
The Mjølner System
Process Library

Reference Manual

Mjølner Informatics Report

MIA 94-29 (1.2)

October 1997

Copyright © 1990-97 Mjølner Informatics ApS.
All rights reserved.

No part of this document may be copied or distributed
without the prior written permission of Mjølner Informatics





i

Contents

1 INTRODUCTION................................................................................................................... 3

2 MANIPULATING PROCESSES ........................................................................................... 4

2.1 CHILD PROCESSES .............................................................................................................. 4
2.2 THIS PROCESS AND ITS ENVIRONMENT............................................................................. 5

3 COMMUNICATING WITH OTHER PROCESSES............................................................. 6

3.1 COMMUNICATION CONCEPTS ............................................................................................ 6
3.2 SCHEDULING....................................................................................................................... 7
3.3 THE TWO FAMILIES OF SOCKETS....................................................................................... 8
3.4 THE FRAGMENT BASICSOCKET.......................................................................................... 8

3.4.1 The Patterns of basicsocket.......................................................................................... 8
3.5 THE FRAGMENT BINARYSOCKET..................................................................................... 10

3.5.1 The Patterns of binarysocket...................................................................................... 10
3.6 THE FRAGMENT STREAMSOCKET.................................................................................... 10
3.7 THE FRAGMENT COMMPIPE ............................................................................................. 11
3.8 SOCKETGENERATORS ...................................................................................................... 11

3.8.1 The patterns of socketgenerator ................................................................................. 11
3.8.2 The patterns of streamgenerator and binarygenerator................................................ 11

3.9 ERROR HANDLING............................................................................................................ 12
3.9.1 Error Callbacks......................................................................................................... 12
3.9.2 Error Propagation..................................................................................................... 12
3.9.3 Categories of Errors.................................................................................................. 13

3.10 TIMEOUT MANAGEMENT............................................................................................. 13

4 ADDRESSES......................................................................................................................... 15

4.1 SPECIFICATION OF CONNECTION REQUIREMENTS ......................................................... 15
4.2 THE ABSTRACT LEVEL..................................................................................................... 16
4.3 THE CONCRETE LEVEL..................................................................................................... 16

5 MANAGING A POOL OF CONNECTIONS ...................................................................... 18

6 THE DEMO FILES .............................................................................................................. 20

7.1 PIPELINE, CONSUMER AND PRODUCER............................................................................ 20
7.2 FIRSTPROGRAM AND OTHERPROGRAM........................................................................... 20
7.3 STREAMCOUNTERSERVER AND STREAMCOUNTERCLIENT ............................................ 20
7.4 BINARYCOUNTERSERVER AND BINARYCOUNTERCLIENT .............................................. 21
7.5 XPILOTGAMES .................................................................................................................. 21
7.6 REPCHATCLIENT AND REPCHATSERVER ........................................................................ 21

8 KNOWN BUGS AND INCONVENIENCES........................................................................ 22

8.1 GENERAL .......................................................................................................................... 22
8.2 WINDOWS ......................................................................................................................... 23
8.3 MACINTOSH ...................................................................................................................... 23

9 INTERFACE DESCRIPTION ............................................................................................. 24

9.1 COMMADDRESS ................................................................................................................ 24
9.2 ERRORCALLBACK............................................................................................................. 30
9.3 BASICSOCKET ................................................................................................................... 31
9.4 BINARYSOCKET ................................................................................................................ 33
9.5 STREAMSOCKET ............................................................................................................... 35
9.6 SOCKETGENERATOR......................................................................................................... 37



ii Process Library

9.7 BINARYGENERATOR ......................................................................................................... 40
9.8 STREAMGENERATOR ........................................................................................................ 40
9.9 COMMPOOL ....................................................................................................................... 40
9.10 SYSTEMCOMM.............................................................................................................. 43
9.11 PROCESSMANAGER ...................................................................................................... 43
9.12 COMMPIPE .................................................................................................................... 45

REFERENCES............................................................................................................................... 47

INDEX ............................................................................................................................................ 49



3

1 Introduction

This document describes the version 1.6 of the process library in the Mjølner System.
This library implements support for manipulating operating system processes and for
communicating with them. All fragments in the process library demand that the
program uses the BETA simulated concurrency, i.e. the slot program:descriptor
must be a specialization of systemenv. In return, one does not have to explicitly
transfer the thread of control by suspending when an operation is about to block - the
systemenv scheduler and the process library cooperate to make it look like implicit
scheduling. This ensures that co-routines which can proceed with their work will
never be prevented from this because of a blocking communication operation in some
other co-routine.

The fragment dealing with the manipulation of processes is processmanager.
Processmanager supports starting a child process, stopping it, and similar things.

The fragments dealing with communication between processes are basicsocket,
streamsocket, socketgenerator and a few variations hereof.

Some aspects of support for the communication between processes have been sepa-
rated into the fragments commaddress and errorcallback. commaddress defines a
hierarchy of patterns, which model addresses (destinations for communications) in a
platform independent way. errorcallback defines a few patterns used for error
handling in this library.

On top of the support for single communication connections, commpool implements
support for holding a set of connections, and providing concurrency-secure access to
these connections by means of platform independent addresses, i.e. instances of
patterns in commaddress. This abstracts away the need to open and close these
connections: if connections to the required destination is available, one of them will
be used, otherwise a new connection will automatically be opened. If the process hits
a maximum limit for the number of open connections, a least recently used (and
currently unused) connection will be closed.

Processmanager

Communication

Connections



4 Process Library

2 Manipulating Processes

First, a bit of terminology. A binary file is a diskfile, from which the operating system
is able to create a process, which is then called an instance of the binary. A process is
a dynamic entity within a computer which has an internal state and may interact with
other processes. So there may be more than one process which is instantiated from
any given binary file, and these processes are by no means the same thing. Here, each
BETA object which is an instance of the pattern process, models one process. If you
want to manipulate more than one instantiation of a given binary, use more than one
process object.

2.1 Child Processes
The fragment processmanager is concerned with child processes. An instance of the
process pattern in this fragment is attached to a binary file by initializing it with a
file specification, like

  '/bin/someApplication' -> aProcess.init;

In the following, aProcess denotes an instance of the pattern process, which has
been attached to a binary file.

One has the option to set up arguments for an instantiation of the binary, using aPro-
cess.argument.append, once for each argument. Afterwards, the process can be in-
stantiated with aProcess.start. In the following, this instantiation is referred to as
the child process. When it has been started, it is possible to change its life cycle and to
adjust to it: aProcess.stop causes the child process to be killed, aPro-

cess.awaitStopped causes this process to sleep until the child process terminates,
and aProcess.stillRunning is a predicate which returns true if the child process
has not yet terminated.

The onStart virtual is a hook, into which one can put code to be executed immedi-
ately after the child process has been started, and the onStop virtual is a hook which
is executed when stop has stopped the process. Please notice that onStop will NOT
be executed in the (typical) case when the child process terminates for any other rea-
son, e.g. when it terminates normally.

The remaining pattern attributes of process are concerned with inter-process com-
munication. The network of inter-process communication must be defined before the
child processes are started. ConnectToProcess and connectInPipe enter a reference
to another process object and connect the referred child processes in a pipeline.
redirectFromFile arranges for the child process to take standard input from the
specified file, and redirectToFile makes it redirect standard output to the given
file.

Finally, redirectFromChannel enters the writeEnd of a pipe and makes the child
process accept standard input from that pipe, and redirectToChannel enters the

Process

Arguments and
instantiating

Inter-process
communication



Communicating with other Processes 5

readEnd of a pipe and makes the child process send standard output to it. The en-
tered parameter is declared to be a (specialization of a) stream. The reason for this is
that a future release may accept a broader range of types of objects entered; it should,
for instance, be possible to use sockets.

2.2 This Process and its Environment
commaddress defines  thisHost, that returns the name and IP address on the
internet.

Scanning of the command line and other functions that used to be in the process
library are now  supported in betaenv.



6 Process Library

3 Communicating with
other Processes

3.1 Communication Concepts
Inter-process communication is usually described as “message based” or as
“connection based”. In both cases, any primitive communication act has a number of
participants, playing roles as the receiving or the transmitting end. In this context,
there will always be exactly one transmitting party and one receiving party. There is
support for specifying a group address, but there is not currently any ready-made im-
plementation of a group communication protocol.

For a message based communication, each message is sent to an explicitly specified
receiver. For a connection based communication, at first a connection between two
parties is established. From that point, messages can be transmitted via this connec-
tion without any explicit reference to their destination. Here, the model of communi-
cation is connection oriented.

For operating systems that support a notion of standard channels for receiving input
and delivering output and possibly other things, it is possible for the communicating
processes to be unaware (i.e. independent) of the fact that standard input comes from
another process or that standard output goes to another process: It all looks the same
as if the data came from a keyboard and went to a display or whatever. On the other
hand, this level of abstraction implies that the connection lifetime will be the lifetime
of the process and that there cannot be more connections than standard channels. Like
standard output and standard input, each connection only supports sending data in one
direction. Pipes establish this kind of connections. Use the pattern pipe.

To implement more elaborate patterns of communication, one must be able to create
and destroy connections during the execution of a process, and to explicitly choose
with whom to communicate. Sockets are used for this, and with sockets, every con-
nection is two-way. Sockets come in two main variants: passive and active. A passive
socket is used to define a name, which may be used by active sockets when establish-
ing an actual connection. The interplay is like:

Pipes

Sockets



Communicating with other Processes 7

Passive: "Here I am! My name is Bob"
...
Active-1: "I want to speak with Bob"
Passive(Bob): "OK, here's a connection"
...
Active-2: "I want to speak with Bob"
Passive(Bob): "OK, here's a connection"
...
Active-3: "I want to speak with Cindy"
(Error: Here's no such thing as "Cindy")
...

I.e. active sockets connect by name, and more than one connection may be
established by means of one passive socket. The “name” is actually a pair whose first
part is an identification of the host (its IP address) and whose second part is an integer
(the port number). This pair is unique for each passive socket, at least from the time
where the operating system accepts registration of the name until the passive socket is
closed. After that, the pair may be reused, that is: the port number may be reused on
the given host, if the operating system wishes to do so.

In this library, sockets are also divided along another axis, namely into stream sockets
and binary sockets. Stream sockets are specializations of the basic stream pattern,
and support textual communication. Binary sockets support transfers of blocks of data
with a well-known size.

The patterns related to these concepts are: StreamSocket, BinarySocket and
SocketGenerator. SocketGenerators are used to accept incoming connection
requests. When a request arrives, a new socket of the specified type is created and
connected to the requesting party.

3.2 Scheduling
Any program using the process library must be a systemenv program, because the
process library depends heavily on cooperation with the scheduler present in
systemEnv programs.

Instances of the patterns of these fragments are expected to be executed from BETA
co-routines, and such co-routines must tolerate being suspended (de-scheduled) and
later re-scheduled as part of the execution of possibly lengthy operations. This means
that concurrency control by means of semaphores, monitors, and the like must be
established almost as rigourously as had the co-routines been fully concurrent threads
of execution.

