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Introduction

This report is a an introduction to the BETA language. The BETA language is pre-
sented to someone who is familiar with one or more object-oriented language such as
C++ or Eiffel.

The overall aspects of the BETA language is presented. The presentation focuses on
the concepts and ideas behind the design of BETA, and includes examples on the use
of most constructs. The tutorial contains sections on basic constructs, patterns and ob-
jects, singular objects, subprocedure, control patterns, nested patterns, virtual patterns,
coroutines, concurrency, and inheritance.

For more details about the BETA language than presented in this tutorial please see
[Madsen 93]. For a tutorial on the Mjølner System, please see [MIA 94-24]
Acknowledgment
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1 Language Concepts

BETA is a modern object-oriented language from the Scandinavian school of object-
orientation where the first object-oriented language Simula was developed. BETA
supports the object-oriented perspective on programming and contains comprehensive
facilities for procedural and functional programming. BETA has powerful abstraction
mechanisms for supporting identification of objects, classification and composition.
BETA is a strongly typed language like Simula, Eiffel and C++ with most type
checking being carried out at compile-time. It is well known that it is not possible to
obtain all type checking at compile time without sacrificing the expressiveness of the
language. BETA has an optimum balance between compile-time type checking and
run-time type checking.

1.1 Powerful Abstraction Mechanisms

BETA has powerful abstraction mechanisms that provide excellent support for design
and implementation, including data definition for persistent data. The powerful ab-
straction mechanisms greatly enhance reusability of designs and implementations.

The abstraction mechanisms include class, procedure, function, coroutine, process,
exception and many more, all unified into the ultimate abstraction mechanism: the
pattern. In addition to the pattern, BETA has subpattern, virtual pattern and pattern
variable. This unification gives a uniform treatment of abstraction mechanisms and a
number of new ones. Most object-oriented languages have classes, subclasses and
virtual procedures, and some have procedure variables. Since a pattern is a general-
ization of abstraction mechanisms like class, procedure, function, etc., the notions of
subpattern, virtual pattern and pattern variable also apply to these abstraction mecha-
nisms. In addition to the above mentioned abstraction mechanisms, the pattern sub-
sumes notions such as generic package and task type as known from Ada.

The subpattern covers subclasses as in most other object-oriented languages. In addi-
tion, procedures may be organized in a subprocedure hierarchy in the same way as
classes may be organized in a subclass hierarchy. Since patterns may also be used to
describe functions, coroutines, concurrent processes, and exceptions, these may also
be organized in a pattern hierarchy.

The notion of virtual pattern covers virtual procedures as in C++. In addition, virtual
patterns cover virtual classes, virtual coroutines, virtual concurrent processes, and
virtual exceptions. Virtual classes provide a more general alternative to generic classes
as in Eiffel or templates as in C++.

BETA includes the notion of pattern variable. This implies that patterns are first class
values, that may be passed around as parameters to other patterns. By using pattern
variables instead of virtual patterns, it is possible dynamically to change the behavior of
an object after its generation. Pattern variables cover procedure variables (i.e. a
variable that may be assigned different procedures). Since patterns may be used as
classes, it is also possible to have variables that can be assigned classes, etc.

BETA does not only allow for passive objects as in C++ and Eiffel. BETA objects may
also act as coroutines, making it possible to model alternating sequential processes and

The pattern

Subpattern

Virtual pattern

Pattern variable

Coroutines and
concurrency
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quasi-parallel processes. BETA coroutines may be executed concurrent (non pre-
emptive scheduling in current implementation). The basic mechanism for
synchronization is semaphores, but high-level abstractions for synchronization and
communication, hiding all details about semaphores, are easy to implement, and the
standard library includes monitors, and rendezvous. The user may easily define new
concurrency abstractions including schedulers for processes.

BETA supports the three main subfunctions of abstraction: identification, classifica-
tion, and composition as described in the following.

1.2 Identification of Objects

It is possible to describe objects that are not generated as instances of a class pattern,
so-called “class-less objects”. This is in many cases useful when there is only one ob-
ject of a kind. In most object-oriented languages, it is necessary to define superfluous
classes for such objects. In analysis and design, it is absolutely necessary to be able to
describe singular objects without having them as instances of classes.

1.3 Classification 

Classification is supported by patterns, subpatterns, and virtual patterns that make it
possible to describe classification hierarchies of objects and patterns (objects, classes,
procedures, functions, coroutines, processes, exceptions, etc.).

