here's a connection"

Ai:five-S: "I want to speak with C ndy"
(Error: Here's no such thing as "G ndy")

l.e. active sockets connect by name, and more than one connection may be
established by means of one passive socket. The “name’ is actually a pair whose first
part is an identification of the host (its IP address) and whose second part is an integer
(the port number). This pair is unique for each passive socket, at least from the time
where the operating system accepts registration of the name until the passive socket is
closed. After that, the pair may be reused, that is: the port number may be reused on
the given host, if the operating system wishes to do so.

In thislibrary, sockets are also divided along another axis, namely into stream sockets
and binary sockets. Stream sockets are specializations of the basic st ream pattern,
and support textual communication. Binary sockets support transfers of blocks of data
with awell-known size.

The patterns related to these concepts are: StreanSocket, BinarySocket and
Socket Generat or. Socket Generators are used to accept incoming connection
requests. When a request arrives, a new socket of the specified type is created and
connected to the requesting party.

3.2 Scheduling

Any program using the process library must be a syst emenv program, because the
process library depends heavily on cooperation with the scheduler present in
syst enEnv programs.

Instances of the patterns of these fragments are expected to be executed from BETA
co-routines, and such co-routines must tolerate being suspended (de-scheduled) and
later re-scheduled as part of the execution of possibly lengthy operations. This means
that concurrency control by means of senaphor es, noni tors, and the like must be
established almost as rigourously as had the co-routines been fully concurrent threads
of execution.

In return for this increase in complexity, a usually very important reduction in com-
plexity arises from having implicit instead of explicit scheduling. Especially when
fitting a new piece into an existing framework it is a great asset to be able to smply
“spawn” the new piece as part of an initalization phase and then have it running along
with the rest of the program without changing any of the other parts not directly inter-
acting with this new piece.

In more concrete terms, it works like this. Whenever an operation is about to block,
the current component will be suspended. It will be resumed some time later, when
the requested 10 is available. In the meantime, some other component which has re-
guested 1O available or is not waiting for 10 will be resumed. In this way the follow-

BETA co-routines

Process Library

Stream socket

Binary socket

ing liveness property of the program is ensured: it will never be the case that a
communication operation by blocking delays the continuation of the execution of all
of those components which are either (1) not executing a communication operation or
(2) executing a communication operation, but has 10 of the requested kind available.
Of course, any component can still block the whole system by, for example, entering
an infinite loop that does nothing.

There are some operations, that may block the entire process for a while. These
include get host bynane, starting aprocess, and waiting for aprocess to stop

3.3 The Two Families of Sockets

Basically, the process library supports two families of sockets: stream sockets and bi-
nary sockets. Both are implemented using basi csocket .

A stream socket is suitable for transferring data which is readable for human beings,
such as the data transferred in a UNIX “talk” session, or the more formal communica-
tion between a mail program and an SMTP mail server. A streanSocket IS a
stream SO you may “put”, “get” etc. However, do not rely on this kind of socket to
transfer data which contains zero-valued bytes, as arbitrary binary data may very well
do.

A binary socket is guaranteed to transfer any given block of arbitrary bytes unmodi-
fied, but you must always specify the length of the data block when sending. To
enable cross-platform communication, the headers of the datablocks are modified
internally. The current implementation make little-endian machines (e.g. machines
running Linux or Windows NT) transmit their package headers in the format used by
big-endian machines. It is your responsebility that the contents of the datablocks are
in aformat understood by the receiver.

In general, you must have a way of choosing either a binary or a stream variant of a
connection to be established, because it is not possible to change a st r eanSocket

into a bi nar ySocket on the same connection, or vice versa. And each socket object
models one connection, so it is not possible to use the same socket object for several
different connections - use a fresh object each time instead. For socket Gener at or s,
of course, this one-shot-restriction does not apply. See below.

3.4 The Fragment basicsocket

The following section describes the top level patterns of basi csocket. After that,
there is a section with a general discussion of error handling. Finally another section
discusses the treatment of timeout.

3.4.1 The Patterns of basicsocket
Vi t For ever isaconstant used to specify an infinite timeout.

Assign@uard is used to detect wrong usage of other patterns, and
| ocal Host _I P_nunber isthe number used by convention to indicate the ‘this host’.
None of them are important for the understanding of the fragment.

Communicating with other Processes

sameConnect i on answers the question of whether t hi s and ot her wraps the same
OS level connection. get Port abl eAddress returns a portable address for the
connection.

Use connect to connect to a passive socket, like those generated by
socket gener at or . connect establishes a connection to a (host, port) par given
either as arguments, or stored in the attributes port, host or i net Addr. You should
set only one of host and inet Addr, as i net Addr is Set to the internet address of
host if i net Addr isnot set. host isignored wheni net Addr IS Set.

Host must be given in a format like “quercus.daimi.aau.dk” or “130.225.16.15".
Depending on the network topologi and the whereabouts of this process, some pre-
fixes of the first format may aso suffice, notably a format like “quercus’. The port
must be an integer. By convention, port numbers below 5000 are reserved for system
administration purposes and for special, well-known services like e-mail and ftp. On
the other hand, do not expect to be able to use more than a 16-bit unsigned value (0
through 65535). The value to use when assigning i net Addr must be the four-byte
internet address, given as an integer value. E.g. the absolute address “130.225.16.15"
is given as the integer 2195787791. The integer must be in the norma byte-order of
the platform running the program.

f or ceTi neout is used to provoke the same response within an ongoing operation as
would have been the result of a timeout. This makes it possible to exercise timeout
control over an operation from within a co-routine different from the one executing
that operation. Moreover, it makes it possible to define a timeout limit for the
execution of a number of operations, instead of setting timeouts for each of them.
UsageTi meSt anp returns an integer value which indicates when this socket was last
used. The value makes sense only when compared to usage time stamps of other
sockets in this same process. The purpose is to enable a user of many sockets to close
the least recently used connection or similarly when and if the process runs out of
system resources (e.g. it experiences a “to many open files’ error).

cl ose must be called when done with the socket. Every local i dl e executes thei dl e
on basi csocket. The global error is caled whenever a operation-level error is
called and did not handle the error. nonBI ocki ngScope is explained below.

The nonBl ocki ngScope pattern is used for specifying non-blocking communication.
This means that operations which cannot begin right away are discontinued. An ex-
ampleis: We try to read from a socket, but no data at al is available to read. If, on the
other hand, any irreversible actions have been taken in an operation (e.g. reading a
few bytes), it will not be interrupted by the nonBl ocki ngScope mechanism. This
means it is always safe to interrupt an operation by enclosing it in a nonBl ock-
i ngScope, and then later to retry it. It also means that the granularity of scheduling by
means of nonBl ocki ngScope iS one communication operation; e.g. if the communi-
cation partner sends half a block and then takes a break, this process can only execute
ani dl e in the mean time, it cannot switch forth and back between several such ongo-
ing transfers. With each | dl e pattern comes a Bl ocki ng virtual. This is executed if
the current operation is blocking, i.e. if nothing can be done right away and nothing
has been done yet. You may extend this virtual to take some action in response to the
operation being blocked. If the operation is enclosed in a nonBl ocki ngScope,
Bl ocki ng gets executed immediately before the operation is interrupted. If you do not
want to interrupt the operation, execute cont i nue in aextending of Bl ocki ng. (If you
are not using a nonBl ocki ngScope, the operation wil automatically continue when
possible)

BasicSocket

connect

nonBlocking-
Scope

10

Process Library

endOfData, putint
and getint

putRep and
getRep

putRepObj and
getRepObj

wi t hPE and wi t hi dl e are auxiliary patterns used in implementing the scheduling
system.

3.5 The Fragment binarysocket

3.5.1 The Patterns of binarysocket

The only pattern defined is BinarySocket. BinarySocket inherits from
Basi cSocket .

endCf Dat a returns true if no data is immediately available for reading. put I nt and
get I nt are used to transmit a single integer. The integer is transmitted in big-endian
format. This makes communication across little- and big-endian machines of integers
easy.

put Rep and get Rep sends and receives instances of Ext endedRepstream Thisisa
generic container for arbitrary blocks of data, in particular it is possible to put texts
and integers into it and read them out again. When receiving data into an
Ext endedRepst r eam With get Rep, the Ext endedRepst ream will automaticaly be
extended in case the received amount of data exceeds its current capacity.

| en header dat a

put RepCbj and get RepObj are used to send and receive instances of the pattern
RepetitionObj ect. The protocol for transmitting RepetitionCbjects is a little
different from the one used with Ext endedRepst r eam objects. there is no header
field, and the length field is the first element in the repetition from the repe-
titionQbject,i.e repetitionCbjectshavether length “built-in”.

Otherwise, it islike the protocol for Ext endedRepst r eamobjects.

3.6 The Fragment streamsocket

The following describes the operations of StreanSocket in order of appearance.
St reanSocket inherits from Stream theSocket IS the Basi cSocket used to
transfer the data.

ti meout Val ue is the timeout used on all operation that do not enter a timeout. This
includes all the patterns inherited from st r eam

sameConnect i on checksif the OS level connection wrapped int hi s StreanSocket
is the same as the one wrapped in ot her . A St reanSocket connection may be closed
by cl ose. After this point, the St r eanSocket cannot be used for communication, so
you can discard (i.e. forget) it. St r eanSocket s should be closed after use to free up

Communicating with other Processes

11

system resources. Fl ush ensures that all data in internal buffers of the St r eanSocket
actually gets sent. cl ose does an automatic flush. Put, get and peek work as with
other st r eans.

Put Text, get Li ne and get At omwork like in other st reams. Eos returns true if no
data can possibly be read from this connection now or ever. On the other hand, it may
still happen that the communication partner holds the connection alive but will not
write any more data to it. In this case, this process has no chance of guessing that no
more data will actually arrive, so eos will “spontaneously” change from false to true
when the other process actually closes the connection.