In return for this increase in complexity, a usually very important reduction in com-
plexity arises from having implicit instead of explicit scheduling. Especially when
fitting a new piece into an existing framework it is a great asset to be able to simply
“spawn” the new piece as part of an initalization phase and then have it running along
with the rest of the program without changing any of the other parts not directly inter-
acting with this new piece.

In more concrete terms, it works like this: Whenever an operation is about to block,
the current component will be suspended. It will be resumed some time later, when
the requested IO is available. In the meantime, some other component which has re-
quested IO available or is not waiting for IO will be resumed. In this way the follow-

BETA co-routines



8 Process Library

ing liveness property of the program is ensured: it will never be the case that a
communication operation by blocking delays the continuation of the execution of all
of those components which are either (1) not executing a communication operation or
(2) executing a communication operation, but has IO of the requested kind available.
Of course, any component can still block the whole system by, for example, entering
an infinite loop that does nothing.

There are some operations, that may block the entire process for a while. These
include gethostbyname, starting a process, and waiting for a process to stop

3.3 The Two Families of Sockets
Basically, the process library supports two families of sockets: stream sockets and bi-
nary sockets. Both are implemented using basicsocket.

A stream socket is suitable for transferring data which is readable for human beings,
such as the data transferred in a UNIX “talk” session, or the more formal communica-
tion between a mail program and an SMTP mail server. A streamSocket is a
stream, so you may “put”, “get” etc. However, do not rely on this kind of socket to
transfer data which contains zero-valued bytes, as arbitrary binary data may very well
do.

A binary socket is guaranteed to transfer any given block of arbitrary bytes unmodi-
fied, but you must always specify the length of the data block when sending. To
enable cross-platform communication, the headers of the datablocks are modified
internally. The current implementation make little-endian machines (e.g. machines
running Linux or Windows NT) transmit their package headers in the format used by
big-endian machines. It is your responsebility that the contents of the datablocks are
in a format understood by the receiver.

In general, you must have a way of choosing either a binary or a stream variant of a
connection to be established, because it is not possible to change a streamSocket
into a binarySocket on the same connection, or vice versa. And each socket object
models one connection, so it is not possible to use the same socket object for several
different connections - use a fresh object each time instead. For socketGenerators,
of course, this one-shot-restriction does not apply. See below.

3.4 The Fragment basicsocket
The following section describes the top level patterns of basicsocket. After that,
there is a section with a general discussion of error handling. Finally another section
discusses the treatment of timeout.

3.4.1 The Patterns of basicsocket

WaitForever is a constant used to specify an infinite timeout.

AssignGuard is used to detect wrong usage of other patterns, and
localHost_IP_number  is the number used by convention to indicate the ‘this host’.
None of them are important for the understanding of the fragment.

Stream socket

Binary socket



Communicating with other Processes 9

sameConnection answers the question of whether this and other wraps the same
OS level connection. getPortableAddress returns a portable address for the
connection.

Use connect to connect to a passive socket, like those generated by
socketgenerator. connect establishes a connection to a (host,port) pair given
either as arguments, or stored in the attributes port, host or inetAddr. You should
set only one of host and inetAddr, as inetAddr is set to the internet address of
host if inetAddr is not set. host is ignored when inetAddr is set.

Host must be given in a format like “quercus.daimi.aau.dk” or “130.225.16.15”.
Depending on the network topologi and the whereabouts of this process, some pre-
fixes of the first format may also suffice, notably a format like “quercus”. The port
must be an integer. By convention, port numbers below 5000 are reserved for system
administration purposes and for special, well-known services like e-mail and ftp. On
the other hand, do not expect to be able to use more than a 16-bit unsigned value (0
through 65535). The value to use when assigning inetAddr must be the four-byte
internet address, given as an integer value. E.g. the absolute address “130.225.16.15”
is given as the integer 2195787791. The integer must be in the normal byte-order of
the platform running the program.

forceTimeout is used to provoke the same response within an ongoing operation as
would have been the result of a timeout. This makes it possible to exercise timeout
control over an operation from within a co-routine different from the one executing
that operation. Moreover, it makes it possible to define a timeout limit for the
execution of a number of operations, instead of setting timeouts for each of them.
UsageTimeStamp returns an integer value which indicates when this socket was last
used. The value makes sense only when compared to usage time stamps of other
sockets in this same process. The purpose is to enable a user of many sockets to close
the least recently used connection or similarly when and if the process runs out of
system resources (e.g. it experiences a “to many open files” error).

close must be called when done with the socket. Every local idle executes the idle
on basicsocket. The global error is called whenever a operation-level error is
called and did not handle the error. nonBlockingScope is explained below.

The nonBlockingScope pattern is used for specifying non-blocking communication.
This means that operations which cannot begin right away are discontinued. An ex-
ample is: We try to read from a socket, but no data at all is available to read. If, on the
other hand, any irreversible actions have been taken in an operation (e.g. reading a
few bytes), it will not be interrupted by the nonBlockingScope mechanism. This
means it is always safe to interrupt an operation by enclosing it in a nonBlock-
ingScope, and then later to retry it. It also means that the granularity of scheduling by
means of nonBlockingScope is one communication operation; e.g. if the communi-
cation partner sends half a block and then takes a break, this process can only execute
an idle in the mean time, it cannot switch forth and back between several such ongo-
ing transfers. With each Idle pattern comes a Blocking virtual. This is executed if
the current operation is blocking, i.e. if nothing can be done right away and nothing
has been done yet. You may extend this virtual to take some action in response to the
operation being blocked. If the operation is enclosed in a nonBlockingScope,
Blocking gets executed immediately before the operation is interrupted. If you do not
want to interrupt the operation, execute continue in a extending of Blocking. (If you
are not using a  nonBlockingScope, the operation wil automatically continue when
possible)

BasicSocket

connect

nonBlocking-
Scope



10 Process Library

withPE and withIdle are auxiliary patterns used in implementing the scheduling
system.

3.5 The Fragment binarysocket

3.5.1 The Patterns of binarysocket

The only pattern defined is BinarySocket. BinarySocket inherits from
BasicSocket.

endOfData returns true if no data is immediately available for reading. putInt and
getInt are used to transmit a single integer.  The integer is transmitted in big-endian
format. This makes communication across little- and big-endian machines of integers
easy.

putRep and getRep sends and receives instances of ExtendedRepstream. This is a
generic container for arbitrary blocks of data, in particular it is possible to put texts
and integers into it and read them out again. When receiving data into an
ExtendedRepstream with getRep, the ExtendedRepstream will automatically be
extended in case the received amount of data exceeds its current capacity.

len      header   data
|--------|--------|---------------------------------|

putRepObj and getRepObj are used to send and receive instances of the pattern
RepetitionObject. The protocol for transmitting RepetitionObjects is a little
different from the one used with ExtendedRepstream objects: there is no header
field, and the length field is the first element in the repetition from the repe-
titionObject, i.e. repetitionObjects have their length “built-in”.

len      data
|--------|---------------------------------|

Otherwise, it is like the protocol for ExtendedRepstream objects.

3.6 The Fragment streamsocket
The following describes the operations of StreamSocket in order of appearance.
StreamSocket inherits from Stream. theSocket is the BasicSocket used to
transfer the data.

timeoutValue is the timeout used on all operation that do not enter a timeout. This
includes all the patterns inherited from stream.

sameConnection checks if the OS level connection wrapped in this StreamSocket
is the same as the one wrapped in other. A StreamSocket connection may be closed
by close. After this point, the StreamSocket cannot be used for communication, so
you can discard (i.e. forget) it. StreamSockets should be closed after use to free up

endOfData, putInt
and getInt

putRep and
getRep

putRepObj and
getRepObj



Communicating with other Processes 11

system resources. Flush ensures that all data in internal buffers of the StreamSocket
actually gets sent. close does an automatic flush. Put, get and peek work as with
other streams.

PutText, getLine and getAtom work like in other streams. Eos returns true if no
data can possibly be read from this connection now or ever. On the other hand, it may
still happen that the communication partner holds the connection alive but will not
write any more data to it. In this case, this process has no chance of guessing that no
more data will actually arrive, so eos will “spontaneously” change from false to true
when the other process actually closes the connection.

Init, forceTimeout, usageTimestamp, NonBlockingScope, leaveNBScope,

connect, error, host, port, inetAddr, idle uses the implementation in
BasicSocket directly and are described in 3.4.1.

3.7 The Fragment commpipe
A pipe must be initialized with init before usage. Then giving a reference to its
readEnd (writeEnd) as enter parameter to redirectFromChannel

(redirectToChannel) of a not yet started process object will attach this pipe to
another (not yet created) process. If only one end of the pipe is attached to another
process, the current process may read from (write to) the other end of the pipe, when
the other process has been created.

3.8 SocketGenerators

3.8.1 The patterns of socketgenerator

A socketGenerator is a factory from which instances of streamSocket and of bi-
narySocket can be obtained, in response to active sockets connecting to the socket-
Generator’s port.

Bind must be executed to establish the given port number as an address, to which
active sockets may connect. Executing bind with port=0 establishes a randomly
chosen port number as an address.  The actual port number used may be read from
port. None of the other operations make sense on an unbound generator.

As usual, when you are done, execute close on the socketGenerator.

getPortableAddress exits a portableCommunicationAddress which describes the
network identity of this socketGenerator. ForceTimeout and usageTimeStamp
work as with the other socket variants, and the considerations concerning nonBlock-
ingScope and leaveNBScope are as usual.

3.8.2 The patterns of streamgenerator and binarygenerator

To obtain a streamSocket on the next connection requested, execute get-

StreamConnection, and to obtain a binarySocket, execute getBinaryConnection.
Remember to enter a timeout value. When you are done with the created socket,
execute close on it.



12 Process Library

3.9 Error Handling
Throughout process, the facilities from the fragment errorCallback are used in the
handling of errors.

3.9.1 Error Callbacks

An error callback is a virtual pattern which is invoked in response to the occurrence
of some error.  Whenever an error condition is detected on a socket, a corresponding

virtual pattern is instantiated and executed. These patterns are specializations of er-
rCB, as declared in errorCallback. Such virtual patterns are hereafter denoted error
callback patterns. To catch and treat an error, extend the corresponding error callback.

If an error callback is not extended and the corresponding error occurs, an exception
is executed and the program terminates. If the error callback is extended, the follow-
ing holds:

• if abort is executed in the extending dopart, the operation (but not the pro-
gram) is aborted. You may execute leave within a specialization of abort. Do
not leave an error callback from any other point, as this may put the object or
the process into an unstable state. If you abort but do not leave, the operation
aborts, but control flow is like when the operation succeeds; in this case, any
exited values are dummy values, reflecting that the operation failed. Do not use
them! Actually, do not abort without leave!