1.4 Composition (Aggregation)

Objects and patterns may be defined as a composition of other objects and patterns.
The support for composition includes:

• Whole-part composition: an attribute of an object may be a part-object. This
makes it possible to describe objects in terms of their physical parts.

• Reference composition: an attribute may be a reference to an object. Reference
composition is the basis for modeling arbitrary relations between objects.

• Localization: an attribute of an object may be a (nested) pattern—also known as
block-structure. The block-structure makes it easy to create arbitrary nested pat-
terns. This makes it possible for objects to have local patterns used as classes,
procedures, etc. Local patterns greatly enhance the modeling capabilities of an
object-oriented language.

1.5 Inheritance

In BETA, inheritance is not only restricted to inheritance from superpatterns. It is also
possible to inherit from a part-object. Virtual patterns in the part-object may be rede-
fined to influence the enclosing object. Multiple inheritance is supported through in-
heritance from multiple part-objects. This gives a much cleaner structure than inheri-
tance from multiple superpatterns.

1.6 Conceptual Framework

BETA is intended for modeling and design as well as implementation. During the de-
sign of BETA the development of the underlying conceptual framework has been just
as important as the language itself.

Class-less ob-
jects

Whole-part

Reference

Localization
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BETA is a language for representing/modeling concepts and phenomena from the
application domain and for implementing such concepts and phenomena on a computer
system. Part of a BETA program describes objects and patterns that represent
phenomena and concepts from the application model. This part is said to be represen-
tative since BETA elements at this level are meaningful with respect to the application
domain. Other parts of a BETA program are non-representative, since they do not
correspond to elements of the application domain, but are intended for realizing the
model as a computer system.

The BETA language as presented in this introduction is for describing objects and
patterns. The objects and patterns constitute the logical structure of a program execu-
tion. The physical structure of a program execution is handled by other components of
the Mjølner System. A tutorial on using the this system is given in [MIA 94-24].

Modeling
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2 Basic Constructs

The most fundamental elements of BETA are objects and patterns. This section de-
scribes the basic patterns and values, simple assignments, control structures, variable
declarations, repetitions and patterns used as composite types.

2.1 Simple Types and Values

The simple types (or also called basic patterns) are integer , boolean , char , and,
real . The following table shows the simple types with examples of values, including
text con stant . Notice, that text  is not a simple type in BETA, but a pattern defined
in the basic BETA environment called betaenv .

Type Value

integer 7, -4, 0x4FFC, 2x101101

boolean true, false

char 'c'

real 3.141, -1.234E3

text constant 'abc'

2.2 Simple Static Variables

In BETA, a static variable (also called a static reference) is declared like:
i @integer;

r: @real;

Variables of the simple types can only be declared static, see below for dynamic ref-
erences.

2.3 Simple Assignments

Simple value assignments in BETA goes left to right:
2 -> i         (* assign the value 2 to i *)

i -> j         (* assign the value of i to j *)

i*j -> k       (* assign the value of i*j to k *)

(i,j) -> ( x,y) (* assign the value of i to x and
                *        the value of j to y
                *)

2.4 Control Structures

BETA has two build-in control structures: if and for, both having two forms. The
simple if imperative with one boolean expression:

(if <expression> then
    <imperatives>
 else
    <imperatives>
if)

Value assign-
ment

if
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and the if with several alternatives:
(if <expression>
 // <expression> then <imperatives>
 // <expression> then <imperatives>
 …
 else
   <imperatives>
if)

where // means equals.

The simple for imperative just iterates a given number of times:
(for <expression> repeat  <imperatives> for)

but the for imperative may implicitly declare an iteration variable, only available inside
the for loop, by:

(for <variable>: <expression> repeat <imperatives> for)

The for loop always starts in 1 and stops at <expression> . The loop can be termi-
nated or restarted using labels, see below.

The following BETA code is a general object-descriptor (or descriptor for short):
 <declarations>
enter <enter-list>
do <imperatives>
exit <exit-list>

A descriptor consists of type and variable declarations, an enter part for parameters
(enter <enter-list> ), a do-part for the action (do <imperatives> ), and finally an
exit part for the results (exit <exit-list> ). All elements are optional.

A descriptor can be labeled, and the descriptor can be restarted and/or left using the
label:

L: (# … leave  L … restart  L #)

In general any imperative can have a label:
L: <imperative>
L: (if  … leave L …  if)
L: (for … leave L … for)

leave L  implies that control is transferred to immediately after the labeled impera-
tive/descriptor. restart L  implies that control is transferred to immediately before the
labeled imperative/descriptor.