Init, forceTinmeout, usageTi nestanp, NonBl ocki ngScope, | eaveNBScope,
connect, error, host, port, inetAddr, idle uses the implementation in
Basi cSocket directly and are described in 3.4.1.

3.7 The Fragment commpipe

A pi pe must be initialized with i ni t before usage. Then giving a reference to its
readEnd (witeEnd) as enter parameter to redirect FronChannel

(redi rect ToChannel) of anot yet started process object will attach this pi pe to
another (not yet created) process. If only one end of the pi pe is attached to another
process, the current process may read from (write to) the other end of the pi pe, when
the other process has been created.

3.8 SocketGenerators

3.8.1 The patterns of socketgenerator

A socket Gener at or is a factory from which instances of st r eanSocket and of bi -
nar ySocket can be obtained, in response to active sockets connecting to the socket -
Gener at or 'Sport.

Bi nd must be executed to establish the given port number as an address, to which
active sockets may connect. Executing bi nd with port =0 establishes a randomly
chosen port number as an address. The actual port number used may be read from
port. None of the other operations make sense on an unbound generator.

As usual, when you are done, execute cl ose on the socket Gener at or .

get Port abl eAddr ess exits a port abl eConmruni cat i onAddr ess which describes the
network identity of this socket Generator. ForceTi neout and usageTi neSt anp
work as with the other socket variants, and the considerations concerning nonBl ock-
i ngScope and | eaveNBScope are as usual.

3.8.2 The patterns of streamgenerator and binarygenerator

To obtain a streanSocket on the next connection requested, execute get -
St r eanConnect i on, and to obtain a bi nar ySocket , execute get Bi nar yConnect i on.
Remember to enter a timeout value. When you are done with the created socket,
executecl ose onit.

12

Process Library

3.9 Error Handling

Throughout pr ocess, the facilities from the fragment er r or Cal | back are used in the
handling of errors.

3.9.1 Error Callbacks

An error callback is a virtua pattern which is invoked in response to the occurrence
of some error. Whenever an error condition is detected on a socket, a corresponding

virtual pattern is instantiated and executed. These patterns are specializations of er -
r CB, as declared in err or Cal | back. Such virtual patterns are hereafter denoted error
callback patterns. To catch and treat an error, extend the corresponding error callback.

If an error callback is not extended and the corresponding error occurs, an exception
is executed and the program terminates. If the error callback is extended, the follow-
ing holds:

* if abort is executed in the extending dopart, the operation (but not the pro-
gram) is aborted. You may execute | eave within a specialization of abort. Do
not | eave an error callback from any other point, as this may put the object or
the process into an unstable state. If you abort but do not | eave, the operation
aborts, but control flow is like when the operation succeeds; in this case, any
exited values are dummy values, reflecting that the operation failed. Do not use
them! Actualy, do not abort without | eave!

* if continue is executed in the extending dopart, there will be an attempt to re-
cover and finish the operation after the execution of the error callback termi-
nates. For many types of errors, no general recovery is possible at the operation
level. But you could close a couple of files in response to a resour ceError
and then execute cont i nue. In case of timeout, you can aways choose to take
another turn with cont i nue.

» iffatal isexecuted in the extending dopart, an exception will be executed and
the program will be terminated. So the execution of the error callback will not
return. This is also the default, but with hierarchical error callbacks, you may
need f at al to undo aconti nue at ahigher level.

In case it happens more than once that an operation from the set
{abort ,continue,fatal } isexecuted, the one executed as the last takes precedence.

3.9.2 Error Propagation

As mentioned, the error callback patterns are present at three different levels. Con-
crete error callbacks, operation level error callbacks, and socket level error callbacks.

The concrete error callbacks provide the greatest level of detail: their names indicate
the kind of error condition detected. This makes it possible to treat different errors
differently.

The operation level error callback is executed whenever an error condition is detected
during the execution of that operation. In a extending of this kind of error callback,
you can adjust the default action for all the concrete error callbacks in this operation.
The single socket level error callback is executed whenever any operation detects any
error condition. In a extending of this error callback, you can adjust the default action
for al concrete and operation level error callbacks.

Communicating with other Processes

13

The means for adjusting the behaviour is in al cases to execute abort (probably
abort (# leave L #)), continue, or fatal, and the semantics of these imperatives
are the semantics of the concrete error callbacks described in section 3.9.1.

Error callback extendings take precedence like this, in ascending order: concrete
level, operation level, socket level. This means that the higher level specifies a de-
fault, and the more concrete level may override this default by executing cont i nue,
abort,orfatal.

3.9.3 Categories of Errors

At the concrete level of error callbacks, errors are categorized according to classes of
operating system level error messages.

The list of names used for concrete error callbacks and a short description of the cor-
responding class of operating system level error is as follows:

Error call back name Meani ng

accessError i nsufficient access rights

addr essError address (i.e. (host,port)) in use or invalid
badMsgEr r or (EBADMSG, hardly documented in man page)
connBr okenEr r or connection has becone unusabl e

eosError unexpect ed end- of -stream

get Host Err or error when getting hostnane

i nternal Error shoul d not happen; please report if it does!
intrError operation interrupted by signal

ref usedError connection refused by peer

resour ceError too few file descriptors/buffers etc.

ti medCut speci fied timeout period has expired

ti medQut | nTr ansfer ti med out, and sone data have been
transferred

unknownEr r or CS reports unknown errno (new OS?)
usageError e.g. you nust initialize port before connecti

3.10 Timeout Management

Because most operations may provoke the suspension (de-scheduling) of the current
co-routine, any such operation may implicitly prevent this co-routine from making
any progress for an indefinite period of time. To give the co-routine the power to do
something about this, each of these operations takes a specification of an upper limit
(in seconds) to the time elapsed during the execution of that operation.

When such a timeout has been specified for some operation, the scheduler will re-
sume the execution of that operation if it gets the control and the timeout period has
expired. This means that lots of activity in the system as a whole may postpone the
detection of a timeout somewhat, and - as usual - an infinite loop somewhere could
stop everything.

In practical terms, the operation is resumed when and if the timeout period expires,
and of course it resumes by executing an error callback. Two different error callbacks
may be used to indicate the problem. If no irreversible actions have been taken, the
ti medQut error callback is used. If some irreversible actions have been taken, such as
recelving or sending part of a message, the ti medQut | nTransf er error callback is
used. This last situation is considerably more grave than the first: Aborting an opera-
tion “in-transfer” means breaking the protocol, which again means that any subse-

ng

14

Process Library

guent messages received on the same connection will be garbled. Resynchronization
is hardly possible unless the data transferred are lines of text or some other format
with built-in structural markers. So in this situation, give it another chance, or close
the connection.

For streansSocket the socket level attribute ti neout Val ue decides the timeout for
all operations inherited from stream. For bi nar ySocket each operation which has
timeout control takes the timeout value as its first enter parameter. Likewise with
socket Gener at or . If you forget to specify such a timeout value, the operation will
always terminate at once with atimeout error.

4 Addresses

The fragment cormaddr ess supports representing addresses of communication ports
with which one might like to establish connections. In this setting, more different op-
erating systems and kinds of communication ports are covered than what is actually
supported in Basi cSocket yet. Accordingly, TCP/IP sockets are just one example of
akind of communication port, though a very important one.

Instances of any of these patterns are values, and under normal circumstances their
identity will make no difference. This ensures that it makes sense to trandate them
from BETA objects into simple strings of text and back again, and this eases the mi-
gration of such values across networks and other media.

At the most abstract level, por t abl eConmAddr ess models a portable communication
address. This specifies the address of a single destination or the address(es) of a group
of destinations.

The patterns portabl eMul ti Address and portabl ePort Address specidize
por t abl eConmAddr ess into concrete patterns for the multiple-destination case and
one-destination case, respectively.

The pattern concret ePort Address and its specializations represent non-portable,
protocol specific communication port addresses. Of course, any concr et ePor t Ad-
dr ess is portable, being a norma BETA object; but only on some platforms will it be
possible to have such a communication port as is specified by the concr et ePor t Ad-
dress.

Concr et ePor t Addr esses are kept in port abl eCommAddr esses and selected accord-
ing to protocol specifications, given as pr ot ocol Spec objects.

4.1 Specification of Connection
Requirements

The pattern prot ocol Spec is used to package a specification of requirements to a
communication transfer. This package is given to a port abl ePor t Addr ess, which
will then use it to choose an appropriate channel. A specification is built with an in-
stance of pr ot ocol Spec by setting its cType and r Type attributes. For these, choose
from the constant values given in the fragment commEr r or .

The cType vaue can be any of the constants commPr ot ocol _. .. and specifies that
the chosen channel must be a TCP/UDP/etc. connection or that any kind of connec-
tion will do (comPr ot ocol _dont car e).

The value of r Type is any of the constants conmRel y_dont car e (N0 requirements),
commRel y_unreliable (alow al the below mentioned kinds of malfunction) or
commRel y_reliabl e (prevent all those malfunctions). Or it is a sum of some of the

15

16

Process Library

constants cormRel y_| oss (prevent packet lossage), cormRel y_dup (prevent packet
duplication), cormRel y_or der (prevent packets from arriving out of order), conm
Rel y_cont ent s (prevent packets from having corrupt data).

In redlity, the last guarantee is enforced by means of checksums or something similar,
so it isonly very unlikely that a packet with corrupt data will pass unnoticed, not im-
possible. Moreover, al the other guarantees depend on having packets with trustwor-
thy (header) contents, so not all combinations make sense.

4.2 The Abstract Level

The abstract pattern por t abl eCormAddr ess is used to specify the identity of an ab-
stract communication address. The patterns port abl eMul ti Addr ess and port abl e-
Por t Addr ess are its non-abstract specializations.