• if continue is executed in the extending dopart, there will be an attempt to re-
cover and finish the operation after the execution of the error callback termi-
nates. For many types of errors, no general recovery is possible at the operation
level. But you could close a couple of files in response to a resourceError
and then execute continue. In case of timeout, you can always choose to take
another turn with continue.

• if fatal is executed in the extending dopart, an exception will be executed and
the program will be terminated. So the execution of the error callback will not
return. This is also the default, but with hierarchical error callbacks, you may
need fatal to undo a continue at a higher level.

In case it happens more than once that an operation from the set
{abort,continue,fatal} is executed, the one executed as the last takes precedence.

3.9.2 Error Propagation

As mentioned, the error callback patterns are present at three different levels: Con-
crete error callbacks, operation level error callbacks, and socket level error callbacks.

The concrete error callbacks provide the greatest level of detail: their names indicate
the kind of error condition detected. This makes it possible to treat different errors
differently.

The operation level error callback is executed whenever an error condition is detected
during the execution of that operation. In a extending of this kind of error callback,
you can adjust the default action for all the concrete error callbacks in this operation.
The single socket level error callback is executed whenever any operation detects any
error condition. In a extending of this error callback, you can adjust the default action
for all concrete and operation level error callbacks.



Communicating with other Processes 13

The means for adjusting the behaviour is in all cases to execute abort (probably
abort(# leave L #)), continue, or fatal, and the semantics of these imperatives
are the semantics of the concrete error callbacks described in section 3.9.1.

Error callback extendings take precedence like this, in ascending order: concrete
level, operation level, socket level. This means that the higher level specifies a de-
fault, and the more concrete level may override this default by executing continue,
abort, or fatal.

3.9.3 Categories of Errors

At the concrete level of error callbacks, errors are categorized according to classes of
operating system level error messages.

The list of names used for concrete error callbacks and a short description of the cor-
responding class of operating system level error is as follows:

Error callback name    Meaning                                        
accessError insufficient access rights
addressError address (i.e. (host,port)) in use or invalid
badMsgError (EBADMSG, hardly documented in man page)
connBrokenError connection has become unusable
eosError unexpected end-of-stream
getHostError error when getting hostname
internalError should not happen; please report if it does!
intrError operation interrupted by signal
refusedError connection refused by peer
resourceError too few file descriptors/buffers etc.
timedOut specified timeout period has expired
timedOutInTransfer timed out, and some data have been
transferred
unknownError OS reports unknown errno (new OS?)
usageError e.g. you must initialize port before connecting

3.10Timeout Management
Because most operations may provoke the suspension (de-scheduling) of the current
co-routine, any such operation may implicitly prevent this co-routine from making
any progress for an indefinite period of time. To give the co-routine the power to do
something about this, each of these operations takes a specification of an upper limit
(in seconds) to the time elapsed during the execution of that operation.

When such a timeout has been specified for some operation, the scheduler will re-
sume the execution of that operation if it gets the control and the timeout period has
expired. This means that lots of activity in the system as a whole may postpone the
detection of a timeout somewhat, and - as usual - an infinite loop somewhere could
stop everything.

In practical terms, the operation is resumed when and if the timeout period expires,
and of course it resumes by executing an error callback. Two different error callbacks
may be used to indicate the problem. If no irreversible actions have been taken, the
timedOut error callback is used. If some irreversible actions have been taken, such as
receiving or sending part of a message, the timedOutInTransfer error callback is
used. This last situation is considerably more grave than the first: Aborting an opera-
tion “in-transfer” means breaking the protocol, which again means that any subse-



14 Process Library

quent messages received on the same connection will be garbled. Resynchronization
is hardly possible unless the data transferred are lines of text or some other format
with built-in structural markers. So in this situation, give it another chance, or close
the connection.

For streamSocket the socket level attribute timeoutValue decides the timeout for
all operations inherited from stream. For binarySocket each operation which has
timeout control takes the timeout value as its first enter parameter. Likewise with
socketGenerator. If you forget to specify such a timeout value, the operation will
always terminate at once with a timeout error.



15

4 Addresses

The fragment commaddress supports representing addresses of communication ports
with which one might like to establish connections. In this setting, more different op-
erating systems and kinds of communication ports are covered than what is actually
supported in BasicSocket yet. Accordingly, TCP/IP sockets are just one example of
a kind of communication port, though a very important one.

Instances of any of these patterns are values, and under normal circumstances their
identity will make no difference. This ensures that it makes sense to translate them
from BETA objects into simple strings of text and back again, and this eases the mi-
gration of such values across networks and other media.

At the most abstract level, portableCommAddress models a portable communication
address. This specifies the address of a single destination or the address(es) of a group
of destinations.

The patterns portableMultiAddress and portablePortAddress specialize
portableCommAddress into concrete patterns for the multiple-destination case and
one-destination case, respectively.

The pattern concretePortAddress and its specializations represent non-portable,
protocol specific communication port addresses. Of course, any concretePortAd-
dress is portable, being a normal BETA object; but only on some platforms will it be
possible to have such a communication port as is specified by the concretePortAd-
dress.

ConcretePortAddresses are kept in portableCommAddresses and selected accord-
ing to protocol specifications, given as protocolSpec objects.

4.1 Specification of Connection
Requirements

The pattern protocolSpec is used to package a specification of requirements to a
communication transfer. This package is given to a portablePortAddress, which
will then use it to choose an appropriate channel. A specification is built with an in-
stance of protocolSpec by setting its cType and rType attributes. For these, choose
from the constant values given in the fragment commError.

The cType value can be any of the constants commProtocol_... and specifies that
the chosen channel must be a TCP/UDP/etc. connection or that any kind of connec-
tion will do (commProtocol_dontcare).

The value of rType is any of the constants commRely_dontcare (no requirements),
commRely_unreliable (allow all the below mentioned kinds of malfunction) or
commRely_reliable (prevent all those malfunctions). Or it is a sum of some of the



16 Process Library

constants commRely_loss (prevent packet lossage), commRely_dup (prevent packet
duplication), commRely_order (prevent packets from arriving out of order), comm-
Rely_contents (prevent packets from having corrupt data).

In reality, the last guarantee is enforced by means of checksums or something similar,
so it is only very unlikely that a packet with corrupt data will pass unnoticed, not im-
possible. Moreover, all the other guarantees depend on having packets with trustwor-
thy (header) contents, so not all combinations make sense.

4.2 The Abstract Level
The abstract pattern portableCommAddress is used to specify the identity of an ab-
stract communication address. The patterns portableMultiAddress and portable-
PortAddress are its non-abstract specializations.

Before usage, initialize any specialization of portableCommAddress with init.

Any portableCommAddress is able to express its value in textual form, by the opera-
tion asText. This enables simple and safe migration of an instance of any specializa-
tion of portableCommAddress: Translate it into text, send it across the network, write
it into a disk file, or whatever, and then reconstruct it as a BETA object from its text
value.

Tell a portableCommAddress what proporties are required of the communications as-
sociated with it by entering a protocolSpec object reference. This affects its choice
of concrete communication port(s) in subsequent communications.

To reconstruct a portableCommAddress from its text representation, give it as enter
parameter to portableCommAddressFromText, and a corresponding object will be
exited. The text is expected to have been produced by some instance of a specializa-
tion of portableCommAddress using its asText.

Problems in this process are reported by invoking parseError. This terminates the
application, unless you extend parseError to handle it.

4.3 The Concrete Level
A portableMultiAddress specifies a group of communication ports. Start or en-
hance the group by inserting members. Reduce it by deleteing members.

A portablePortAddress specifies the identity of one logical communication desti-
nation. A logical destination corresponds to a number of concrete communication
ports, represented by instances of specializations of concretePortAddress. It is up
to the user of these patterns to ensure that the contained set of concrete ports actually
“logically belong to the same destination”.

The idea is that if “I” can talk on a channel of type “{A,B}” and “you” can talk on a
channel of type “{B,C,D}”, it is up to the underlying framework to discover that in
order to establish a connection, “we” must use type “B”.

A portablePortAddress can be built by inserting specializations of concretePort-
Address. Only one concrete address is allowed for each known type - inserting a sec-



Addresses 17

ond instance overrides the previously inserted one. With delete, any concrete port
can be removed again. To retrieve a concrete port (without removing it), use one of
the Get...Port operations. If this portablePortAddress does not contain any con-
crete port of the requested variety, NONE is exited.

ConcretePortAddress is an abstract superpattern for specifying the address of a
concrete communication port, such as a UNIX stream socket, a Macintosh PPC
ToolBox session, a shared memory buffer etc.

Like a portableCommAddress, each concrete specialization is able to express its
value textually with the operation asText, and it is able to characterize its communi-
cation protocol with the operation protocol. The operation protName exits a text
which is a short, descriptive name for that protocol, and conformsTo answers
true/false to the question, whether this kind of connection conforms to the protocol
associated with an entered commProtocol_... constant.

The pattern unixAbstractPortAddress captures similarities between TCP and UDP
ports, represented by tcpPortAddress and udpPortAddress. The tcpPortAddress
also fits a MacTCP port. The pattern unixPortAddress represents an AF_UNIX ad-
dress family socket, i.e. it appears as a name in some directory, just like a file; ppc-
PortAddress represents a Macintosh PPC ToolBox session; memPortAddress corre-
sponds to a shared memory implementation of inter-process communication.



18

5 Managing a Pool of
Connections

A connection pool manages a number of client side communication interfaces (e.g.
active sockets), and allows choosing which one of them to use for a communication
transfer by means of a portableCommAddress. This abstracts away the need to estab-
lish connections: whenever a connection as specified is available in the pool, we use
it. Otherwise, such a connection will implicitly be established and added to the pool.
If this process runs out of resources associated with these connections (e.g. file han-
dles), it is possible to ask the pool to close the least recently used connection.

The connections are subject to concurrency control, so they must be used in a “take-it,
use-it, give-it-back” fashion. This is achieved by the pattern communication. The
concurrency control is necessary to prevent the situation where two users of the pool
both transmit messages to some other party on one given connection, and randomly
divide the incoming messages on that connection between them, both believing to
have the other party for themselves. Using the pattern communication, at most one
user of the pool communicates on any given connection at any given point of time.

By now, the only variant of connection pool implemented is the binaryConnection-
Pool. Instances of binaryConnectionPool are used for managing a number of bi-
nary socket connections. Before usage, initialize it. The user of a binaryConnec-
tionPool gives a specification of the receiver, the type of connection, the quality of
service etc. in a portableCommAddress to a (specialization of) the control pattern
communication. This is used as follows (where bcPool is an instance of binaryCon-
nectionPool):

  addr[] -> bcPool.communication
  (# (* Extend error callbacks here *)
  do
    (* Within this dopart: use 'sock' to communicate *)
    (* Do not bring references to sock outside *)
  #);

If you want to leave the dopart of a specialization of a communication, use a con-
struction like leaving(# do leave L #) in stead of leave L. Otherwise some re-
sources may be rendered inaccessible.