2.5 Static and Dynamic Variables

In BETA variables are two examples of reference attributes—static references that
constantly denote the same object, and dynamic references that may denote different
objects.
Static Reference

Examples of static reference variables are:
i: @integer (* i refers to a simple type: integer *)

p: @A       (* an instance of A is automatically generated and
             * p always refers to this object *)

s: @(# … #) (* an instance of (# … #) is automatically generated
             * and s always refers to this singular object *)

for

descriptor

labeled
descriptor

labeled
imperative

Reference
attributes



Basic Constructs 6

Dynamic reference

Examples of dynamic reference variables are:
i: ^integerObject

p: ^A

Assignments between dynamic references can be done using the reference operator
‘[]’ (read box):

p1[] -> p2[]  (* reference assignment  *)

Dynamic reference variables are initially NONE  i.e. refers to nothing. Objects can be
created using the new operator ‘&’:

&A[] -> p[]  (* create an instance of A and assign the reference
              * to p *)

It is illegal to declare dynamic references to simple types:
i: ^integer (* ILLEGAL *)

r: ^real    (* ILLEGAL *)

Instead use integerObject , charObject , booleanObject , or realObject  defined in
the Mjølner System basic betaenv  environment.

2.6 Repetitions

In BETA it is possible to declare a repetition of static (simple types) or dynamic ref-
erences. A repetition is declared like:

R: [10] @integer  (* repetition of 10 static references *)

P: [10] ^A        (* repetition of 10 dynamic references *)

R[1] -> i         (* value assignment *)

P[1][] -> x[]     (* reference assignment *)

RR: [1] @integer  (* repetition of 1 static reference *)

R -> RR           (* repetition assignment:
                   * all values from R is copied into RR
                   * RR is automatically extended if needed
                   *)

R.range            (* the size of the repetition *)

n -> R.extend      (* extends the repetition with n elements *)

n -> R.new        (* allocates a new repetition with n elements *)

The range of a repetition is 1 to R.range , thus repetitions always start with 1.

2.7 Composite Types (Records)

Using the object-descriptor it is possible to declare composite types:
point:  (# x,y: @integer #) (* point is a composite type
                             * consisting of two integers *)
p: @point    (* static declaration of a point *)
p.x          (* remote access to x *)

circle:      (* composite type using simple and composite types *)
  (# center: @point;
     radius: @integer;
  #)

The declaration of point  and circle  above is in general called a pattern declaration.
The pattern will be described in details in the following sections.

Reference
assignment

Pattern
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3 Patterns and Objects

Most object-oriented languages supporting the object-oriented perspective have con-
structs such as class, subclass, virtual procedure, and qualified reference variable.
These constructs all originated with Simula. Eiffel and C++ include these constructs
although a different terminology is used. In addition to virtual procedures BETA also
has non-virtual procedures.

In this introduction, the BETA version of the above constructs will be described and
compared to other object-oriented languages. The example used in the following is a
company with different kinds of employees, including salesmen and workers. em-
ployee  is an abstract superpattern describing the common properties of all employees.

employee:
  (# name: @text;
     birthday: @date;
     dept: ^Department;
     totalHours: @integer;
     registerWork:
       (# noOfHours: @integer
       enter noOfHours
       do noOfHours + totalhours -> totalHours
       #);
     computeSalary:<
       (# salary: @integer
       do inner
       exit salary
       #);
  #);

The elements of the employee  pattern have the following meaning:

• The attributes name , birthday , dept  and totalHours  are reference attributes
denoting instances of the patterns text , date , department  and integer  respec-
tively.

• Name , birthday , and totalHours  refer to part-objects. A part-object is a fixed
part of its enclosed object and is generated together with the enclosing object.
Part-objects are also found in Eiffel and C++.

• Dept  is a dynamic reference that either has the value NONE  or refers to a separate
instance of the pattern department .

• The attributes registerWork , and computeSalary  are pattern attributes describ-
ing actions to be executed. They correspond to procedures in most other lan-
guages. The enter-part describes the input parameters of a pattern and the exit-
part describes its output parameters. registerWork  has one input parameter
noOfHours  and computeSalary  has one output parameter, salary .