Before usage, initialize any specialization of por t abl eConmaAddr ess withinit.

Any por t abl eConmAddr ess is able to express its value in textual form, by the opera-
tion asText . This enables simple and safe migration of an instance of any specializa-
tion of port abl eCormAddr ess: Trandate it into text, send it across the network, write
it into adisk file, or whatever, and then reconstruct it as a BETA object from its text
value.

Tell aport abl eConmAddr ess What proporties are required of the communications as-
sociated with it by entering a pr ot ocol Spec object reference. This affects its choice
of concrete communication port(s) in subsequent communications.

To reconstruct a port abl eConmAddr ess from its text representation, give it as enter
parameter to port abl eConmAddr essFronifext , and a corresponding object will be
exited. The text is expected to have been produced by some instance of a specializa-
tion of port abl eCommAddr ess using itsasText .

Problems in this process are reported by invoking par seError. This terminates the
application, unless you extend par seEr r or to handle it.

4.3 The Concrete Level

A portabl eMul ti Address specifies a group of communication ports. Start or en-
hance the group by i nser t ing members. Reduce it by del et eing members.

A port abl ePort Addr ess specifies the identity of one logical communication desti-
nation. A logical destination corresponds to a number of concrete communication
ports, represented by instances of specializations of concr et ePort Address. It IS up
to the user of these patterns to ensure that the contained set of concrete ports actually
“logically belong to the same destination”.

Theideaisthat if “I” can talk on a channel of type “{A,B}” and “you” can talk on a
channel of type “{B,C,D}", it is up to the underlying framework to discover that in
order to establish a connection, “we” must use type “B”.

A por t abl ePor t Addr ess can be built by inserting specializations of concr et ePor't -
Addr ess. Only one concrete address is alowed for each known type - inserting a sec-

Addresses

17

ond instance overrides the previously inserted one. With del et e, any concrete port
can be removed again. To retrieve a concrete port (without removing it), use one of
the Get . .. Port operations. If this port abl ePor t Addr ess does not contain any con-
crete port of the requested variety, NONE is exited.

Concr et ePort Addr ess IS an abstract superpattern for specifying the address of a
concrete communication port, such as a UNIX stream socket, a Macintosh PPC
ToolBox session, a shared memory buffer etc.

Like a port abl eConmAddr ess, each concrete speciaization is able to express its
value textually with the operation asText , and it is able to characterize its communi-
cation protocol with the operation pr ot ocol . The operation pr ot Name exits a text
which is a short, descriptive name for that protocol, and confornsTo answers
true/false to the question, whether this kind of connection conforms to the protocol
associated with an entered commPr ot ocol _. .. constant.

The pattern uni xAbst r act Por t Addr ess captures similarities between TCP and UDP
ports, represented by t cpPor t Addr ess and udpPor t Addr ess. The t cpPort Addr ess
also fits a MacTCP port. The pattern uni xPor t Addr ess represents an AF_UNIX ad-
dress family socket, i.e. it appears as a name in some directory, just like afile; ppc-
Por t Addr ess represents a Macintosh PPC ToolBox session; nenPor t Addr ess COrre-
sponds to a shared memory implementation of inter-process communication.

5 Managing a Pool of
Connections

A connection pool manages a number of client side communication interfaces (e.g.
active sockets), and allows choosing which one of them to use for a communication
transfer by means of aport abl eConmAddr ess. This abstracts away the need to estab-
lish connections. whenever a connection as specified is available in the pool, we use
it. Otherwise, such a connection will implicitly be established and added to the pool.
If this process runs out of resources associated with these connections (e.g. file han-
dles), it is possible to ask the pool to close the least recently used connection.

Concurrency The connections are subject to concurrency control, so they must be used in a “take-it,

control use-it, give-it-back” fashion. This is achieved by the pattern cormuni cati on. The
concurrency control is necessary to prevent the situation where two users of the pool
both transmit messages to some other party on one given connection, and randomly
divide the incoming messages on that connection between them, both believing to
have the other party for themselves. Using the pattern conmuni cat i on, a most one
user of the pool communicates on any given connection at any given point of time.

Binary socket By now, the only variant of connection pool implemented is the bi nar yConnect i on-

connections Pool . Instances of bi naryConnect i onPool are used for managing a number of bi-
nary socket connections. Before usage, i ni tialize it. The user of a bi naryConnec-
ti onPool gives a specification of the receiver, the type of connection, the quality of
service etc. in a port abl eCormAddr ess to a (specialization of) the control pattern
comuni cat i on. Thisis used as follows (where bcPool is an instance of bi nar yCon-
nect i onPool):

addr[] -> bcPool . comuni cati on
(# (* Extend error callbacks here *)
do
(* Wthin this dopart: use 'sock' to conmunicate *)
(* Do not bring references to sock outside *)
#)

If you want to | eave the dopart of a specialization of a cormuni cati on, use a con-
struction like | eavi ng(# do | eave L #) in stead of | eave L. Otherwise some re-
sources may be rendered inaccessible.

Whenever the pool establishes a new connection, the hook onNewConnect i on of com
muni cat i on is executed. In a extending of this hook, a reference to the newly estab-
lished connection is available, and by assigning a co-routine to act or , the connection
gets associated with this co-routine. This is used to handle incoming messages to
connections in the pool, which are not the immediate response to an outgoing mes-
sage transmitted in a usage of conmuni cat i on: have the co-routine sit around waiting
for the incoming messages. To support such things, one must specialize bi nar yCon-
nect i onPool .

18

Managing a Pool of Connections

19

If the connection delivered as sock within a specialization of conmuni cat i on isto be
taken away from the pool and used outside, execute r enoveSock and bring out a ref-
erence to sock. If it is known that the connection will not be useful anymore, execute
removeSock and sock. cl ose.

On exceptions, see the description in section 3.9.

The operation mar kAsDead is used to tell the pool that it certainly cannot have a con-
nection like the one entered. If a communication partner closes a connection (or per-
haps terminates unexpectedly), and the other end of that connection isin a connection
pool, it could happen that this connection is not chosen in any conmuni cati on for
some time. If a new connection is created, the operating system may then reuse the
local connection identifier (file handle, in case of UNIX sockets), giving a totally dif-
ferent connection, which is then administrated by some new BETA socket object.
Now two BETA socket objects will talk to the same OS level connection (file han-
die), but this means that the first object (in the pool) has silently been “redirected” to
anew communication partner. Of course, this leads to strange errors.

So, whenever creating a BETA socket object OUTSIDE a connection pool, please tell
it by means of mar kAsDead, that any connections in the pool with the same OS level
identifier must have died silently and thus should be removed from the pool. Inter-
nally, the connection pool handles this automatically.

Please note that this problem is not specific for connection pools, for the process li-
brary, or even for BETA programs, for that matter. But it occurs mainly in the pres-
ence of complicated and very dynamic communication topologies, which are more
likely to appear with connection pools. It would actually be best to carry out similar
checks (using sameConnect i on) also when using only simple socket objects in an ap-
plication.

r enoveSoneConnect i on Will seek through all unused connections in the pool. An
unused connection is a connection such that no instance of conmuni cat i on in any co-
routine of this process currently refers to it with its sock attribute. From this set of
unused connections, it chooses the least recently used (as reported by its usage-
Ti mest anp), closes it, and removes it from the pool. If all connections are currently in
use, application specific actions must be taken to free some of them. The callback no-
Connect i onsRenovabl e is executed in this situation. It does not terminate the appli-
cation by default, so beware of the possible infinite retry loop if r emoveSonmeConnec-
tion is used in response to resour ceError, and no connections could actually be
removed.

When done with a connecti onPool , cl ose it to close all of the connections con-
tained within it.

6 The Demo Files

A number of demonstration files are provided in the subdirectory demo. They show
simple and typical ways to use the process library.

Because of the “process’ aspect, and because of the nature of inter-process communi-
cation, the demo files come in small groups. For some groups, one program will ma-
nipulate others. For other groups, one may start a “server” and some “clients” and
then interact with the clients to initiate communication. In the following, the groups
are presented one by one.

7.1 pipeline, consumer and producer

Execute pi pel i ne, which will then start producer and consuner in such a way
that standard output from producer is piped into standard input of consumer. The
file itens isread in by producer and written to its standard output. consumer
reads it standard input and writes it to its standard output. the result is, that i t ens is
written to standard output.

7.2 firstProgram and otherProgram

When executed, firstProgram will start otherProgram and accept a
St reantocket connection from ot her Program Then they exchange a couple of
words, and both terminate.

7.3 streamcounterserver and
streamcounterclient

Start an instance of streantounterserver. Then start a number of instances of
streantounterclient.

20

Interface Description

21

7.4 binarycounterserver and
binarycounterclient

Start an instance of bi narycounterserver. Then start a number of instances of
bi narycounterclient.

7.5 xpilotgames

xpi | ot games demonstrates how to use the St r eanSocket pattern to connect to the
xpilot meta server and send a query about ongoing games.

7.6 repChatClient and repChatServer

This group is used interactively. Start repChat Server and then a number of
instances of repChat C i ent. Each client will connect to the server, resulting in a
star-shaped connection topology. One may interact with each of the clients, and the
clientsin turn interact with the server.

The fragment cormandCat egory is used to distinguish different types of commands.
The command language is very simple: anything starting with the letter “q” is a Quit
command, anything starting with an “a’ is an Answer command, and anything start-
ing with an “A” is an AnswerWait command. Anything else is a Default command.
Enter commands as any piece of text at the prompt, ending with RETURN. Please note
that leading whitespace is significant.

All commands are immediately forwarded to the server. Then, if the command was a
Quit command, the client closes down the connection and terminates. If it was an An-
swer command, the client notifies the user of that fact by printing a message contain-
ing the sequence number of this Answer command. Some time later, the server will
return an answer, and the sequence number of the answer makes it possible to match
up outgoing requests with incoming answers. In case of an AnswerWait command,
the client blocks until the answer from the server arrives. For Default commands, the
contents are just echoed at the server.