Whenever the pool establishes a new connection, the hook onNewConnection of com-
munication is executed. In a extending of this hook, a reference to the newly estab-
lished connection is available, and by assigning a co-routine to actor, the connection
gets associated with this co-routine. This is used to handle incoming messages to
connections in the pool, which are not the immediate response to an outgoing mes-
sage transmitted in a usage of communication: have the co-routine sit around waiting
for the incoming messages. To support such things, one must specialize binaryCon-
nectionPool.

Concurrency
control

Binary socket
connections



Managing a Pool of Connections 19

If the connection delivered as sock within a specialization of communication is to be
taken away from the pool and used outside, execute removeSock and bring out a ref-
erence to sock. If it is known that the connection will not be useful anymore, execute
removeSock and sock.close.

On exceptions, see the description in section 3.9.

The operation markAsDead is used to tell the pool that it certainly cannot have a con-
nection like the one entered. If a communication partner closes a connection (or per-
haps terminates unexpectedly), and the other end of that connection is in a connection
pool, it could happen that this connection is not chosen in any communication for
some time. If a new connection is created, the operating system may then reuse the
local connection identifier (file handle, in case of UNIX sockets), giving a totally dif-
ferent connection, which is then administrated by some new BETA socket object.
Now two BETA socket objects will talk to the same OS level connection (file han-
dle), but this means that the first object (in the pool) has silently been “redirected” to
a new communication partner. Of course, this leads to strange errors.

So, whenever creating a BETA socket object OUTSIDE a connection pool, please tell
it by means of markAsDead, that any connections in the pool with the same OS level
identifier must have died silently and thus should be removed from the pool. Inter-
nally, the connection pool handles this automatically.

Please note that this problem is not specific for connection pools, for the process li-
brary, or even for BETA programs, for that matter. But it occurs mainly in the pres-
ence of complicated and very dynamic communication topologies, which are more
likely to appear with connection pools. It would actually be best to carry out similar
checks (using sameConnection) also when using only simple socket objects in an ap-
plication.

removeSomeConnection will seek through all unused connections in the pool. An
unused connection is a connection such that no instance of communication in any co-
routine of this process currently refers to it with its sock attribute. From this set of
unused connections, it chooses the least recently used (as reported by its usage-
Timestamp), closes it, and removes it from the pool. If all connections are currently in
use, application specific actions must be taken to free some of them. The callback no-
ConnectionsRemovable is executed in this situation. It does not terminate the appli-
cation by default, so beware of the possible infinite retry loop if removeSomeConnec-
tion is used in response to resourceError, and no connections could actually be
removed.

When done with a connectionPool, close it to close all of the connections con-
tained within it.



20

6 The Demo Files

A number of demonstration files are provided in the subdirectory demo. They show
simple and typical ways to use the process library.

Because of the “process” aspect, and because of the nature of inter-process communi-
cation, the demo files come in small groups. For some groups, one program will ma-
nipulate others. For other groups, one may start a “server” and some “clients” and
then interact with the clients to initiate communication. In the following, the groups
are presented one by one.

7.1 pipeline, consumer and producer
Execute pipeline, which will then start producer and consumer in such a way
that standard output from producer is piped into standard input of consumer. The
file items is read in by producer and written to its standard output. consumer
reads it standard input and writes it to its standard output. the result is, that items is
written to standard output.

7.2 firstProgram and otherProgram
When executed, firstProgram will start otherProgram and accept a
StreamSocket connection from otherProgram. Then they exchange a couple of
words, and both terminate.

7.3 streamcounterserver and
streamcounterclient

Start an instance of streamcounterserver. Then start a number of instances of
streamcounterclient.



Interface Description 21

7.4 binarycounterserver and
binarycounterclient

Start an instance of binarycounterserver. Then start a number of instances of
binarycounterclient.

7.5 xpilotgames
xpilotgames demonstrates how to use the StreamSocket pattern to connect to the
xpilot meta server and send a query about ongoing games.

7.6 repChatClient and repChatServer
This group is used interactively. Start repChatServer and then a number of
instances of repChatClient. Each client will connect to the server, resulting in a
star-shaped connection topology. One may interact with each of the clients, and the
clients in turn interact with the server.

The fragment commandCategory is used to distinguish different types of commands.
The command language is very simple: anything starting with the letter “q” is a Quit
command, anything starting with an “a” is an Answer command, and anything start-
ing with an “A” is an AnswerWait command. Anything else is a Default command.
Enter commands as any piece of text at the prompt, ending with RETURN. Please note
that leading whitespace is significant.

All commands are immediately forwarded to the server. Then, if the command was a
Quit command, the client closes down the connection and terminates. If it was an An-
swer command, the client notifies the user of that fact by printing a message contain-
ing the sequence number of this Answer command. Some time later, the server will
return an answer, and the sequence number of the answer makes it possible to match
up outgoing requests with incoming answers. In case of an AnswerWait command,
the client blocks until the answer from the server arrives. For Default commands, the
contents are just echoed at the server.

For each command received, the server echoes the identification number of the client
which sent that command and the contents of the command. You may wish to exam-
ine the source code in repChatServer to see how nonblockingScope enables the
server to (semi-)simultaneously receive incoming messages, accept connections from
new clients, and do other work.



22 Process Library

8 Known Bugs and
Inconveniences

8.1 General
For StreamSockets, reading a line of text with the operation getLine or a word
with getAtom only works correctly when the line/word becomes available to read as
a whole. If a non-empty part of the line/word but not all of it can be read, the
operation incorrectly detects an error. A possible workaround is to use get and
collect characters in a normal BETA text object, on which getLine and getAtom
can be used.

If the transmitting side always sends lines/words in one go, the problem is unlikely to
show up. In this case, if the purpose is non-critical of course, you could try to ignore
the problem.

Outputting operations in streamSocket, such as put, flush and putLine, will
not detect a buffer full condition before attempting to transmit data. This means that
they may block until the operating system has relieved the full buffer of some of its
contents. This usually happens quickly, though.

Eos on pipes seems to fail on some systems.

Certain operations take as enter parameter a timeout value, which does not affect the
execution of the operation, because timing out makes no sense - the operation is not
“possibly lenghty”. An example is close of a Socket.

In portableMultiAddress, members are deleted by identity, i.e. entering a refer-
ence to some portablePortAddress in an invocation of the delete opera-
tion will delete that exact instance, if present. It would make more sense to delete ev-
ery portablePortAddress contained by this portableMultiAddress, which speci-
fies the same communication port as the one entered. That is, it would be better if
members were deleted by value equality.

portableMultiAddress ought to have means for iterating through all its members,
such as a scan operation. There should also be a way to test for equality and for sub-
set-relations between portablePortAddresses, and between portableMultiAd-
dresses.

In the fragment commpool, in the pattern communication in binaryConnection-
Pool, the operation removeSock does not remove the connection denoted by sock
as it should. Workaround: Use sock[]->markAsDead whereever removeSock

should have been used.

The proxy demo is undocumented and probably not quite working



Interface Description 23

8.2 Windows
Redirecting output through redirectFromFile has not yet been implemented on
systems running Windows 95/NT. The same limitation exists for reading and writing
to a pipe. Using a pipe to connect to external programshas been implemented, though.

UsageTimeStamp has not yet been implemented. Commpool therefore selects a
random socket when choosing a connection to break, not the least recently used.

8.3 Macintosh
Processmanager has no implementation on Macintosh.

UsageTimeStamp has not yet been implemented.



24 Process Library

9 Interface Description

9.1 commaddress
ORIGIN '~beta/basiclib/v1.6/betaenv';

(*
 * COPYRIGHT
 *       Copyright (C) Mjolner Informatics 1994-97
 *       All rights reserved.
 *)

BODY 'private/commaddressbody';

(* CONTENTS
 * ========
 *
 * Defines patterns for representing communication addresses.
 *
 * The most abstract pattern, portableCommAddress, models a
 * portable communication address. This specifies the address
 * of a single destination or the address(es) of a group of
 * destinations.
 *
 * The patterns portableMultiAddress and portablePortAddress
 * specialize portableCommAddress into concrete patterns for
 * the multiple-destination case and one-destination case,
 * respectively.
 *
 * The pattern concretePortAddress and its specializations
 * represent non-portable, protocol specific communication
 * port addresses. These are kept in portableCommAddresses
 * and selected according to protocol specifications, given
 * as protocolSpec objects.
 *
 * As a best-fit addition, there are also some patterns
 * to aid the process of looking up TCP/IP hosts, getting the
 * hostname of this machine, etc.
 *
 *)

--- lib:attributes ---
(* Reliability
 * ===========
 *
 * Used to specify the reliability proporties
 * required for a transfer (in a protocolSpec).
 * The proporties are additive.



Interface Description 25

 *)

commRely_dontcare:   (# exit 0 #);
commRely_loss:       (# exit 2 #); (* packets are not lost *)
commRely_dup:        (# exit 4 #); (* packets are not duplicated *)
commRely_order:      (# exit 8 #); (* packets arrive
                                    * in correct order *)
commRely_contents:   (# exit 16 #); (* corrupt data unlikely
                                     * (e.g. checksum) *)

commRely_unreliable: (# exit 1 #); (* ensures none of the above *)
commRely_reliable:   (# exit 31 #); (* ensure loss, dup,
                                     * order & contents *)

(* Type of connection protocol
 * ===========================
 *
 * OS level category of connection. An implementation
 * level description of an individual connection
 * managed by a connectionPool. Weird numbers chosen
 * to make data containing these constants recognizable
 * in a raw communication dump.
 *)

commProtocol_dontcare:   (# exit 0 #);
commProtocol_tcp:        (# exit 72301 #); (* TCP/IP *)
commProtocol_udp:        (# exit 72302 #); (* UDP/IP *)
commProtocol_unix:       (# exit 72303 #); (* UNIX domain
                                            * (socket as file) *)
commProtocol_ppc:        (# exit 72304 #); (* Mac PPC ToolBox *)
commProtocol_mem:        (# exit 72305 #); (* Shared memory buffer *)

(* Mnemonic names of the protocols *)
commProtName_tcp:        (# exit 'TCP' #);
commProtName_udp:        (# exit 'UDP' #);
commProtName_unix:       (# exit 'UNIX' #);
commProtName_ppc:        (# exit 'PPC' #);
commProtName_mem:        (# exit 'MEM' #);

(* Specification of connection requirements
 * ========================================
 *
 * Used to package spec. of requirements to a communication
 * transfer, and then given to a portablePortAddress, which
 * will use it when choosing an appropriate channel.
 *)
protocolSpec:
  (#
     cType: @integer; (* one of 'commProtocol_.*'
                       * dontcare is default *)
     rType: @integer; (* one of 'commRely_.*'
                       * dontcare is default *)
     (* bandwidth/r-rr-rra/etc *)
  enter (cType, rType)
  exit cType
  #);