• registerWork  is a non-virtual pattern attribute. This means that its complete de-
scription is given as part of the description of employee . It is similar to non-vir-
tual functions in C++.

• computeSalary  is a virtual pattern attribute (specified by using the ‘’ symbol).
Only part of its description is given since the computation of the salary is differ-
ent for salesmen and workers. The description of a virtual pattern may be ex-

Pattern
Employee

Elements of
Employee
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tended in subpatterns of employee . A virtual pattern attribute is similar to a vir-
tual function in C++.

• employee , registerWork  and computeSalary  are all examples of patterns.
employee  is an example of a pattern used as a class and is therefore called a class
pattern. registerWork  and computeSalary  are examples of patterns used as
procedures and are therefore called procedure patterns. Technically there is no
difference between class patterns and procedure patterns.

The following patterns are subpatterns of employee  corresponding to salesmen and
workers.

worker: employee
  (# seniority: @integer;
     computeSalary::<
       (# do noOfHours*80+seniority*4->salary; 0->totalHours #)
  #);
salesman: employee
  (# noOfSoldUnits: @integer;
     computeSalary::<
       (# do noOfHours*80+noOfSoldUnits*6->salary;
             0->noOfSoldUnits->totalHours
       #)
  #)

• The class pattern worker  adds the attribute seniority  and extends the definition
of computeSalary . The salary for a worker is a function of the noOfHours  being
worked and the seniority  of the worker.

• The class pattern salesman  adds the attribute noOfSoldUnits  and describes
another extension of computeSalary . The salary for a salesman is a function of
the noOfHours  being worked and the noOfSoldUnits .

• The symbol ‘’ describe the fact that the definition of computeSalary  from the
superpattern employee  is extended.

The above examples have shown instantiation of objects from patterns in the form of
part-object attributes (like birthday: @date ). An instance of, say worker , may in a
similar way be generated by a declaration of the form:

mary: @worker

The above examples have also shown a dynamic reference (like dept: ^department ).
Such a reference is initially NONE . A dynamic reference to instances of worker  may be
declared as follows:

theForeman: ^worker

theForeman  may be assigned a reference to the object referred by mary  by execution
of the following imperative:

mary[] -> theForeman[]

Note that the opposite assignment (theForeman[]->mary[] ) is not legal since mary  is
a static reference. An instance of worker  may be generated and its reference assigned
to theForeman  by executing the following imperative:

&worker[] -> theForeman[]

A few additional comments about constructs used so far:

• The symbol & means new.

• The symbol -> is used for assignment of state.

Class and
procedure
patterns

Subpatterns of
Employee

Part object

Dynamic refer-
ence
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• An expression R[] denotes the reference to the object referred by R, whereas an
expression R denotes the object itself. The above assignment thus means that the
qualified reference theForeman  is assigned a reference to the generated instance
of worker .

• An assignment of the form mary->theForeman  means that the state of the object
referred by mary  is enforced upon the state of the object referred by theForeman.
This form of assignment is called value assignment. If X and Y are integer
objects then X -> Y  means that the value of X is assigned to the object Y.

In this section, it was shown how the most common object-oriented constructs may be
expressed in BETA. In the following sections, examples of the more unique constructs
will be given.



10

4 Singular Objects

Often there is only one object of a given type. In most languages it is necessary to
make a class and generate a single instance. In BETA it is possible to describe a sin-
gular object directly. There is only one president of our company and he may be de-
scribed as the following singular object:

president: @employee(# computeSalary::< (# do BIG ->salary #) #)

The declaration president  is similar to the declaration of mary . The difference is that
in the declaration of mary , a pattern name (worker ) describes the objects whereas a
complete object description is used to describe the president.

The president  object is an example of a singular data object corresponding to an in-
stance of a class pattern. It is also possible to describe singular action objects corre-
sponding to an instance of a procedure pattern. Examples of singular action objects are
given below in section 6.
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5 Subprocedure

The previous sections has shown examples of patterns used as classes and procedures.
For class patterns, examples of subpatterns have been given. Subpatterns may also be
used for procedure patterns. For attributes, subpatterns may add new attributes and
extend definitions of virtual patterns in the superpattern. In addition, a subpattern may
specify further imperatives which have to be combined with the imperatives of the
superpattern. The combination of the imperatives is handled by the inner  construct.
Consider the following objects:

mutex: @semaphore; sharedVar: @integer

The variable sharedVar  is shared by a number of concurrent processes. Mutual access
to the variable is handled by the semaphore mutex . Update of sharedVar  should then
be performed as follows:

mutex.P; m+sharedVar -> sharedVar; mutex.V

This pattern of actions must be used whenever sharedVar  and other shared objects
have to be accessed. Instead of manipulating the semaphore directly it is possible to
encapsulate these operations in an abstract procedure pattern. The pattern entry  can
describe this encapsulation:

entry: (# do mutex.P; inner; mutex.V #)