For each command received, the server echoes the identification number of the client
which sent that command and the contents of the command. Y ou may wish to exam-
ine the source code in r epChat Server to see how nonbl ocki ngScope enables the
server to (semi-)simultaneously receive incoming messages, accept connections from
new clients, and do other work.

22

Process Library

8 Known Bugs and
Inconveniences

8.1 General

For st reansSocket s, reading a line of text with the operation getLine or a word
wi th get At om only works correctly when the line/'word becomes available to read as
a whole. If a non-empty part of the line/word but not all of it can be read, the
operation incorrectly detects an error. A possible workaround is to use get and
collect characters in a normal BETA text object, on which get Li ne and get At om
can be used.

If the transmitting side always sends lines/words in one go, the problem is unlikely to
show up. In this case, if the purpose is non-critical of course, you could try to ignore
the problem.

Outputting operations in st r eanSocket, such as put, flush and putLine, will
not detect a buffer full condition before attempting to transmit data. This means that
they may block until the operating system has relieved the full buffer of some of its
contents. This usually happens quickly, though.

Eos On pipes seemsto fail on some systems.

Certain operations take as enter parameter a timeout value, which does not affect the
execution of the operation, because timing out makes no sense - the operation is not
“possibly lenghty”. An exampleiscl ose of aSocket .

In port abl eMul ti Addr ess, members are del et ed by identity, i.e. entering a refer-
ence to some port abl ePort Address in an invocation of the delete opera-
tion will delete that exact instance, if present. It would make more sense to delete ev-
ery port abl ePort Addr ess contained by this port abl eMul ti Addr ess, which speci-
fies the same communication port as the one entered. That is, it would be better if
members were deleted by value equality.

port abl eMul ti Address ought to have means for iterating through al its members,
such asascan operation. There should also be a way to test for equality and for sub-
set-relations between port abl ePor t Addr esses, and between port abl eMil ti Ad-
dr esses.

In the fragment cormpool , in the pattern communi cati on in bi naryConnect i on-
Pool , the operation renoveSock does not remove the connection denoted by sock
as it should. Workaround: Use sock[]->markAsDead whereever renoveSock
should have been used.

The proxy demo is undocumented and probably not quite working

Interface Description

23

8.2 Windows

Redirecting output through redi rect FronFil e has not yet been implemented on
systems running Windows 95/NT. The same limitation exists for reading and writing
to a pipe. Using a pipe to connect to external programshas been implemented, though.

UsageTi meStanp has not yet been implemented. Cormpool therefore selects a
random socket when choosing a connection to break, not the least recently used.

8.3 Macintosh

Processmanager has no implementation on Macintosh.
UsageTi meSt anp has not yet been implemented.

Process Library

9 Interface Description

9.1 commaddress

ORIA@ N ' ~bet a/ basi cli b/v1. 6/ bet aenv'

(*

* COPYRI GHT
Copyright (C Molner Informatics 1994-97
* Al'l rights reserved

*)
BODY ' pri vat e/ conmaddr essbody’

%
5

*

Defines patterns for representi ng conmuni cati on addresses.

The nost abstract pattern, portabl eConmAddress, nodels a
portabl e communi cati on address. This specifies the address
of a single destination or the address(es) of a group of
desti nati ons.

The patterns portabl eMil ti Address and portabl ePort Addr ess
speci al i ze portabl eCommAddress into concrete patterns for
the multipl e-destination case and one-destination case,
respectively.

The pattern concretePort Address and its specializations

represent non-portable, protocol specific conmunication

port addresses. These are kept in portabl eConmAddresses

and sel ected according to protocol specifications, given
as protocol Spec objects.

As a best-fit addition, there are also sonme patterns
to aid the process of [ooking up TCP/IP hosts, getting the
host name of this machine, etc.

L S R T R R N N N N I R

)

- lib:attributes ---
Reliability

~—~~
*

*

Used to specify the reliability proporties
required for a transfer (in a protocol Spec).
The proporties are additive.

f R T

Interface Description

*)
comRel y_dont car e: (# exit 0 #);

comRel y_| oss: (# exit 2 #); (* packets are not |ost *)
commRel y_dup: (# exit 4 #); (* packets are not duplicated *)
conmRel y_order: (# exit 8 #); (* packets arrive

* in correct order *)
comRel y_cont ent s: (# exit 16 #); (* corrupt data unlikely
* (e.g. checksum *)

commRely_unreliable: (# exit 1 #); (* ensures none of the above *)
commRel y_reliable: (# exit 31 #); (* ensure loss, dup
* order & contents *)

(* Type of connection protoco

*

CS level category of connection. An inplenentation

| evel description of an individual connection
managed by a connecti onPool. Wird nunbers chosen

to make data containing these constants recogni zabl e
in a raw comunication dunp

L N

)

commPr ot ocol _dont car e: (# exit 0 #);

conmPr ot ocol _tcp: (# exit 72301 #); (* TCP/IP *)
conmPr ot ocol _udp: (# exit 72302 #); (* UDP/IP *)
comPr ot ocol _uni x: (# exit 72303 #); (* UNI X domain
* (socket as file) *)
comnmPr ot ocol _ppc: (# exit 72304 #); (* Mac PPC Tool Box *)
comnmPr ot ocol _nmem (# exit 72305 #); (* Shared nenory buffer *)
(* Mienoni c nanmes of the protocols *)
conmPr ot Nane_t cp: (# exit "TCP #);
conmPr ot Nane_udp: (# exit "UDP #);
comPr ot Nane_uni x: (# exit "UNIX #)
comPr ot Nane_ppc: (# exit 'PPC #);
conmPr ot Nanme_nmem (# exit "MEM #);

(* Specification of connection requirenents

*

Used to package spec. of requirenments to a conmunication
transfer, and then given to a portabl ePort Address, which
will use it when choosing an appropriate channel

L

)

pr ot ocol Spec:
(#
cType: @nteger; (* one of 'conmProtocol .*'
* dontcare is default *)
rType: @nteger; (* one of 'comRely .*'
* dontcare is default *)
(* bandwidth/r-rr-rra/etc *)
enter (cType, rType)

exit cType
#)
(* Portabl e comunication address
* s p———————————
*
* Specifies identity of an abstract conmuni cati on address.
*

This pattern is abstract, and no instances of it are

Process Library

expected to exist. The patterns portabl eMilti Address and
port abl ePort Address are non-abstract specializations.

Any portabl eCommAddress is able to express its val ue
in textual form by '"asText'.

Tell a portabl eConmAddress what proporties are required
of the comunications associated with it by entering

a protocol Spec object. This affects its choice of
concrete comunication port(s) in subsequent
conmuni cati ons.

R T I R
~

port abl eConmAddr ess:
(#
init:< Object;
asText: @sTextPattern;

(* private *)
asTextPattern:< (# t: "“text do INNER exit t[] #);
enterSpec: @..;
private: @..;
enter enterSpec
#);

Portabl e comruni cati on address construct or

—~
*

*

Function. Takes a text value, which is expected to have
been produced by sone instance X of a specialization of
port abl eConmAddress using its 'asText'. Returns an object
with the sane value as X

Probl ens are reported by invoking 'parseError'. The
application will then ternminate with an exception
unl ess you furtherbind parseError to leave it.

LN R S T T

)
port abl eConmAddr essFr oniText :

(#
parseError: <
(# meg: “text;
enter nmsg[]
#)
txt: “text;
addr: ~portabl eConmAddr ess;

<<SLOT port abl eConmAddr essFroniText Li b: attri but es>>;
enter txt[]

exit addr[]
#);

(* Portable nulticast address

*

Specifies identities of the nmenbers of a group of
communi cati on destinations.

The group can be built fromscratch or enhanced
by '"insert'ing nenbers. It can be reduced by
"del ete'ing nenbers.

L S
~

portabl eMul ti Address: portabl eConmAddr ess

Interface Description

(#
init::< (# ... #);

insert:
(# addr: ~portabl ePort Address;
enter addr[]

#);
del et e:
(# addr: ~portabl ePort Addr ess;
enter addr[]
#);
(* private *)
asTextPattern::< (# ... #);

private2: @..;
#);

(* Portabl e comunication port address

*

*
* Specifies identity of one |ogical conmunication destination
* A logical destination corresponds to a nunber of concrete
* conmuni cation ports, represented by instances of
* gspecializations of concretePortAddress.
*
* A portabl ePort Address can be built from scratch by
* by 'insert'ing such instances. Only one concrete address
* is allowed for each known type - inserting a second instance
* overrides the previously inserted one.
*
)
por t abl ePor t Addr ess: port abl eCommAddr ess
(#
i nsert:
(# addr: ~concretePort Address;
addr HasUnknownType: < excepti on;
enter addr[]
#)
del et e:

(# prot: @nteger; (* one of 'commProtocol .*' *)
addr HasUnknownType: < excepti on;
enter prot
#)
get TcpPort:
(# addr: ~tcpPort Address;

é%it addr[] (* NONE if not present *)
#) ;

get UdpPort :
(# addr: ~udpPort Address;

é%it addr[] (* NONE if not present *)
#) ;

get Uni xPort :
(# addr: “uni xPort Addr ess;

é%it addr[] (* NONE if not present *)
#)

28

Process Library

get PpcPort:
(# addr: ~ppcPort Address;

éi(i.t addr[] (* NONE if not present *)
#);

get MenPort :
(# addr: ~menPort Address;

éi(i.t addr[] (* NONE if not present *)
#)

(* private *)
asTextPattern::< (# ... #);
private2: @..;

#);

(* Concrete comunication port address

*

Abstract superpattern for specifying the address
of a concrete comunication port, such as a UN*X
stream socket, a Mac PPC Tool Box session, a shared
nmenory buffer etc.