(* Portable communication address
 * ==============================
 *
 * Specifies identity of an abstract communication address.
 * This pattern is abstract, and no instances of it are



26 Process Library

 * expected to exist. The patterns portableMultiAddress and
 * portablePortAddress are non-abstract specializations.
 *
 * Any portableCommAddress is able to express its value
 * in textual form, by 'asText'.
 *
 * Tell a portableCommAddress what proporties are required
 * of the communications associated with it by entering
 * a protocolSpec object. This affects its choice of
 * concrete communication port(s) in subsequent
 * communications.
 *)
portableCommAddress:
  (#
     init:< Object;
     asText: @asTextPattern;

     (* private *)
     asTextPattern:< (# t: ^text do INNER exit t[] #);
     enterSpec: @...;
     private: @...;
  enter enterSpec
  #);

(* Portable communication address constructor
 * ==========================================
 *
 * Function. Takes a text value, which is expected to have
 * been produced by some instance X of a specialization of
 * portableCommAddress using its 'asText'. Returns an object
 * with the same value as X.
 *
 * Problems are reported by invoking 'parseError'. The
 * application will then terminate with an exception,
 * unless you furtherbind parseError to leave it.
 *)
portableCommAddressFromText:
  (#
     parseError:<
       (# msg: ^text;
       enter msg[]
       ...
       #);
     txt: ^text;
     addr: ^portableCommAddress;
     <<SLOT portableCommAddressFromTextLib:attributes>>;
  enter txt[]
  ...
  exit addr[]
  #);

(* Portable multicast address
 * ==========================
 *
 * Specifies identities of the members of a group of
 * communication destinations.
 *
 * The group can be built from scratch or enhanced
 * by 'insert'ing members. It can be reduced by
 * 'delete'ing members.
 *)
portableMultiAddress: portableCommAddress



Interface Description 27

  (#
     init::< (# ... #);

     insert:
       (# addr: ^portablePortAddress;
       enter addr[]
       ...
       #);

     delete:
       (# addr: ^portablePortAddress;
       enter addr[]
       ...
       #);

     (* private *)
     asTextPattern::< (# ... #);
     private2: @...;
  #);

(* Portable communication port address
 * ===================================
 *
 * Specifies identity of one logical communication destination.
 * A logical destination corresponds to a number of concrete
 * communication ports, represented by instances of
 * specializations of concretePortAddress.
 *
 * A portablePortAddress can be built from scratch by
 * by 'insert'ing such instances. Only one concrete address
 * is allowed for each known type - inserting a second instance
 * overrides the previously inserted one.
 *)
portablePortAddress: portableCommAddress
  (#
     insert:
       (# addr: ^concretePortAddress;
          addrHasUnknownType:< exception;
       enter addr[]
       ...
       #);
     delete:
       (# prot: @integer; (* one of 'commProtocol_.*' *)
          addrHasUnknownType:< exception;
       enter prot
       ...
       #);
     getTcpPort:
       (# addr: ^tcpPortAddress;
       ...
       exit addr[] (* NONE if not present *)
       #);
     getUdpPort:
       (# addr: ^udpPortAddress;
       ...
       exit addr[] (* NONE if not present *)
       #);
     getUnixPort:
       (# addr: ^unixPortAddress;
       ...
       exit addr[] (* NONE if not present *)
       #);



28 Process Library

     getPpcPort:
       (# addr: ^ppcPortAddress;
       ...
       exit addr[] (* NONE if not present *)
       #);
     getMemPort:
       (# addr: ^memPortAddress;
       ...
       exit addr[] (* NONE if not present *)
       #);

     (* private *)
     asTextPattern::< (# ... #);
     private2: @...;
  #);

(* Concrete communication port address
 * ===================================
 *
 * Abstract superpattern for specifying the address
 * of a concrete communication port, such as a UN*X
 * stream socket, a Mac PPC ToolBox session, a shared
 * memory buffer etc.
 *
 * Is able to express its value textually with 'asText',
 * and to characterize its communication protocol
 * with 'commType'.
 *)
concretePortAddress:
  (#
     asText: @asTextPattern;
     asTextPattern:< (# t: ^text do INNER exit t[] #);

     protocol:< integerValue; (* one of 'commProtocol_.*' *)
     protName:< (# t: ^text do &text[] -> t[]; INNER exit t[] #);
     conformsTo: BooleanValue
       (# p: @integer;
       enter p
       ...
       #);
     private: @...;
  #);

(* Unix communication port address types
 * =====================================
 *
 * The pattern unixAbstractPortAddress captures similarities
 * between TCP and UDP ports, represented by
 * tcpPortAddress and udpPortAddress.
 *
 * The pattern unixPortAddress represents an AF_UNIX address
 * family socket, i.e. it appears as a name in some directory,
 * just like a file.
 *
 * NB: The tcpPortAddress also fits a MacTCP port.
 *)
unixAbstractPortAddress: concretePortAddress
  (#
     inetAddr: @integer;
     portNo: @integer;
     asTextPattern::< (# ... #);
  #);



Interface Description 29

tcpPortAddress: unixAbstractPortAddress
  (#
     protocol::< (# do commProtocol_tcp -> value #);
     protName::< (# do commProtName_tcp -> t #);
  #);

udpPortAddress: unixAbstractPortAddress
  (#
     protocol::< (# do commProtocol_udp -> value #);
     protName::< (# do commProtName_udp -> t #);
  #);

unixPortAddress: concretePortAddress
  (#
     asTextPattern::< (# ... #);
     pathName: @text;
     protocol::< (# do commProtocol_unix -> value #);
     protName::< (# do commProtName_unix -> t #);
  #);

(* Mac communication port address
 * ==============================
 *
 * Represents a PPC ToolBox session.
 *)
ppcPortAddress: concretePortAddress
  (#
     host: @text;
     portNo: @integer;
     sessionId: @integer;
     asTextPattern::< (# ... #);
     protocol::< (# do commProtocol_ppc -> value #);
     protName::< (# do commProtName_ppc -> t #);
  #);

(* Shared memory buffer port address
 * =================================
 *
 * Corresponding communication support NOT IMPLEMENTED.
 * Could be very fast, perhaps for communicating within
 * one process, using the same source code as for remote
 * communication.
 *)
memPortAddress: concretePortAddress
  (#
     bufferID: @integer; (* !!! This may have to change *)
     asTextPattern::< (# ... #);
     protocol::< (# do commProtocol_mem -> value #);
     protName::< (# do commProtName_mem -> t #);
  #);

(* IPv4 Miscellaneous address conversions *)

(* Look up the IPv4 address of a given host. *)
gethostbyname:
  (#
     notfound:< Exception;
     name: ^Text;
     inadr: @Integer;
  enter name[]
  ...



30 Process Library

  exit inadr
  #);

(* Find the name and IPv4 address of this host. *)
thisHost:
  (# name: ^Text;
     inadr: @Integer;
     err: @Integer; (* Private *)
     ...
  exit (name[], inadr)
  #);

9.2 errorcallback
ORIGIN '~beta/basiclib/v1.6/betaenv';

(*
 * COPYRIGHT
 *       Copyright (C) Mjolner Informatics 1995-97
 *       All rights reserved.
 *)

BODY 'private/errorcallbackbody';

--- lib:attributes ---

errCB_initialValue: (# exit -1 #);
errCB_abortProgram: (# exit 0 #);
errCB_abortOperation: (# exit 1 #);
errCB_continueOperation: (# exit 2 #);

errCB: IntegerValue
  (# abort: (# ... #);
     continue: (# ... #);
     fatal: (# ... #);
     addMsg: (# t: ^text enter t[] ... #);
     exceptionType:< exception;
     cleanup: ^object;
     private: @...;
  enter cleanup[]
  ...
 #);

hiErrCB: IntegerObject
  (# abort: (# ... #);
     continue: (# ... #);
     fatal: (# ... #);
     cleanup: ^object;
  enter cleanup[]
  do INNER
  #);



Interface Description 31

9.3 basicsocket
ORIGIN '~beta/basiclib/v1.6/basicsystemenv';

(*
 * COPYRIGHT
 *       Copyright (C) Mjolner Informatics 1995-97
 *       All rights reserved.
 *)

INCLUDE 'errorcallback';
INCLUDE 'commaddress';

--- systemlib:attributes ---
(* Used for timeouts *)
waitForever: (# exit -1 #);

(* Used to make it checkable whether something is uninitialized *)
assignGuard: (# assigned: @Boolean do true -> assigned #);

(* The number 127.0.0.1 by convention is 'this host' *)
localHost_IP_number: (# exit 2130706433 #);

BasicSocket:
  (# <<SLOT socketlib:attributes>>;

     (* OPERATIONS
      * ==========
      *)

     (* do 'this' and 'other' wrap the same OS level connection? *)
     sameConnection: booleanValue
       (# other: ^basicSocket;
       enter other[]
       ...
       #);

     (* construct portable address for this connection *)
     getPortableAddress:
       (# addr: ^portablePortAddress;
       ...
       exit addr[]
       #);

     (* Initiator of socket communication.
      * Pass 'host' and 'port' to 'connect' to connect
      * to a passive socket to establish communication.
      *)
     connect: open
       (# accessError:< loErrCB(# do INNER #);
          resourceError:< loErrCB(# do INNER #);
          addressError:< loErrCB(# do INNER #);
          refusedError:< loErrCB(# do INNER #);
          intrError:< loErrCB(# do INNER #);
          getHostError:< loErrCB(# do INNER #);
          aHost: ^Text;
          aPort: @Integer;
       enter (aHost[],aPort)
       ...
       #);



32 Process Library

     (* provoke a timeout error in the current operation *)
     forceTimeout:< (# ... #);

     (* return timestamp of latest operation on this socket *)
     usageTimestamp:< integerValue
       (# ... #);

     (* return true iff no data is
      * immediately available for reading
      *)
     endOfDataPattern:
       (# error:< hiErrCB (* operation level error callback *)
            (#
            do INNER;
               (if value=errCB_initialValue then
                   (value,cleanup[])->this(basicSocket).error->value;
               if);
            #);
          loErrCB: errCB (* superpattern for
                          * concrete error callbacks *)
            (#
            do INNER;
               (if value=errCB_initialValue then
                   (value,cleanup[])->error->value;
               if);
            #);
          connBrokenError:< loErrCB(# do INNER #);
          internalError:< loErrCB(# do INNER #);
          unknownError:< loErrCB(# do INNER #);
          value: @boolean;
       ...
       exit value
       #);

     close:< withIdle(# ... #);

     (* CALLBACKS
      * =========
      *)

     (* every local 'idle' executes this global one *)
     idle:< Object;

     (* socket level error callback *)
     error:< hiErrCB(# do INNER #);

     (* EXPLICIT SCHEDULING
      * ===================
      *)

     (* NB: don`t 'leave' a 'nonBlockingScope'. Use 'leaveNBScope'. *)
     nonBlockingScope: (# ... #);
     leaveNBScope: (# ... #);