Execution of entry  locks mutex  before the inner  and releases it afterwards. inner
may then in subpatterns of entry  be replaced by arbitrary imperatives. The subpattern
updateShared  of entry  updates sharedVar :

updateShared: entry
  (# m: @integer
  enter m
  do sharedVar+m-> sharedVar
  #)

Execution of an imperative
123 -> updateShared

will then result in execution of the actions
mutex.P; sharedVar+123->sharedVar; mutex.V

We may now define an abstract superpattern corresponding to a monitor:
monitor:
  (# mutex: @semaphore;
     entry: (# do mutex.P; inner; mutex.V #);
     init:< (# do mutex.V(*initially open*); inner #)
  #);

A (singular) monitor  object may now be declared like shared  below:

Abstract proce-
dure pattern
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shared: @monitor
  (# var: @integer;
     update: entry(# m: @integer enter m do var+m->var #);
     get: entry(# v: @integer do var->v exit v #)
  #)

Semaphores are the basic mechanism in BETA for synchronization. They can express
most synchronization problems, but may be complicated to use. It is therefore
mandatory that high level abstraction mechanisms like monitor can be defined. In
section 9 below, further details about concurrency in BETA will be given.
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6 Control Patterns

Sub (procedure) patterns are used intensively in BETA for defining control patterns
(control structures). This includes simple control patterns like cycle , forTo , etc. It
also includes so-called iterators on data objects like list , set and register . A pat-
tern describing a register of objects may have the following interface:

register:
  (# has: (# E: ^type; B: @boolean enter E[] do … exit B #);
     insert: (# E: ^type enter E[] do … #);
     delete: (# E: ^type enter E[] do … #);
     scan: (# current: ^type do … inner … #);
     …
  #)

A number of details have been left out from the example. These include the represen-
tation and implementation of the register . A register  may include instances of the
pattern type , which has not been specified. Type  is an example of a virtual class pat-
tern which will be introduced later. For the moment type  is assumed to stand for the
pattern object  which is a superclass of all patterns, i.e. a register  may include in-
stances of all patterns. An instance of register  may be declared and used as follows:

employees: @register;
…
mary[]->employees.insert;
(if boss[]->employees.has then … if)

The control pattern scan  may be used as follows:
0->totalSalary;
employees.scan
  (# do current.computeSalary+totalSalary->totalSalary #);
totalSalary->screen.putint

This works as follows:

• The imperative employees.scan(# … #)  is an example of a singular action
object as mentioned in section 4.

• The do-part of scan  has an inner  imperative which is executed for each element
in the register. The details of this are not shown, but it may be implemented as a
loop that steps through the elements of the register and executes inner  for each
element.

• The attribute current  of scan  is used as an index variable that for each iteration
refers to the current element of the register. This may be implemented by assign-
ing the reference of the current element to current  before inner  is executed.

• The effect of executing the above singular action object is that cur-
rent.computeSalary+totalSalary->totalSalary  is executed for each ele-
ment in the register.

scan is a control
pattern

Using a control
pattern
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7 Nested Patterns

One of the characteristics of Algol-like languages is block-structure, which allows for
arbitrary nesting of procedures. The possibility of nesting has been carried over to
BETA where patterns can be arbitrarily nested. Block-structure is a powerful mecha-
nism that extends the modeling capabilities of languages. However, besides Simula and
BETA, none of the mainstream object-oriented languages supports block-structure. In
most object-oriented languages, an object may be characterized by data attributes
(instance variables) and procedure attributes. In BETA, an object may in addition be
characterized by class pattern attributes.

In the examples presented so far, there have been two levels of nesting. The outer level
corresponds to class patterns, like employee , and the inner level corresponds to
procedure patterns, like computeSalary . In procedural languages like Algol and Pas-
cal it is common practice to define procedures with local procedures. This is also
possible in BETA.