Is able to express its value textually with 'asText',
and to characterize its conmunication protocol
with 'commilype'.

L I R T

)

concr et ePor t Addr ess:
(#
asText: @sTextPattern;
asTextPattern:< (# t: "“text do INNER exit t[] #);

protocol : < i ntegerVal ue; (* one of 'comProtocol .*' *)
prot Nane: < (# t: "text do &ext[] ->t[]; INNER exit t[] #);
confornmsTo: Bool eanVal ue
(# p: @nteger;
enter p
#)
private: @..;
#)

—~
*

Uni x commruni cation port address types

*

The pattern uni xAbstract Port Address captures sinmilarities
bet ween TCP and UDP ports, represented by
t cpPort Address and udpPort Addr ess.

The pattern uni xPort Address represents an AF_UN X address
fam |y socket, i.e. it appears as a nane in sone directory,
just like a file.

NB: The tcpPortAddress also fits a MacTCP port.

LB S I

)

uni xAbst ract Port Addr ess: concr et ePort Addr ess
(#
i net Addr: @ nt eger;
port No: @ nteger;
asTextPattern::< (# ... #);
#);

Interface Description

t cpPort Address: uni xAbstract Port Addr ess
(#
protocol ::< (# do conmProtocol _tcp -> val ue #);
prot Nane::< (# do comProt Nane_tcp ->t #);
#)

udpPor t Addr ess: uni xAbst r act Port Addr ess
(#
protocol ::< (# do conmProtocol _udp -> val ue #);
prot Nane::< (# do comProt Nane_udp ->t #);

#);
uni xPor t Addr ess: concr et ePort Addr ess
(#
asTextPattern::< (# ... #);

pat hNanme: @ ext;
protocol ::< (# do conmProtocol _uni x -> value #);
prot Nanme:: < (# do conmProt Nane_unix ->t #);

#);

(* Mac comuni cation port address

* Represents a PPC Tool Box session.
*
ppcPort Addr ess: concret ePort Addr ess
(#
host: @ext;
port No: @ nteger;
sessionld: @ nteger;
asTextPattern::< (# ... #);
protocol ::< (# do conmProtocol _ppc -> val ue #);
prot Nanme:: < (# do conmProt Nane_ppc ->t #);
#);

(* Shared nenory buffer port address

*

*

* Correspondi ng conmuni cation support NOT | MPLEMENTED.

* Could be very fast, perhaps for communicating within

* one process, using the sane source code as for renote

* communi cati on.

*)

nmenPor t Addr ess: concr et ePor t Addr ess

(#

bufferID:. @nteger; (* !!'! This may have to change *)
asTextPattern::< (# ... #);

protocol ::< (# do conmProtocol _nmem -> val ue #);
prot Nanme:: < (# do conmProt Nane_nem -> t #);
#);

(* I'Pv4 M scell aneous address conversions *)

(* Look up the IPv4 address of a given host. *)
get host bynane:
(#
not f ound: < Excepti on;
name: “Text;
i nadr: @ nteger;
ent er name[]

30

Process Library

exit inadr
#);

(* Find the nanme and | Pv4 address of this host. *)
t hi sHost :
(# name: ~Text;
i nadr: @ nteger;
err: @nteger; (* Private *)

exii”(narre[], i nadr)
#)

9.2 errorcallback

ORIA@ N ' ~bet a/ basi clib/vl. 6/ betaenv';

*

* COPYRI GHT

* Copyright (C Molner Informatics 1995-97
* Al'l rights reserved.

*)

BODY ' private/errorcall backbody' ;

--- librattributes ---

errCB initialValue: (# exit -1 #);
errCB abortProgram (# exit 0 #);
errCB_abortOperation: (# exit 1 #);
errCB_conti nueCperation: (# exit 2 #);

err CB: IntegerVal ue

(# abort: (# ... #);
continue: (# ... #);
fatal: (# ... #);
addMsg: (# t: "text enter t[] ... #);

exceptionType: < excepti on;
cl eanup: "obj ect;
private: @..;

enter cleanup[]

#;
hi Err CB: | nt eger Qbj ect
(# abort: (# ... #);
continue: (# ... #);
fatal: (# ... #);

cl eanup: "obj ect;
enter cleanup[]
do | NNER
#)

Interface Description

31

9.3 basicsocket

ORI A N ' ~bet a/ basi cl i b/ v1. 6/ basi csyst enenv'

(*
* COPYRI GHT
Copyright (C Molner Informatics 1995-97
* Al'l rights reserved
*)

| NCLUDE ' errorcall back';
| NCLUDE ' comaddr ess' ;

--- systemib:attributes ---
(* Used for timeouts *)
wai t Forever: (# exit -1 #);

(* Used to nmake it checkabl e whether sonething is uninitialized *)
assi gnCQuard: (# assigned: @ool ean do true -> assigned #);

(* The nunber 127.0.0.1 by convention is 'this host' *)
| ocal Host | P_nunber: (# exit 2130706433 #);

Basi cSocket :
(# <<SLOT socketlib:attributes>>;

(* OPERATI ONS

*) __________

(* do "this' and 'other' wap the sane OS | evel connection? *)
sameConnecti on: bool eanVal ue

(# other: ~basicSocket;

enter other[]

#)
(* construct portable address for this connection *)

get Port abl eAddr ess:
(# addr: ~portabl ePort Address;

exit addr[]
#);

(* Initiator of socket communication
* Pass 'host' and 'port' to 'connect' to connect
* to a passive socket to establish comunication
*
)
connect: open
(# accessError:< | oErrCB(# do | NNER #);
resourceError: < | oErrCB(# do | NNER #);
addressError: < | oErrCB(# do | NNER #);
refusedError: < | oErrCB(# do | NNER #);
intrError:< | oErrCB(# do | NNER #);
getHostError: < | oErrCB(# do | NNER #);
aHost: “Text;
aPort: @ nteger;
enter (aHost[], aPort)

#)

32

Process Library

(* provoke a tineout error in the current operation *)
forceTimeout:< (# ... #);

(* return tinestanp of |atest operation on this socket *)
usageTi nest anp: < i nt eger Val ue
(# ... #);

(* return true iff no data is
* imredi ately available for reading
*
)
endOf Dat aPat t er n:
(# error:< hiErrCB (* operation level error callback *)
(#
do | NNER
(if value=errCB_initial Value then
(val ue, cl eanup[]) - >t hi s(basi cSocket) . error->val ue;
if);
#);
| oErrCB: errCB (* superpattern for
* concrete error call backs *)
(#
do | NNER
(if value=errCB_initial Value then
(val ue, cl eanup[])->error->val ue;
if);
#)
connBr okenError: < | oErrCB(# do | NNER #);
internal Error: < [oErr CB(# do | NNER #);
unknownError: < | oErrCB(# do | NNER #);
val ue: @ool ean

exit val ue

#),
close:< withldle(# ... #);
(* CALLBACKS
(* every local '"idle executes this global one *)
idle:< bject;

(* socket level error callback *)
error:< hi ErrCB(# do | NNER #);

*)

(* NB: don’t 'leave' a 'nonBlockingScope'. Use 'leaveNBScope'. *)
nonBl ocki ngScope: (# ... #);
| eaveNBScope: (# ... #);

*)

host: @ssignQuard(# t: @ext; enter t exit t #);
port: @ssignGuard(# rep: @nteger enter rep exit rep #);
i net Addr: @ssignCGuard(# rep: @nteger enter rep exit rep #);

Interface Description

33

*)
w t hPE:

(# error:< hiErrCB (* operation level error callback *)

(#
do | NNER;

(if value=errCB_
(val ue, cl eanup[]) - >t hi s(basi cSocket) . error->val ue;

if);
#);

initial Val ue then

| oErrCB: errCB (* superpattern for
* concrete error call backs *)

(#
do | NNER;

(i f value=errCB_

initial Val ue then

(val ue, cl eanup[]) - >error->val ue;

if);
#);
ti medQut: < | oErr CB(#
timedQut | nTransfer: <
internal Error: < | oErr

do | NNER #);
| oErr CB(# do | NNER #);
CB(# do | NNER #);

connBr okenError: < | oErrCB(# do | NNER #);
usageError: < | oErr CB(# do | NNER #);
unknownError: < | oErrCB(# do | NNER #);

resourceError: < | oErr

CB(# do | NNER #);

badMsgError: < | oErr CB(# do | NNER #);

ti meout: @ nteger;
enter timeout
do | NNER
#)

wi thldle: wthPE
(# idle:< (# do INNER, t

hi s(basi cSocket).idl e #);

bl ocki ng: <(# continue: (# do true->doContinue #);
doConti nue: @ool ean;

do | NNER;

(i f not doContinue then | eaveNBScope if);

i dl e;
#);
do | NNER
#);

open: withldle(# ... #);
init:< (# ... #);

private: @..;
#);

9.4 binarysocket

ORI G N ' basi csocket';

*

* COPYRI GHT
* Copyright (C M ol ner

I nformatics 1995-97

34

Process Library

* Al'l rights reserved.
*)
BODY ' pri vat e/ bi nar ysocket body" ;

| NCLUDE ' ~beta/sysutils/vl. 6/ RepetitionCbject’;
I NCLUDE ' r epst r eant ext endedRepstrean ;

--- systemib: attributes ---
Bi narySocket: basi cSocket
(# <<SLOT bi narysocketlib: attributes>>;

(* send an integer *)
putlntPattern: withldle
(# i: @nteger;
enter i

#),
(* receive an integer *)
getIntPattern: withldle
(# i: @nteger;
exit i
#);
(* send contents of an ExtendedRepstream *)
put RepPattern: replO

(#
ent er header

#)
(* receive contents to an ExtendedRepstream *)

get RepPattern: replO
(#

eX| t header
#);

(* send contents from RepetitionOoject *)
put Rephj Pattern: repOhjl O

(#

#);

(* receive contents to RepetitionQbject.
* Furt her bi ndi ng naxLongs can be used to linit the size of
* packets being received, which is useful in particular when
* the sender cannot be trusted.
*

)
get RepCbj Pattern: rephj 1O

(# maxLongs: < | nt eger Val ue

(# do MaxInt div 4 -> value; |INNER #);
Max| ongsExceeded: < bj ect;

oF
replG withldle
(* Read/wite a block to/from'rep',

* returning/using 'header'. The length of the block is
* stored in/retrived from'rep.end'.