     (* ATTRIBUTES
      * ==========
      *)

     host: @assignGuard(# t: @text; enter t exit t #);
     port: @assignGuard(# rep: @integer enter rep exit rep #);
     inetAddr: @assignGuard(# rep: @integer enter rep exit rep #);



Interface Description 33

     (* AUXILIARY PATTERNS
      * ==================
      *)

     withPE:
       (# error:< hiErrCB (* operation level error callback *)
            (#
            do INNER;
               (if value=errCB_initialValue then
                   (value,cleanup[])->this(basicSocket).error->value;
               if);
            #);
          loErrCB: errCB (* superpattern for
                          * concrete error callbacks *)
            (#
            do INNER;
               (if value=errCB_initialValue then
                   (value,cleanup[])->error->value;
               if);
            #);
          timedOut:< loErrCB(# do INNER #);
          timedOutInTransfer:< loErrCB(# do INNER #);
          internalError:< loErrCB(# do INNER #);
          connBrokenError:< loErrCB(# do INNER #);
          usageError:< loErrCB(# do INNER #);
          unknownError:< loErrCB(# do INNER #);
          resourceError:< loErrCB(# do INNER #);
          badMsgError:< loErrCB(# do INNER #);
          timeout: @integer;
       enter timeout
       do INNER
       #);

     withIdle: withPE
       (# idle:< (# do INNER; this(basicSocket).idle #);
          blocking:<(# continue: (# do true->doContinue #);
               doContinue: @boolean;
            do INNER;
               (if not doContinue then leaveNBScope if);
               idle;
            #);
       do INNER
       #);

     open: withIdle(# ... #);
     init:< (# ... #);

     private: @...;
  #);

9.4 binarysocket
ORIGIN 'basicsocket';

(*
 * COPYRIGHT
 *       Copyright (C) Mjolner Informatics 1995-97



34 Process Library

 *       All rights reserved.
 *)

BODY 'private/binarysocketbody';
INCLUDE '~beta/sysutils/v1.6/RepetitionObject';
INCLUDE 'repstream/extendedRepstream';

--- systemlib: attributes ---
BinarySocket: basicSocket
  (# <<SLOT binarysocketlib: attributes>>;

     (* send an integer *)
     putIntPattern: withIdle
       (# i: @integer;
       enter i
       ...
       #);

     (* receive an integer *)
     getIntPattern: withIdle
       (# i: @integer;
       ...
       exit i
       #);

     (* send contents of an ExtendedRepstream *)
     putRepPattern: repIO
       (#
       enter header
       ...
       #);

     (* receive contents to an ExtendedRepstream *)
     getRepPattern: repIO
       (#
       ...
       exit header
       #);

     (* send contents from RepetitionObject *)
     putRepObjPattern: repObjIO
       (#
       ...
       #);

     (* receive contents to RepetitionObject.
      * Furtherbinding maxLongs can be used to limit the size of
      * packets being received, which is useful in particular when
      * the sender cannot be trusted.
      *)
     getRepObjPattern: repObjIO
       (# maxLongs:< IntegerValue
            (# do MaxInt div 4 -> value; INNER #);
          MaxlongsExceeded:< Object;
       ...
       #);

     repIO: withIdle
       (* Read/write a block to/from 'rep',
        * returning/using 'header'. The length of the block is
        * stored in/retrived from 'rep.end'.
        *)



Interface Description 35

       (# rep: ^ExtendedRepstream;
          header: @integer;
       enter rep[]
       do INNER
       #);

     repObjIO: withIdle
       (#
          (* Read/write a block to/from 'rep'.
           * The length of the block is stored
           * in/retrived from 'rep.end'.
           *)
          rep: ^RepetitionObject;
       enter rep[]
       do INNER
       #);

     endOfData: @endOfDataPattern;
     putInt: @putIntPattern;
     getInt: @getIntPattern;
     putRep: @putRepPattern;
     getRep: @getRepPattern;
     putRepObj: @putRepObjPattern;
     getRepObj: @getRepObjPattern;

     binpriv: @...;
  #)

9.5 streamsocket
ORIGIN '~beta/basiclib/v1.6/basicsystemenv';

(*
 * COPYRIGHT
 *       Copyright (C) Mjolner Informatics 1995-97
 *       All rights reserved.
 *)

INCLUDE 'basicsocket';
BODY 'private/streamsocketbody';

--- systemlib:attributes ---
StreamSocket: Stream
  (# <<SLOT streamsocketlib:attributes>>;

     theSocket: @basicSocket;  (* The socket
                                * communication goes through
                                *)

     (* basics *)
     timeoutValue:<
       (* Length in seconds.
        * All operations that do not enter a timeout
        * themselves uses this timeout.
        *)
       integerValue(# do waitForever->value; INNER #);

     (* operations *)



36 Process Library

     sameConnection: booleanValue
       (* do 'this' and 'other' wrap
        * the same OS level connection?
        *)
       (# other: ^StreamSocket;
       enter other[]
       ...
       #);

     close:< theSocket.withPE
       (#
       ...
       #);

     flush: theSocket.withIdle
       (#
       ...
       #);

     put::
       (# Idle:< (# do INNER #);
          Blocking:< (# do INNER #);
       ...
       #);

     puttext::
       (# Idle:< (# do INNER #);
          Blocking:< (# do INNER #);
       ...
       #);

     get::
       (# theIdle: @theSocket.withIdle
            (# connBrokenError::
                 (# do errCB_abortOperation -> value;
                    this(Stream).EOSerror;
                 #)
            #);
          Idle:< (# do INNER #);
          Blocking:< (# do INNER #);
       ...
       #);

     peek::
       (# theIdle: @theSocket.withIdle
            (# connBrokenError::
                 (# do errCB_abortOperation -> value;
                    this(Stream).EOSerror;
                 #)
            #);
          Idle:< (# do INNER #);
          Blocking:< (# do INNER #);
       ...
       #);

     getline::
       (# priv: @...;
          Idle:< (# do INNER #);
          Blocking:< (# do INNER #);
          timedOut: @Boolean;
       do priv;
       #);



Interface Description 37

     getAtom::
       (# ch: @Char;
          Idle:< (# do INNER #);
          Blocking:< (# do INNER #);
       ...
       #);

     eos::
       (# priv: @...
       do priv;
       #);

     getPos::
       (#
       do -1 -> value;
       #);

     setPos::
       (#
       do this(Stream).otherError;
       #);

     init:< (# do theSocket.init; INNER #);
     forceTimeout:< (# do theSocket.forceTimeout #);
     usageTimestamp:< integerValue
       (# do theSocket.usageTimestamp -> value #);

     (* nonBlockingScope support *)
     (* Note: don`t 'leave' a 'nonBlockingScope'.
      * Use 'leaveNBScope'
      *)
     nonBlockingScope: theSocket.nonBlockingScope(# do INNER #);
     leaveNBScope: theSocket.nonBlockingScope(# do INNER #);

     connect: theSocket.connect(# do INNER #);

     Idle:< Object; (* every local 'Idle' executes this global one *)

     (* socket level error callback *)
     error:< hiErrCB(# do INNER #);

     (* attributes *)
     host: (# enter theSocket.host exit theSocket.host #);
     port: (# enter theSocket.port exit theSocket.port #);
     inetAddr: (# enter theSocket.inetAddr exit theSocket.inetAddr #);

     (* private *)
     private: @...;
  #); (* StreamSocket *)

9.6 socketgenerator
ORIGIN '~beta/basiclib/v1.6/basicsystemenv';
INCLUDE 'basicsocket';

(*



38 Process Library

 * COPYRIGHT
 *       Copyright (C) Mjolner Informatics 1995-97
 *       All rights reserved.
 *)

BODY 'private/socketgenbody';

--- systemlib:attributes ---

SocketGenerator:
  (# <<SLOT socketgeneratorlib:attributes>>;

     (* OPERATIONS
      * ==========
      *)

     (* Setting 'port'=0 and executing 'bind' gives you
      * a SocketGeneratorthat accepts connections on a
      * randomly chosen portnumer, which may be found in 'port'.
      *)
     bind: withIdleAndPE
       (#
       enter port
       ...
       #);

     (* construct portable address for this generator *)
     getPortableAddress:
       (# addr: ^portablePortAddress;
       ...
       exit addr[]
       #);

     (* De-register the bind *)
     close: withIdleAndPE
       (#
       ...
       #);

     (* provoke a timeout error in the current operation *)
     forceTimeout: @
       (#
       ...
       #);

     (* return timestamp of latest operation on this generator *)
     usageTimestamp: @integerValue
       (#
       ...
       #);

     (* CALLBACKS
      * =========
      *)

     (* every local 'idle' executes this global one *)
     idle:< object;

     (* socket level error callback *)
     error:< hiErrCB(# do INNER #);

     (* EXPLICIT SCHEDULING



Interface Description 39

      * ===================
      *)

     (* NB: don`t 'leave' a 'nonBlockingScope'.
      * Use 'leaveNBScope'.
      *)
     nonBlockingScope: (# ... #);
     leaveNBScope: (# ... #);

     (* ATTRIBUTES
      * ==========
      *)

     port: @assignGuard(# rep: @integer enter rep exit rep #);

     (* AUXILIARY PATTERNS
      * ==================
      *)

     withIdleAndPE:
       (# error:< hiErrCB (* operation level error callback *)
            (#
            do INNER;
               (if errCB_initialValue=value then
                   (value,cleanup[])->
                   this(socketGenerator).error->value;
               if);
            #);
          loErrCB: errCB (* superpattern for
                          * concrete error callbacks
                          *)
            (#
            do INNER;
               (if errCB_initialValue=value then
                   (value,cleanup[])->error->value;
               if);
            #);
          usageError:< loErrCB(# do INNER #);
          resourceError:< loErrCB(# do INNER #);
          accessError:< loErrCB(# do INNER #);
          addressError:< loErrCB(# do INNER #);
          connBrokenError:< loErrCB(# do INNER #);
          intrError:< loErrCB(# do INNER #);
          internalError:< loErrCB(# do INNER #);
          unknownError:< loErrCB(# do INNER #);
          timedOut:< loErrCB(# do INNER #);
          Idle:< (# do INNER; this(socketGenerator).Idle #);
          Blocking:<(# continue: (# do true->doContinue #);
               doContinue: @boolean;
            do INNER;
               (if not doContinue then leaveNBScope if);
               Idle;
            #);
       do INNER
       #);

     (* PRIVATE
      * =======
      *)

     private: @...;
  #);



40 Process Library

9.7 binarygenerator
ORIGIN  'socketgenerator';
INCLUDE 'binarysocket';
BODY 'private/binarygenbody';

-- socketgeneratorlib:attributes --
(* accept a connection and return a binarySocket on it *)
getBinaryConnection: withIdleAndPE
  (# sockType:< BinarySocket;
     sock: ^sockType;
     timeout: @integer;
  enter timeout
  ...
  exit sock[]
  #);