The possibility of nesting classes is a powerful feature which is not possible in lan-
guages like C++ and Eiffel. The following example shows a class pattern that describes
a product of our company:

productDescription:
  (# name: @text;
     price: @integer;
     noOfSoldUnits: @integer;
     order:
       (# orderDate: @date;
          c: ^customer;
          print:<
            (#
            do name[] -> puttext;
               'Price: '->puttext; price -> putint; ' '->put;
               ' No of units sold: '->puttext;
               noOfSoldUnits->putint; ' '->put;
               orderDate.print;
               C.print;
               inner
            #)
       #)
  #);

One of the attributes of a productDescription  object is the class pattern order . An
instance of order  describes an order made on this product by some customer. The at-
tributes of an order  object include the date of the order, the number of units ordered,
the customer ordering the product, and a print  operation. Consider the objects:

P1,P2: @product; o1,o2: @P1.order; o3,o4: @P2.order

The objects o1 and o2 are instances of P1.order  whereas o3 and o4 are instances of
P2.order . The block-structure makes it possible to refer to global names in enclosing
objects. In the above example, the print  operation refers to names in the enclosing
order  object. This resembles most object-oriented languages where operations inside
a procedure refer to names in the enclosing object. The print  operation, however,
also refers to names in the surrounding productDescription  object. Execution of say

BETA supports
general block-
structure

Nested Class
Patterns
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o1.print  will thus print the values of P1.name , P1.price , P1.noOfSoldUnits ,
o1.orderDate , and o1.c .
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8 Virtual Pattern

In the example in section 3 it was mentioned that a redefinition of a virtual procedure
pattern is not a redefinition (overriding) as in C++. In fact a virtual pattern in BETA
can only be extended and cannot be completely redefined. The rationale behind this is
that a subpattern should have the same properties as its superpattern including which
imperatives are executed. Ideally a subpattern should be behaviorally equivalent to its
superpattern. This will, however, require a correctness proof. The subpattern mecha-
nism of BETA supports a form of structural equivalence between a subpattern and its
superpattern.

Consider the following patterns:
A: (# V:< (# x: … do I1; inner; I2 #) #);
AA: A(# V::< (# y: … do I3; inner; I4#) #)

The pattern A has a virtual procedure attribute V. V has an attribute x and its do-part
contains the execution of I1; inner; I2 . The subpattern AA of A extends the defini-
tion of V. The extended definition of V in AA corresponds to the following object-de-
scriptor (except for scope rules):

(# x: …; y: … do I1; I3; inner; I4; I2 #)

As may be seen the V attribute of AA has the attributes x and y and the do-part consists
of I1; I3; inner; I4; I2 . The definition of V is an extension of the one from A and
not a replacement.

The subpattern AB of A describes another extension of V:
AB: A(# V::< (# z: … do I5; inner; I6 #) #)

Here V corresponds to the following object descriptor:
V: (# x: …; z: … do I1; I5; inner; I6; I2 #)

The definition of V may be further extended in subpatterns of AA also as shown in the
definition AAA:

AAA: AA(# V::< (# q: … do I7; inner; I8 #) #)

The definition of V corresponds to the following object-descriptor:
V: (# x: …; y: …; q: … do I1; I3; I7; inner; I8; I4; I2 #)

As may be seen, the pattern V is a combination of the definitions of V from A, AA and
AAA.

The definition of V may be extended using a final binding () in subpatterns of A as
shown in the definition AC:

AC: A(# V::(# q: … do I2; inner; I4 #) #)

The final binding of V means that V cannot be extended in subpatterns of AC. The ex-
tended definition of V in AC corresponds to the following object-descriptor (except for
scope rules):

Structural
equivalence  is
used in BETA

Patterns
A and AA

Combined
descriptor

Pattern AB

Pattern AAA

Final binding
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(# x: …; y: … do I1; I3; inner; I4; I2 #)

The virtual mechanism in BETA guarantees that behavior defined in a superpattern
cannot be replaced in a subpattern. This form of structural equivalence is useful when
defining libraries of patterns that are supposed to execute a certain sequence of ac-
tions. In C++, the programmer must explicitly invoke the actions from the superclass
by means of superclass::functionname . This is illustrated by the example in the
next section.

The inner  construct is more general than shown above, since a pattern may have
more than one inner and inner may appear inside control structures and nested singular
object descriptors.