*)

Interface Description

(# rep: "ExtendedRepstream
header: @ nteger;

enter rep[]

do | NNER

#);

repCoj 1 G withldle

(#
(* Read/wite a block to/from'rep'.
* The length of the block is stored
* in/fretrived from'rep.end' .
*
rep: “RepetitionQject;

enter rep[]

do | NNER

#);

endf Dat a: @ndOf Dat aPat t er n;
putlnt: @utlntPattern;
getlnt: @etlntPattern;
put Rep: @ut RepPattern;
get Rep: @et RepPattern;
put RepQhj: @ut RepObj Pattern;
get RepQbj : @et RepOoj Pattern;

binpriv: @..;
#)

9.5 streamsocket

ORI A N ' ~bet a/ basi cl i b/ v1. 6/ basi csyst enenv' ;

(*
* COPYRI GHT
Copyright (C Molner Informatics 1995-97
* Al'l rights reserved.
*)

| NCLUDE ' basi csocket ' ;
BODY ' privat e/ streansocket body' ;

--- systemib:attributes ---
StreanBocket: Stream
(# <<SLOT streansocketlib:attributes>>;

t heSocket : @asi cSocket; (* The socket
* conmmuni cati on goes through

*)

(* basics *)
ti meout Val ue: <
(* Length in seconds.
* Al operations that do not enter a timeout
* thensel ves uses this tineout.
*
)

i nt egerVal ue(# do wait Forever->val ue; | NNER #);

(* operations *)

36

Process Library

saneConnecti on: bool eanVal ue
(* do "this' and 'other' wap
* the sane OS | evel connection?
*
(# other: ~StreanBocket;
enter other[]

#)

cl ose: < theSocket . w t hPE
(#
#)

flush: theSocket.w thldle
(#
#)

put::
(# Idle:< (# do I NNER #);
Bl ocki ng: < (# do | NNER #);

#)
puttext::

(# Idle:< (# do I NNER #);
Bl ocki ng: < (# do | NNER #);

#);
get::
(# theldle: @heSocket.withldle
(# connBrokenError::
(# do errCB_abort Qperation -> val ue;
this(Stream . ECSerror;
#)
#)
Idle:< (# do I NNER #);
Bl ocki ng: < (# do | NNER #);

#);
peek: :
(# theldle: @heSocket.withldle
(# connBrokenError::
(# do errCB_abort Qperation -> val ue;
this(Stream . ECSerror;
#)
#)
Idle:< (# do I NNER #);
Bl ocki ng: < (# do | NNER #);

#);
getline::
(# priv: @..;
Idle:< (# do I NNER #);
Bl ocki ng: < (# do | NNER #);
ti medCQut: @Bool ean;

do priv;
#);

Interface Description

37

get Atom :
(# ch: @har;
Idle:< (# do I NNER #);
Bl ocki ng: < (# do | NNER #);

#),
eos: .

(# priv: @..
do priv;

do -1 -> val ue;

set Pos: :
(#
do this(Stream.otherError;
#);

init:< (# do theSocket.init; |INNER #);
forceTi meout: < (# do theSocket.forceTi neout #);
usageTi nest anp: < i nt eger Val ue

(# do theSocket.usageTi nestanp -> val ue #);

(* nonBl ocki ngScope support *)

(* Note: don’t 'leave' a 'nonBl ockingScope'

* Use ' | eaveNBScope'

*

nonBl ocki ngScope: theSocket. nonBl ocki ngScope(# do | NNER #);
| eaveNBScope: theSocket. nonBl ocki ngScope(# do | NNER #);

connect: theSocket.connect(# do | NNER #);
Idle:< bject; (* every local 'Idle' executes this global one *)

(* socket level error callback *)
error:< hi ErrCB(# do | NNER #);

(* attributes *)

host: (# enter theSocket.host exit theSocket.host #);

port: (# enter theSocket.port exit theSocket.port #);

i net Addr: (# enter theSocket.inetAddr exit theSocket.inetAddr #);

(* private *)

private: @..;
#); (* StreanfSocket *)

9.6 socketgenerator

ORIG N ' ~bet a/ basi cli b/ v1. 6/ basi csyst enenv'
| NCLUDE ' basi csocket ' ;

(*

Process Library

* COPYRI GHT
* Copyright (C Molner Informatics 1995-97
* Al'l rights reserved.

*)
BODY ' pri vat e/ socket genbody' ;
--- systemib:attributes ---

Socket Gener at or :
(# <<SLOT socketgeneratorlib:attributes>>;

*)

(* Setting 'port'=0 and executing 'bind gives you
* a Socket Generatorthat accepts connections on a
* randomy chosen portnunmer, which may be found in 'port
*
bi nd: wi t hl dl eAndPE
(#
enter port

#)
(* construct portable address for this generator *)
get Port abl eAddr ess:

(# addr: ~portabl ePort Addr ess;

exit addr[]

#)
(* De-register the bind *)
cl ose: withldl eAndPE

(#

#)
(* provoke a tineout error in the current operation *)
forceTi meout: @

(#

#)
(* return tinestanp of |atest operation on this generator *)
usageTi nest anp: @ nt eger Val ue

(#
#);
(* CALLBACKS
(* every local 'idle' executes this global one *)

i dl e: < object;

(* socket level error callback *)
error:< hi ErrCB(# do | NNER #);

(* EXPLICIT SCHEDULI NG

Interface Description

39

*

*)
(* NB: don't 'leave' a 'nonBl ockingScope'.

* Use '| eaveNBScope'.

*

nonBl ocki ngScope: (# ... #);
| eaveNBScope: (# ... #);

*)
port: @ssignGuard(# rep: @nteger enter rep exit rep #);

(* AUXI LI ARY PATTERNS
*
*)

wi t hl dl eAndPE
(# error:< hiErrCB (* operation level error callback *)
(#
do | NNER
(if errCB_initial Val ue=val ue then
(val ue, cl eanup[])->
t hi s(socket Generator). error->val ue;
if);
#);
| oErrCB: errCB (* superpattern for
* concrete error call backs

*)

(#
do | NNER,
(if errCB_initial Val ue=val ue then
(val ue, cl eanup[]) - >error->val ue;
if);
#);
usageError: < | oErr CB(# do | NNER #);
resourceError: < | oErrCB(# do | NNER #);
accessError: < | oErrCB(# do | NNER #);
addressError: < | oErrCB(# do | NNER #);
connBrokenError: < | oErrCB(# do | NNER #);
intrError:< | oErrCB(# do | NNER #);
internal Error: < [oErr CB(# do | NNER #);
unknownError: < | oErr CB(# do | NNER #);
timedQut: < | oErr CB(# do | NNER #);
Idle:< (# do INNER, this(socketCenerator).ldle #);
Bl ocki ng: <(# continue: (# do true->doContinue #);
doConti nue: @ool ean;
do | NNER,
(i f not doContinue then | eaveNBScope if);
I dl e;
#)
do | NNER
#);

*)

private: @..;
#);

40

Process Library

9.7 binarygenerator

ORIA N 'socketgenerator';
I NCLUDE ' bi narysocket ' ;
BODY ' pri vat e/ bi nar ygenbody' ;

-- socketgeneratorlib:attributes --
(* accept a connection and return a binarySocket on it
get Bi naryConnecti on: withldl eAndPE
(# sockType: < Bi narySocket ;
sock: “sockType;
ti meout: @ nteger;
enter timeout

éi(i.t sock][]
#);

9.8 streamgenerator

ORIA N 'socketgenerator';
I NCLUDE ' streansocket';
BODY ' pri vat e/ streangenbody' ;

-- socketgeneratorlib:attributes --
(* accept a connection and return a streanSocket on it
get St reamConnection: wi thl dl eAndPE
(# sockType: < Streantocket;
sock: “sockType;
ti meout: @ nteger;
enter timeout

éi(i.t sock][]
#)

9.9 commpool

ORI A N ' bi narysocket ' ;

*

* COPYRI GHT

* Copyright (C Molner Informatics 1995-97
* Al'l rights reserved.