9.8 streamgenerator
ORIGIN  'socketgenerator';
INCLUDE 'streamsocket';
BODY 'private/streamgenbody';

-- socketgeneratorlib:attributes --
(* accept a connection and return a streamSocket on it *)
getStreamConnection: withIdleAndPE
  (# sockType:< StreamSocket;
     sock: ^sockType;
     timeout: @integer;
  enter timeout
  ...
  exit sock[]
  #)

9.9 commpool
ORIGIN 'binarysocket';

(*
 * COPYRIGHT
 *       Copyright (C) Mjolner Informatics 1995-97
 *       All rights reserved.
 *)

BODY 'private/commpoolbody';
INCLUDE 'commaddress';
INCLUDE '~beta/containers/v1.6/list';

--- systemlib:attributes ---

BinaryConnectionPool:



Interface Description 41

  (#
     <<SLOT binaryconnectionpoollib:attributes>>;

     (* TYPES
      * =====
      *)

     socketType:< BinarySocket;

     (* OPERATIONS
      * ==========
      *)

     init:< (# ... #);

     communication:
       (#
          (* OPERATIONS
           * ==========
           *)

          (* remove sock from this pool *)
          removeSock:
            (#
            ...
            #);

          (* NB: always wrap leave/restart out of
           * this(communication) in a specialization
           * of 'leaving' *)
          leaving: (# ... #);

          (* CALLBACKS
           * =========
           *)

          onNewConnection:<
            (* executed when a new connection has been created *)
            (# sock: ^socketType; (* The new connection *)
               context: ^object; (* NB: Should`ve been private *)
               actor: ^|system; (* process to associate with sock *)
            enter (sock[],context[])
            do INNER
            exit actor[]
            #);

          error:< hiErrCB (* operation level error callback *)
            (#
            do INNER;
               (if errCB_initialValue=value then
                   (value,cleanup[])->
                   this(BinaryConnectionPool).error->value;
               if);
            #);

          concrErrCB: hiErrCB (* superpattern for
                               * concrete error callbacks *)
            (#
            do INNER;
               (if errCB_initialValue=value then
                   (value,cleanup[])->error->value;
               if);



42 Process Library

            #);

          addrHasUnknownType:< exception; (* Considered fatal,
                                           * for now *)
          internalError:< concrErrCB(# do INNER #);
          unknownError:< concrErrCB(# do INNER #);
          accessError:< concrErrCB(# do INNER #);
          resourceError:< concrErrCB(# do INNER #);
          addressError:< concrErrCB(# do INNER #);
          refusedError:< concrErrCB(# do INNER #);
          intrError:< concrErrCB(# do INNER #);
          getHostError:< concrErrCB(# do INNER #);

          (* ATTRIBUTES
           * ==========
           *)

          addr: ^portableCommAddress;
          sock: ^socketType;

          (* PRIVATE
           * =======
           *)

          priv: @...;

       enter addr[]
       ...
       #);

     markAsDead:
       (# sock: ^socketType;
       enter sock[]
       ...
       #);

     removeSomeConnection:
       (* Removes least recently used currently unused connection *)
       (# noConnectionsRemovable:< object;
       ...
       #);

     close:< (# ... #);

     (* CALLBACKS
      * =========
      *)

     error:< hiErrCB(# do INNER #);

     (* PRIVATE
      * =======
      *)

     private: @...;
  #);



Interface Description 43

9.10systemcomm
ORIGIN '~beta/basiclib/v1.6/basicsystemenv';

(*
 * COPYRIGHT
 *       Copyright (C) Mjolner Informatics 1994-97
 *       All rights reserved.
 *)

INCLUDE 'streamgenerator';
INCLUDE 'binarygenerator';

9.11processmanager
ORIGIN '~beta/basiclib/v1.6/basicsystemenv';

(*
 * COPYRIGHT
 *       Copyright (C) Mjolner Informatics, 1992-97
 *       All rights reserved.
 *)

BODY 'private/processmanagerbody';
INCLUDE '~beta/basiclib/v1.6/file';

--- systemlib:attributes ---
BetaEnvStop: (# T: ^Text; I: @Integer;
             enter (I,T[])
             do (I,T[]) -> Stop;
             #);

Process:
  (* Notice, this(Process) can only be executed once.
   *
   * Two program executions of the same Process,
   * can be executed by instantiating and executing two different BETA
   * objects from the same Process.
   *)
  (#
     <<SLOT ProcessLib:attributes>>;

     name: ^Text;
     init:< (# enter name[] ... #);

     argType:
       (# argument: @Text;
          putArg:
            (# t: ^Text;
            enter t[]
            ...
            #);
          append: @putArg;
          scanArguments: (* calls INNER for each argument *)
            (# current: @Text;
            ...



44 Process Library

            #);
       #);
     argument: @argType; (* arguments to this(Process) *)

     (* operations *)

     start: (* starts this(Process)'s program execution *)
       (# error:< ProcessManagerException;
          twoCurrent:< ProcessManagerException;
       ...
       #);

     stop: (* stops this(Process)'s program execution *)
       (# error:< ProcessManagerException;
       ...
       #);

     awaitStopped: (* Returns when THIS(Process) stops *)
       (# error:< ProcessManagerException;
       ...
       #);

     stillRunning: (* Returns true if
                    * THIS(Process) is still running
                    *)
       (# error:< ProcessManagerException;
          value: @Boolean;
       ...
       exit value
       #);

     (* input/output redirection *)

     connectToProcess:  (* connect output of this(process)
                         * to toProcess's input
                         * In Unix shell terms:
                         *    this(Process) | toProcess
                         *)
       (# error:< ProcessManagerException;
          toProcess: ^Process;
       enter toProcess[]
       ...
       #);

     connectInPipe:  (* connect output of fromProcess
                      * to input of  this(process)
                      * In Unix shell terms:
                      *    fromProcess | this(Process)
                      *)
       (# error:< ProcessManagerException;
          fromProcess: ^Process;
       enter fromProcess[]
       ...
       #);

     redirectFromFile:  (* redirect input to this(process)
                         * from inputFile
                         * In Unix shell terms:
                         *    this(Process) < inputFile
                         *)
       (# error:< ProcessManagerException;
          inputFile: ^File;



Interface Description 45

       enter inputFile[]
       ...
       #);

     redirectToFile:  (* redirect output of this(process)
                       * to outputFile
                       * In Unix shell terms:
                       *    this(Process) > outputFile
                       *)
       (# error:< ProcessManagerException;
          outputFile: ^File;
       enter outputFile[]
       ...
       #);

     redirectFromChannel:  (* redirect input to this(process)
                            * from inputChannel
                            *)
       (# error:< ProcessManagerException;
          inputChannel: ^Stream;
       enter inputChannel[]
       ...
       #);

     redirectToChannel:  (* redirect output of this(process)
                          * to outputChannel
                          *)
       (# error:< ProcessManagerException;
          outputChannel: ^Stream;
       enter outputChannel[]
       ...
       #);

     (* Callbacks: called when the proper action has occurred *)

     onStart:< (# do INNER #);
     onStop:< (# do INNER #);

     doDebug: @Boolean;
     private: @...;
  #);

ProcessManagerException: Exception
  (# message: ^Text;
  enter message[]
  ...
  #);

9.12commpipe
ORIGIN '~beta/basiclib/v1.6/basicsystemenv';

(*
 * COPYRIGHT
 *       Copyright (C) Mjolner Informatics 1995-97
 *       All rights reserved.
 *)



46 Process Library

MDBODY default  'private/commpipe_unix'
       ppcmac   'private/commpipe_mac'
       nti      'private/commpipe_nt';

INCLUDE 'private/sysFdStream';

--- systemlib:attributes ---
propagateException: (# msg: ^Text enter msg[] do INNER #);

pipe:
  (# <<SLOT pipelib:attributes>>;

     (* OPERATIONS *)
     init:<
       (# error:< propagateException
            (# do INNER; msg -> pipeError #);
       ...
       #);

     close:< (# ... #);

     pipeException: Exception
       (#
       enter msg
       do (if not msg.empty then msg.newline if);
          INNER;
       #);

     pipeError:< PipeException;

     (* ATTRIBUTES *)
     readEnd: ^fdStream;
     writeEnd: ^fdStream;

     private: @...;
#);



47

References

[Knudsen 94] J. L. Knudsen, M. Löfgren, O. L. Madsen, B. Magnusson
(eds.): Object-Oriented Environments – The Mjølner Ap-
proach, Prentice Hall, 1994, ISBN 0-13-009291-6.

[Madsen 93] O. L. Madsen, B. Møller-Pedersen, K. Nygaard: Object-
Oriented Programming in the BETA Programming Lan-
guage, Addison-Wesley, 1993, ISBN 0-201-62430-3

[MIA 90-1] Mjølner Informatics: The Mjølner System: – Overview,
Mjølner Informatics Report MIA 90-1.

[MIA 90-2] Mjølner Informatics: The Mjølner System: BETA Compiler
Reference Manual Mjølner Informatics Report MIA 90-2.

[MIA 91-20] Mjølner Informatics: The Mjølner System – Persistent
Store, Mjølner_Informatics Report MIA 91-20.

[MIA 94-24] Mjølner Informatics: The Mjølner System – The Mjølner
System Tutorial, Mjølner_Informatics Report MIA 94-24.

[MIA 93-25] Mjølner Informatics: The Mjølner System – Distribution
Mjølner_Informatics Report MIA 94-25.

[MIA 94-26] Mjølner Informatics: The Mjølner System – BETA Lan-
guage Introduction Mjølner_Informatics Report MIA 94-
26.





49

Index

The entries in the index with italic pagenumbers are the identifiers defined in
the public interface of the libraries:

The minor level entries refer to identifiers defined local to the identifier of the
major level entry. For those index entries referring to patterns with super- or
subpatterns within the library, these patterns are specified in special sections of
the minor level index for that identifier.

Entries with plain pagenumbers refer to the text of this manual.