8.1 Virtual Procedure Pattern

The attribute computeSalary  of pattern employee  is an example of a virtual proce-
dure pattern. In this example the do-part of the virtual definition in employee  is very
simple, only consisting of an inner -imperative. The extended definitions of com-
puteSalary  in worker  and salesman  both include the code noOfHours*80  and 0-
>totalHours . This code may instead be defined in the definition of computeSalary  in
employee  as shown below:

employee:
  (# …
     computeSalary:<
       (# salary: @integer
       do noOfHours*80->salary; inner; 0->totalHours
       exit salary
       #)
  #);
  worker: employee
    (# …
       computeSalary::< (# do seniority*4+salary->salary; inner #)
    #);
  salesman: employee
    (# …
       computeSalary::<
         (#
         do noOfSoldUnits*6+salary ->salary;
            0 ->noOfSoldUnits;
            inner
         #)
    #)

The extended definitions of computeSalary  in worker  and salesman  have an inner
to enable further extensions of computeSalary  in subpatterns of worker  and sales-
man.

8.2 Virtual Class Pattern

Virtual patterns may also be used to parameterize general container patterns such as
the register  pattern described above. For the register  pattern we assumed the ex-
istence of a type pattern defining the elements of the register , i.e. elements of a
register  must be instances of the pattern type . The pattern type  may be declared as
a virtual pattern attribute of register  as shown below:

ComputeSalary
is a virtual proce-
dure pattern
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register:
  (# type:< object;
     insert:< (# e: ^type enter e[] do …#)
     …
  #)

The declaration type:< object  specifies that type  is either the pattern object  or
some subpattern of object . In the definition of register , type may be used as an
alias for object , e.g. references qualified by type  are known to be at least Objects .
Since object  is the most general superpattern, type  may potentially be any other
pattern. The virtual attribute type  may be bound to a subpattern of object  in subpat-
terns of register . The following declaration shows a pattern workerRegister  which
is a register  where the type  attribute has been bound to worker :

workerRegister: register
  (# type::< worker;
     findOldestSeniority:
       (# old: @integer
       do scan
           (# do (if current.seniority > old then
                     current.seniority->old
           if)#)
       exit old
       #)
  #);

In the definition of workerRegister , the virtual pattern type  may be used as a syn-
onym for the pattern worker . This means that all references qualified by type  may be
used as if they were qualified by worker . The reference current  of the scan  opera-
tion is used in this way by the operation findOldestSeniority  which computes the
oldest seniority of the register. The expression current.seniority  is legal since
current  is qualified by type which in workerRegister  is at least a worker .

In subpatterns of workerRegister  it is possible to make further bindings of type
thereby restricting the possible members of the register. Suppose that manager  is a
subpattern of worker . A manager  register may then be defined as a subpattern of
workerRegister :

managerRegister: workerRegister(# type::< manager #)

In the definition of managerRegister , type  may be used as a synonym for manager ,
i.e. all references qualified by type  are also qualified by manager .

Virtual patterns make it possible to define general parameterized patterns like regis-
ter and to restrict the member type of the elements. In this way virtual class patterns
provide an alternative to templates as found in C++.

type is a virtual
class pattern

General
parameterized
patterns
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9 Coroutines and Concurrency

A BETA object may be the basis for an execution thread. Such a thread will consist of
a stack of objects currently being executed. An object which can be used as the basis
for an execution thread has to be declared as an object of kind component as shown in
the following declaration:

A: @| activity

The symbol “|” describes that the object A is a component. A component (thread) may
be executed as a coroutine or it may be forked as a concurrent process. Consider the
following description of activity :

activity:
  (#
  do cycle
      (#
      do getOrder; suspend;
         processOrder; suspend;
         deliverOrder; suspend
  #)#)

The component object may be invoked by an imperative
A

which implies that the do-part is executed. The execution of A is temporarily sus-
pended when A executes a suspend-imperative. In the above example this happens after
the execution of getOrder . A subsequent invocation of A will resume execution after
the suspend-imperative. In the above example this means that processOrder  will be
executed. If B is also an instance of activity , then the calling object may alternate
between executing A and B:

cycle(# do A; … B; … #)

The above example shows how to use components as deterministic coroutines in the
sense that the calling object controls the scheduling of the coroutines. In section 9.1
below another example of using coroutines will be given.

It is also possible to execute component objects concurrently. By executing
A[]->fork; B[]->fork

the component objects A and B will be executed concurrently. As for the deterministic
coroutine situation, A and B will temporarily suspend execution when they execute a
suspend-imperative. Further examples of concurrent objects will be given below in
section 9.2.