*)

BODY ' pri vat e/ commpool body' ;

| NCLUDE ' comraddr ess' ;

| NCLUDE ' ~bet a/ contai ners/v1l.6/1ist';
--- systemib:attributes ---

Bi nar yConnect i onPool :

*)

*)

Interface Description

41

(#

<<SLOT bi naryconnecti onpool I i b:attri but es>>;

*)

init:

< (# ... #);

conmmuni cati on:

(#

(* renove sock fromthis pool *)
renoveSock:

(#

#);

(* NB: always wap |eave/restart out of
* this(conmunication) in a specialization
* of 'leaving *)

leaving: (# ... #);
(* CALLBACKS

* ——=———=——=

*)

onNewConnect i on: <
(* executed when a new connection has been created *)
(# sock: "socket Type; (* The new connection *)
context: ”object; (* NB: Should ve been private *)
actor: "|system (* process to associate with sock *)
enter (sock[],context[])

do | NNER
exit actor[]
#);
error:< hiErrCB (* operation |level error callback *)
(#
do | NNER

(if errCB_initial Val ue=val ue then
(val ue, cl eanup[])->
t hi s(Bi naryConnecti onPool). error->val ue;
if);
#);

concrErrCB: hiErrCB (* superpattern for
* concrete error call backs *)
(#
do | NNER
(if errCB_initial Val ue=val ue then
(val ue, cl eanup[]) - >error->val ue;
if);

Process Library

#);

addr HasUnknownType: < exception; (* Considered fatal
* for now *)
internal Error: < concrErrCB(# do | NNER #);
unknownError: < concrErrCB(# do | NNER #);
accessError: < concrErrCB(# do | NNER #);
resourceError: < concrErrCB(# do | NNER #);
addressError: < concrErrCB(# do | NNER #);
refusedError: < concrErrCB(# do | NNER #);
intrError:< concrErrCB(# do | NNER #);
get HostError: < concrErrCB(# do | NNER #);

)

addr: ~portabl eConmAddr ess;
sock: “socket Type;

*)
priv: @..;
enter addr[]
#);
mar KAsDead:
(# sock: "socket Type;
enter sock[]
#);
r enmoveSoneConnect i on

(* Renoves |east recently used currently unused connection *)
(# noConnecti onsRenovabl e: < obj ect;

oF
close:< (# ... #);

*) _______

private: @..;
#);

Interface Description

9.10systemcomm

ORI A N ' ~bet a/ basi cl i b/ v1. 6/ basi csyst enenv' ;

*

* COPYRI GHT

* Copyright (C Molner Informatics 1994-97
* Al'l rights reserved.

*)

I NCLUDE ' streangenerator’;
| NCLUDE ' bi narygenerator"';

9.11processmanager

xRAG

*

N ' ~bet a/ basi cli b/ v1. 6/ basi csystenmenv';

* COPYRI GHT

*
*

)
BODY

Copyright (C Molner Informatics, 1992-

Al'l rights reserved.

"private/ processmanager body' ;

| NCLUDE ' ~betal/basiclib/vl.6/file';

--- systemib:attributes ---
Bet aEnvStop: (# T. ~Text; |: @nteger;

enter (I1,T[])
do (I,T[]) -> Stop;
#)

Process:
Noti ce, this(Process) can only be executed once.

G
*)
(#

Two program executions of the sane Process,

can be executed by instantiating and executing two different

objects fromthe same Process.

<<SLOT ProcessLi b: attri but es>>;

nanme: ~Text,;
init:< (# enter nanme[] ... #);

argType:
(# argunent: @ext;

put Ar g:
(# t: ~Text;
enter t[]
#);

append: @utArg;

scanArgunents: (* calls INNER for each
(# current: @ext;

97

ar gunent

*)

BETA

44

Process Library

#)
#)
argunent: @rgType; (* argunents to this(Process) *)

(* operations *)

start: (* starts this(Process)'s program execution *)
(# error: < ProcessManager Excepti on
twoCurrent: < ProcessManager Excepti on

#)
stop: (* stops this(Process)'s program execution *)
(# error: < ProcessManager Excepti on

#)
awai t St opped: (* Returns when THI S(Process) stops *)
(# error: < ProcessManager Excepti on

#);
still Running: (* Returns true if
* THI S(Process) is still running
*)
(# error: < ProcessManager Excepti on
val ue: @Bool ean;

exit val ue
#);

(* input/output redirection *)

connect ToProcess: (* connect output of this(process)

* to toProcess's input
* In Unix shell terns:
* thi s(Process) | toProcess
*
)

(# error: < ProcessManager Excepti on

t oProcess: “Process;
enter toProcess|]

#),
connect I nPi pe: (* connect output of fronProcess
* to input of this(process)

* I n Unix shell terns:
* fronProcess | this(Process)
*

(# error: < ProcessManager Excepti on
fronProcess: ~Process;
enter fronProcess[]

#)
redirectFronFile: (* redirect input to this(process)

* frominputFile
* I n Unix shell terns:
* thi s(Process) < inputFile
*)

(# error: < ProcessManager Excepti on

inputFile: "File;

Interface Description

45

enter inputFile[]
#)
redirectToFile: (* redirect output of this(process)

* to outputFile
* In Unix shell terns:
* thi s(Process) > outputFile
*

(# error: < ProcessManager Excepti on;

outputFile: "File;
enter outputFile[]

#)
redi rect FronChannel : (* redirect input to this(process)
* from i nput Channel
*)

(# error: < ProcessManager Excepti on;
i nput Channel : ~Stream
enter inputChannel []

#);
redi rect ToChannel : (* redirect output of this(process)

* to out put Channel
*

(# error: < ProcessManager Excepti on;
out put Channel : ~Stream
ent er out put Channel []
#)
(* Callbacks: called when the proper action has occurred *)

onStart:< (# do | NNER #);
onStop: < (# do I NNER #);

doDebug: @Bool ean;
private: @..;
#);

Pr ocessManager Excepti on: Exception
(# message: "Text;
ent er nessagel]

#)

9.12commpipe

ORI A N ' ~bet a/ basi cl i b/ v1. 6/ basi csyst enenv' ;

(*

COPYRI GHT
Copyright (C Molner Informatics 1995-97
Al'l rights reserved.

* % o

46

Process Library

MDBODY default ' private/conmpi pe_uni x'
ppcnac "private/ cormpi pe_nac'
nti "private/ compi pe_nt';

| NCLUDE ' privat e/ sysFdStrean ;

--- systemib:attributes ---
propagat eException: (# nsg: "Text enter nsg[] do INNER #);

pi pe:
(# <<SLOT pipelib:attributes>>;

(* OPERATI ONS *)
init:<
(# error: < propagat eException
(# do INNER; nsg -> pipeError #);

#);
close:< (# ... #);

pi peException: Exception
(#
enter nsg
do (if not nsg.enpty then nsg.newine if);
I NNER;
#);

pi peError: < Pi peExcepti on;
(* ATTRI BUTES *)

readEnd: ~fdStream
writeEnd: ~fdStream

private: @..;
#);

References

[Knudsen 94]

[Madsen 93]

[MIA 90-1]
[MIA 90-2]
[MIA 91-20]
[MIA 94-24]
[MIA 93-25]

[MIA 94-26]

J. L. Knudsen, M. Lofgren, O. L. Madsen, B. Magnusson
(eds.): Object-Oriented Environments — The Mjglner Ap-
proach, Prentice Hall, 1994, ISBN 0-13-009291-6.

O. L. Madsen, B. Mgller-Pedersen, K. Nygaard: Object-
Oriented Programming in the BETA Programming Lan-
guage, Addison-Wesley, 1993, ISBN 0-201-62430-3

Mjglner Informatics. The Mjglner System: — Overview,
Mj@lner Informatics Report MIA 90-1.

Mj@lner Informatics: The Mjainer System: BETA Compiler
Reference Manual Mjglner Informatics Report MIA 90-2.

Mjglner Informatics. The Mjglner System — Persistent
Sore, Mjglner_Informatics Report MIA 91-20.

Mjagliner Informatics: The Mjglner System — The Mjg@iner
System Tutorial, Mjglner_Informatics Report MIA 94-24.

Mjglner Informatics. The Mjalner System — Distribution
Mj@liner_Informatics Report MIA 94-25.

Mjginer Informatics. The Mjglner System — BETA Lan-
guage Introduction Mjglner_Informatics Report MIA 94-
26.

47

Index

The entries in the index with italic pagenumbers are the identifiers defined in
the public interface of the libraries:

The minor level entries refer to identifiers defined local to the identifier of the
major level entry. For those index entries referring to patterns with super- or
subpatterns within the library, these patterns are specified in special sections of
the minor level index for that identifier.

Entries with plain pagenumbers refer to the text of this manual.

error - 31
host - 31
A idle - 31
inetAddr - 32
abort - 29, 30 : zlttaggr%/al ue
acti veBi nar ySocket -7 subpatterns:
activeStreantocket -7 usageTimestamp - 31
addMsg - 29 leaveNBScope - 31
ﬁgr - 26 5 nonBlockingScope - 31
resses - open - 32
argType - 41 subpatterns:
argym:tdﬂ -3%1 connect - 30
assigned - super pattern:
assgn_Guzr(;j . é%é) withldle - 44
assigned - port - 31
Assi gnCuard -8 private - 32
asText - 26, 28 sameConnection - 30
asTextPattern - 26, 27, 28, 29 super pattern:
awaitStopped - 42 booleanValue - 44
awai t St opped -4 usageTimestamp - 31
super pattern:
integerValue - 44
B withldle - 32
subpatterns:
basicSocket gfe;’f >
subpatterns: i
BinarySocket - 33 e A
booleanValue WIthPE - .
subpatterns: wbpat;]%rlls. 32
- withldle -
dose .?{neConnectlon -30 BetaEnvStop - 41
Super pattern: 'T',4411
withldle - 44 Binary socket - 8
connect - 30 . ;
superpattern: b|_ naryConngectl onPool -18
open - 44 BinaryConnectionPool - 39
endOf DataPattern - 31 close-40
error - 31 communication - 39
super pattern: error - 40 .
hiErTCB - 44 Superpattern:
forceTimeout - 31 i ErngErrCB 44
getPortableAddress - 30 .
hiErTCR subpatterns:
error - 40

subpatterns:

49

50

Process Library

init - 39
markAsDead - 40
private - 40
removeSomeConnection - 40
socketType - 39
BinarySocket - 33
binpriv - 34
endOfData - 34
getint - 34
getIntPattern - 33
super pattern:
withldle - 44
getRep - 34
getRepObyj - 34
getRepObjPattern - 33
super pattern:
repObj10 - 44
getRepPattern - 33
super pattern:
replO - 44
putint - 34
putintPattern - 33
super pattern:
withldle - 44
putRep - 34
putRepObj - 34
putRepObjPattern - 33
super pattern:
repObj10 - 44
putRepPattern - 33
super pattern:
replO - 44
replO - 33
subpatterns:
getRepPattern - 33
putRepPattern - 33
super pattern:
withldle - 44
repObj10 - 33
subpatterns:
getRepObjPattern - 33
putRepObjPattern - 33
super pattern:
withldle - 44
superpattern:
basicSocket - 33
withldle
subpatterns:
getIntPattern - 33
putintPattern - 33
replO - 33
repObjl0 - 33
bind - 36
binpriv - 34
bufferlD - 29

commProtocol_ppc - 25
commProtocol_tcp - 25
commProtocol_udp - 25
commProtocol_unix - 25
commRely_contents - 25
commRely_dontcare - 24
commRely_dup - 24
commRely_loss - 24
commRely_order - 24
commRely_reliable - 25
commRely_unreliable - 25
communication - 39
concretePortAddress - 27
asText - 28
asTextPattern - 28
BooleanValue
subpatterns:
conformsTo - 28
conformsTo - 28
superpattern:
BooleanVaue - 44
private - 28
protName - 28
protocol - 28
subpatterns:
memPortAddress - 29
ppcPortAddress - 28
unixAbstractPortAddress - 28
unixPortAddress - 28
Concr et ePor t Addr ess - 17
concurrency control - 18
conformsTo - 28
connect - 30, 36
connectinPipe - 42
connectToProcess - 42
continue - 29, 30
co-routines - 7
cType- 25

D

delete - 26, 27
deno - 20
doDebug - 43

C

Categories of Errors - 13
cleanup - 29, 30

close - 31, 34, 36, 40, 43
commAddr ess - 15
commProtName_mem - 25
commProtName_ppc - 25
commProtName_tcp - 25
commProtName_udp - 25
commProtName_unix - 25
commProtocol_dontcare - 25
commProtocol_mem - 25

E

endOfData - 34
endOfDataPattern - 31
enterSpec - 26
eos - 35
err - 29
errCB - 29

abort - 29

addMsg - 29

cleanup - 29

continue - 29

exceptionType - 29

fatal - 29

private - 29

super pattern:

IntegerValue - 29

errCB_abortOperation - 29
errCB_abortProgram - 29
errCB_continueOperation - 29
errCB_initiadVaue - 29
error - 31, 36, 37, 40
error - 12

Index

errorCal | back - 12 ide- 31, 37
Exception Idle - 36
subpatterns: inadr - 29
ProcessManagerException - 43 inetAddr - 28, 32, 36
exceptionType - 29 init - 26, 32, 35, 39, 41, 43
insert - 26, 27
IntegerObject
F subpatterns:
hiErrCB - 30
IntegerVaue
fatal - 29, 30 es(‘ijjbpatterns:
flush - 34 errCB - 29
forceTimeout - 31, 35, 37 | nter-process communication - 6
G L
get - 35 leaveNBScope - 31, 36, 37
getAtom - 35 | eaveNBScope - 11
getAtom-11 localHost_IP_number - 30
getBinaryConnection - 38
sock - 38
sockType - 38 M
super pattern:
withldleAndPE - 38
timeout - 38 MacTCP - 17
gethostbyname - 29 markAsDead - 40
inadr - 29 mar kAsDead - 19
name - 29 memPortAddress - 29
notfound - 29 asTextPattern - 29
getint - 34 bufferlD - 29
getintPattern - 33 protName - 29
getline - 35 protocol - 29
getLine-11 super pattern:
getMemPort - 27 concretePortAddress - 29
getPortableAddress - 30, 36 message - 43
getPos - 35 nonitor -7
getPpcPort - 27 msg - 43
getRep - 34
getRepObj - 34
getRepObjPattern - 33 N

getRepPattern - 33
getStreamConnection - 38

name - 29, 41
:gtTfse .38 nonBlockingScope - 31, 36, 37
superpattern: notfound - 29
withldleAndPE - 38
timeout - 38
getTcpPort - 27 O
getUdpPort - 27
getUnixPort - 27 onStart - 43
onStart -4
onStop - 43
H open - 32
hiErrCB - 30
abort - 30 P
cleanup - 30
continue - 30 parseError - 26
fatal - 30 pathName - 28
superpattern: peek - 35
host - 28, 31, 36 close - 43
host Machi ne -5 Exception
subpatterns:
pipeException - 44
| init - 43
pipeError - 44
|41 pipeException - 44

super pattern:

52

Process Library

Exception - 44
private - 44
readEnd - 44
writeEnd - 44
pi pe-11
pipeError - 44
pipeException - 44
Pipes- 6
port - 31, 36, 37
portableCommAddress - 25
asText - 26
asTextPattern - 26
enterSpec - 26
init - 26
private - 26
subpatterns:
portableMultiAddress - 26
portablePortAddress - 27
port abl eConmAddr ess - 16

portableCommAddressFromText - 26

addr - 26
parseError - 26
txt - 26

port abl eCommuni cat i onAddr ess - 11

portableMultiAddress - 26

asTextPattern - 26

delete - 26

init - 26

insert - 26

private2 - 26

super pattern:

portableCommAddress - 26

portabl eMul ti Address - 16
portablePortAddress - 27

asTextPattern - 27

delete - 27
getMemPort - 27
getPpcPort - 27

getTcpPort - 27
getUdpPort - 27
getUnixPort - 27
insert - 27
private2 - 27
superpattern:
portableCommAddress - 27
portabl ePort Addr ess - 16
portNo - 28
ppcPortAddress - 28
asTextPattern - 28
host - 28
portNo - 28
protName - 28
protocol - 28
sessionld - 28
superpattern:
concretePortAddress - 28

private - 26, 28, 29, 32, 36, 38, 40, 43, 44

private2 - 26, 27
process -4
Process - 41
argType - 41
argument - 41
awaitStopped - 42
connectinPipe - 42
connectToProcess - 42
doDebug - 43
init - 41
name - 41
onStart - 43
onStop - 43
private - 43

redirectFromChannel - 43
redirectFromFile - 42
redirectToChannel - 43
redirectToFile - 42
start - 41
stillRunning - 42
stop - 42
ProcessM anagerException - 43
message - 43
super pattern:
Exception - 43
propagateException - 43
msg - 43
protName - 28, 29
protocol - 28, 29
protocol Spec - 25
cType-25
rType- 25
pr ot ocol Spec - 15
put - 34
putint - 34
putintPattern - 33
putRep - 34
putRepObj - 34
putRepObjPattern - 33
putRepPattern - 33
puttext - 35
Put Text -11

R

readEnd - 44
redirectFromChannel - 43

r edi rect FrontChannel -4
redirectFromFile - 42
redirectFronFile -4
redirectToChannel - 43

redi rect ToChannel -4
redirectToFile - 42
redirectToFile -4
removeSomeConnection - 40

r enoveSoneConnecti on - 19
replO - 33

repObj10 - 33

rType - 25

S

sameConnection - 30, 34
semaphore -7
sessionld - 28
setPos - 35
sock - 38
socket Generator -7
SocketGenerator - 36
bind - 36
super pattern:
withldleAndPE - 44
close - 36
super pattern:
withldleAndPE - 44
error - 37
super pattern:
hiErrCB - 44
forceTimeout - 37
getPortableAddress - 36
hiErrCB

Index

subpatterns:
error - 37
idle - 37
leaveNBScope - 37
nonBlockingScope - 37
port - 37
private - 38
usageTimestamp - 37
withldleAndPE - 37
subpatterns:
bind - 36
close - 36
Sockets - 6
socketType - 39
sockType - 38
start - 41
start -4
stillRunning - 42
still Running -4
stop - 42
Stream
subpatterns:
StreamSocket - 34
Stream socket - 8
StreamSocket - 34
booleanValue
subpatterns:
sameConnection - 34
close - 34
connect - 36
eos - 35
error - 36
super pattern:
hiErrCB - 44
flush - 34
forceTimeout - 35
get - 35
getAtom - 35
getline - 35
getPos - 35
hiErrCB
subpatterns:
error - 36
host - 36
Idle - 36
inetAddr - 36
init - 35
integerValue
subpatterns:
timeoutValue - 34
usageTimestamp - 35
leaveNBScope - 36
nonBlockingScope - 36
peek - 35
port - 36
private - 36
put - 34
puttext - 35
sameConnection - 34
superpattern:
booleanVaue - 44
setPos - 35
superpattern:

Stream - 34
theSocket - 34
timeoutValue - 34

superpattern:

integerValue - 44
usageTimestamp - 35
superpattern:
integerValue - 44

systentnv -7

T

T-41

TCP- 17

TCP/IP - 15

tcpPortAddress - 28
protName - 28
protocol - 28
superpattern:

unixAbstractPortAddress - 28

t cpPort Addr ess - 17
theSocket - 34
thisHost - 29
er-29
inadr - 29
name - 29
timeout - 38
timeout - 13
timeoutValue - 34
txt - 26

U

UDP - 17
udpPortAddress - 28
protName - 28
protocol - 28
super pattern:

unixAbstractPortAddress - 28

udpPor t Addr ess - 17
unixAbstractPortAddress - 28
asTextPattern - 28
inetAddr - 28
portNo - 28
subpatterns:
tcpPortAddress - 28
udpPortAddress - 28
super pattern:
concretePortAddress - 28

uni xAbst r act Port Addr ess - 17

unixPortAddress - 28
asTextPattern - 28
pathName - 28
protName - 28
protocol - 28
super pattern:

concretePortAddress - 28

usageTimestamp - 31, 35, 37

usageTi meSt anp - 11

\W

waitForever - 30

Wi t Forever -8

withldle - 32

withldleAndPE - 37

subpatterns:

getBinaryConnection - 38
getStreamConnection - 38

withPE - 32

writeEnd - 44