A

abort · 29, 30
activeBinarySocket · 7
activeStreamSocket · 7
addMsg · 29
addr · 26
addresses · 15
argType · 41
argument · 41
assigned · 30
assignGuard · 30

assigned · 30
AssignGuard · 8
asText · 26, 28
asTextPattern · 26, 27, 28, 29
awaitStopped · 42
awaitStopped · 4

B

basicSocket
subpatterns:

BinarySocket · 33
BasicSocket · 30

booleanValue
subpatterns:

sameConnection · 30
close · 31

superpattern:
withIdle · 44

connect · 30
superpattern:

open · 44
endOfDataPattern · 31
error · 31

superpattern:
hiErrCB · 44

forceTimeout · 31
getPortableAddress · 30
hiErrCB

subpatterns:

error · 31
host · 31
idle · 31
inetAddr · 32
init · 32
integerValue

subpatterns:
usageTimestamp · 31

leaveNBScope · 31
nonBlockingScope · 31
open · 32

subpatterns:
connect · 30

superpattern:
withIdle · 44

port · 31
private · 32
sameConnection · 30

superpattern:
booleanValue · 44

usageTimestamp · 31
superpattern:

integerValue · 44
withIdle · 32

subpatterns:
close · 31
open · 32

superpattern:
withPE · 44

withPE · 32
subpatterns:

withIdle · 32
BetaEnvStop · 41

I · 41
T · 41

Binary socket · 8
binaryConnectionPool · 18
BinaryConnectionPool · 39

close · 40
communication · 39
error · 40

superpattern:
hiErrCB · 44

hiErrCB
subpatterns:

error · 40



50 Process Library

init · 39
markAsDead · 40
private · 40
removeSomeConnection · 40
socketType · 39

BinarySocket · 33
binpriv · 34
endOfData · 34
getInt · 34
getIntPattern · 33

superpattern:
withIdle · 44

getRep · 34
getRepObj · 34
getRepObjPattern · 33

superpattern:
repObjIO · 44

getRepPattern · 33
superpattern:

repIO · 44
putInt · 34
putIntPattern · 33

superpattern:
withIdle · 44

putRep · 34
putRepObj · 34
putRepObjPattern · 33

superpattern:
repObjIO · 44

putRepPattern · 33
superpattern:

repIO · 44
repIO · 33

subpatterns:
getRepPattern · 33
putRepPattern · 33

superpattern:
withIdle · 44

repObjIO · 33
subpatterns:

getRepObjPattern · 33
putRepObjPattern · 33

superpattern:
withIdle · 44

superpattern:
basicSocket · 33

withIdle
subpatterns:

getIntPattern · 33
putIntPattern · 33
repIO · 33
repObjIO · 33

bind · 36
binpriv · 34
bufferID · 29

C

Categories of Errors · 13
cleanup · 29, 30
close · 31, 34, 36, 40, 43
commAddress · 15
commProtName_mem · 25
commProtName_ppc · 25
commProtName_tcp · 25
commProtName_udp · 25
commProtName_unix · 25
commProtocol_dontcare · 25
commProtocol_mem · 25

commProtocol_ppc · 25
commProtocol_tcp · 25
commProtocol_udp · 25
commProtocol_unix · 25
commRely_contents · 25
commRely_dontcare · 24
commRely_dup · 24
commRely_loss · 24
commRely_order · 24
commRely_reliable · 25
commRely_unreliable · 25
communication · 39
concretePortAddress · 27

asText · 28
asTextPattern · 28
BooleanValue

subpatterns:
conformsTo · 28

conformsTo · 28
superpattern:

BooleanValue · 44
private · 28
protName · 28
protocol · 28
subpatterns:

memPortAddress · 29
ppcPortAddress · 28
unixAbstractPortAddress · 28
unixPortAddress · 28

ConcretePortAddress · 17
concurrency control · 18
conformsTo · 28
connect · 30, 36
connectInPipe · 42
connectToProcess · 42
continue · 29, 30
co-routines · 7
cType · 25

D

delete · 26, 27
demo · 20
doDebug · 43

E

endOfData · 34
endOfDataPattern · 31
enterSpec · 26
eos · 35
err · 29
errCB · 29

abort · 29
addMsg · 29
cleanup · 29
continue · 29
exceptionType · 29
fatal · 29
private · 29
superpattern:

IntegerValue · 29
errCB_abortOperation · 29
errCB_abortProgram · 29
errCB_continueOperation · 29
errCB_initialValue · 29
error · 31, 36, 37, 40
error · 12



Index 51

errorCallback · 12
Exception

subpatterns:
ProcessManagerException · 43

exceptionType · 29

F

fatal · 29, 30
flush · 34
forceTimeout · 31, 35, 37

G

get · 35
getAtom · 35
getAtom · 11
getBinaryConnection · 38

sock · 38
sockType · 38
superpattern:

withIdleAndPE · 38
timeout · 38

gethostbyname · 29
inadr · 29
name · 29
notfound · 29

getInt · 34
getIntPattern · 33
getline · 35
getLine · 11
getMemPort · 27
getPortableAddress · 30, 36
getPos · 35
getPpcPort · 27
getRep · 34
getRepObj · 34
getRepObjPattern · 33
getRepPattern · 33
getStreamConnection · 38

sock · 38
sockType · 38
superpattern:

withIdleAndPE · 38
timeout · 38

getTcpPort · 27
getUdpPort · 27
getUnixPort · 27

H

hiErrCB · 30
abort · 30
cleanup · 30
continue · 30
fatal · 30
superpattern:

IntegerObject · 30
host · 28, 31, 36
hostMachine · 5

I

I · 41

idle · 31, 37
Idle · 36
inadr · 29
inetAddr · 28, 32, 36
init · 26, 32, 35, 39, 41, 43
insert · 26, 27
IntegerObject

subpatterns:
hiErrCB · 30

IntegerValue
subpatterns:

errCB · 29
Inter-process communication · 6

L

leaveNBScope · 31, 36, 37
leaveNBScope · 11
localHost_IP_number · 30

M

MacTCP · 17
markAsDead · 40
markAsDead · 19
memPortAddress · 29

asTextPattern · 29
bufferID · 29
protName · 29
protocol · 29
superpattern:

concretePortAddress · 29
message · 43
monitor · 7
msg · 43

N

name · 29, 41
nonBlockingScope · 31, 36, 37
notfound · 29

O

onStart · 43
onStart · 4
onStop · 43
open · 32

P

parseError · 26
pathName · 28
peek · 35
pipe · 43

close · 43
Exception

subpatterns:
pipeException · 44

init · 43
pipeError · 44
pipeException · 44

superpattern:



52 Process Library

Exception · 44
private · 44
readEnd · 44
writeEnd · 44

pipe · 11
pipeError · 44
pipeException · 44
Pipes · 6
port · 31, 36, 37
portableCommAddress · 25

asText · 26
asTextPattern · 26
enterSpec · 26
init · 26
private · 26
subpatterns:

portableMultiAddress · 26
portablePortAddress · 27

portableCommAddress · 16
portableCommAddressFromText · 26

addr · 26
parseError · 26
txt · 26

portableCommunicationAddress · 11
portableMultiAddress · 26

asTextPattern · 26
delete · 26
init · 26
insert · 26
private2 · 26
superpattern:

portableCommAddress · 26
portableMultiAddress · 16
portablePortAddress · 27

asTextPattern · 27
delete · 27
getMemPort · 27
getPpcPort · 27
getTcpPort · 27
getUdpPort · 27
getUnixPort · 27
insert · 27
private2 · 27
superpattern:

portableCommAddress · 27
portablePortAddress · 16
portNo · 28
ppcPortAddress · 28

asTextPattern · 28
host · 28
portNo · 28
protName · 28
protocol · 28
sessionId · 28
superpattern:

concretePortAddress · 28
private · 26, 28, 29, 32, 36, 38, 40, 43, 44
private2 · 26, 27
process · 4
Process · 41

argType · 41
argument · 41
awaitStopped · 42
connectInPipe · 42
connectToProcess · 42
doDebug · 43
init · 41
name · 41
onStart · 43
onStop · 43
private · 43

redirectFromChannel · 43
redirectFromFile · 42
redirectToChannel · 43
redirectToFile · 42
start · 41
stillRunning · 42
stop · 42

ProcessManagerException · 43
message · 43
superpattern:

Exception · 43
propagateException · 43

msg · 43
protName · 28, 29
protocol · 28, 29
protocolSpec · 25

cType · 25
rType · 25

protocolSpec · 15
put · 34
putInt · 34
putIntPattern · 33
putRep · 34
putRepObj · 34
putRepObjPattern · 33
putRepPattern · 33
puttext · 35
PutText · 11

R

readEnd · 44
redirectFromChannel · 43
redirectFromChannel · 4
redirectFromFile · 42
redirectFromFile · 4
redirectToChannel · 43
redirectToChannel · 4
redirectToFile · 42
redirectToFile · 4
removeSomeConnection · 40
removeSomeConnection · 19
repIO · 33
repObjIO · 33
rType · 25

S

sameConnection · 30, 34
semaphore · 7
sessionId · 28
setPos · 35
sock · 38
socketGenerator · 7
SocketGenerator · 36

bind · 36
superpattern:

withIdleAndPE · 44
close · 36

superpattern:
withIdleAndPE · 44

error · 37
superpattern:

hiErrCB · 44
forceTimeout · 37
getPortableAddress · 36
hiErrCB



Index 53

subpatterns:
error · 37

idle · 37
leaveNBScope · 37
nonBlockingScope · 37
port · 37
private · 38
usageTimestamp · 37
withIdleAndPE · 37

subpatterns:
bind · 36
close · 36

Sockets · 6
socketType · 39
sockType · 38
start · 41
start · 4
stillRunning · 42
stillRunning · 4
stop · 42
Stream

subpatterns:
StreamSocket · 34

Stream socket · 8
StreamSocket · 34

booleanValue
subpatterns:

sameConnection · 34
close · 34
connect · 36
eos · 35
error · 36

superpattern:
hiErrCB · 44

flush · 34
forceTimeout · 35
get · 35
getAtom · 35
getline · 35
getPos · 35
hiErrCB

subpatterns:
error · 36

host · 36
Idle · 36
inetAddr · 36
init · 35
integerValue

subpatterns:
timeoutValue · 34
usageTimestamp · 35

leaveNBScope · 36
nonBlockingScope · 36
peek · 35
port · 36
private · 36
put · 34
puttext · 35
sameConnection · 34

superpattern:
booleanValue · 44

setPos · 35
superpattern:

Stream · 34
theSocket · 34
timeoutValue · 34

superpattern:
integerValue · 44

usageTimestamp · 35
superpattern:

integerValue · 44

systemEnv · 7

T

T · 41
TCP · 17
TCP/IP · 15
tcpPortAddress · 28

protName · 28
protocol · 28
superpattern:

unixAbstractPortAddress · 28
tcpPortAddress · 17
theSocket · 34
thisHost · 29

err · 29
inadr · 29
name · 29

timeout · 38
timeout · 13
timeoutValue · 34
txt · 26

U

UDP · 17
udpPortAddress · 28

protName · 28
protocol · 28
superpattern:

unixAbstractPortAddress · 28
udpPortAddress · 17
unixAbstractPortAddress · 28

asTextPattern · 28
inetAddr · 28
portNo · 28
subpatterns:

tcpPortAddress · 28
udpPortAddress · 28

superpattern:
concretePortAddress · 28

unixAbstractPortAddress · 17
unixPortAddress · 28

asTextPattern · 28
pathName · 28
protName · 28
protocol · 28
superpattern:

concretePortAddress · 28
usageTimestamp · 31, 35, 37
usageTimeStamp · 11

W

waitForever · 30
WaitForever · 8
withIdle · 32
withIdleAndPE · 37

subpatterns:
getBinaryConnection · 38
getStreamConnection · 38

withPE · 32
writeEnd · 44