9.1 Coroutines

Deterministic coroutines have demonstrated their usefulness through many years of
usage. Below we give a typical example of using coroutines.

Suppose we have a register for the permanent workers and another one for the hourly
paid workers. Suppose also that it is possible to sort these registers according to a
given criterion like the total hours worked by the employee. Suppose that we want to

Components with
execution
threads

Coroutine execu-
tion

Concurrent exe-
cution
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produce a list of names of all employees sorted according to the total hours worked.
This may be done by merging the two registers. A register  object has a scan  opera-
tion that makes it possible to go through all elements of the register. Instead we define
an operation of register  in the form of a coroutine getNext , which delivers the next
element of the register when called:

register:
  (# …
     getNext: | @
       (# elm: ^employee
       do scan(# do current[]->elm[]; suspend #);
          none->elm[]
       exit elm[]
       #);
  #);
  pReg: @ permanentRegister; hReg: @ hourlyPaidRegister;
  …
  pReg.getNext->e1[]; hReg.getnext->e2[];
  L: cycle
    (#
    do (if e1[] = none then (*empty hReg*); leave L if);
       (if e2[] = none then (*empty pReg*); leave L if);
       (if e1.totalHours < e2.totalHours then
           e1.print; pReg.getNext->e1[]
        else
           e2.print; hReg.getNext->e2[]
       if)
    #)

The attributes getNext  of the objects pReg  and hReg  have their own thread of execu-
tion. When called in an imperative like pReg.getNext->e1[] , the thread is executed
until it either executes a suspend  or terminates. If it executes a suspend , it may be
called again in which case it will resume execution at the point of suspend . The first
time getNext  is called, it will start executing scan . For each element in the register, it
will suspend execution and exit the current element via the exit variable elm[] . When
the register is empty, NONE  is returned.

9.2 Concurrency

As previously mentioned, it is possible to perform concurrent execution of components
by means of the fork operation as sketched in the following example:

(# S1: @| (# … do … #);
   S2: @| (# … do … #);
   S3: @| (# … do … #)
  do S1[] -> fork; S2[] -> fork; S3[] -> fork; …
#)

The execution of S1, S2 and S3 will take place concurrently with each other and with
the object executing the fork  operations. Concurrent objects may access the same
shared objects without synchronization, but may synchronize access to shared objects
by means of semaphores. In section 5 above the pattern semaphore  has been de-
scribed. It is well known that a semaphore is a low level synchronization mechanism
which may be difficult to use in other than simple situations. For this reason the
Mjølner library has a number of patterns defining higher level synchronization
mechanisms. This library includes a monitor  pattern as described in section 5 above.
The library also includes patterns defining synchronization in the form of rendezvous
as in Ada.

Suspending and
resuming
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Monitor Example

The following example describes a company with a number of salesmen, workers and
carriers. The salesmen obtain orders from customers and store them in an order pool.
The workers obtain orders from the order pool, process them and deliver the resulting
item in an item pool. The carriers pick up the items from the item pool and bring them
to the customer. Salesmen, workers and carriers are described as active objects
whereas the order- and item pools are represented as monitor objects.

(# salesman: employee
     (# getOrder: (# … exit anOrder[] #)
     do cycle (# do getOrder -> jobPool.put #)
     #);
   S1,S2, …: @|salesman;
   jobPool: @monitor
     (# jobs: @register(# type::< order #);
        put: entry
          (# ord: ^order enter ord[] do ord[] ->jobs.insert #);
        get: entry
          (# ord: ^order do jobs.remove -> ord[] exit ord[] #)
     #);
   worker: employee
     (# processJob: (# … enter anOrder[] do … exit anItem[] #)
     do cycle(# do jobPool.get -> processJob -> itemPool.put #)
     #);
   W1,W2,…: @| worker;
   itemPool: @monitor(# … #);
   carrier: employee
     (# deliverItem: (# enter anItem[] do … #)
     do cycle(# do itemPool.get ->DeliverItem #)
     #);
   C1,C2, …: @| carrier;
do jobPool.init; itemPool.init;
   conc(# do S1[]->start; … W1[]->start; … C1[]->start; … #)
#)

The procedure pattern conc  is another example of a high-level concurrency pattern
from the Mjølner library. It does not terminate execution until components being
started (by S1[]->start , etc.) have terminated their execution.
Rendezvous Example

Next we show an example of using the library patterns for describing synchronized
rendezvous. The example shows a drink machine that provides coffee and soup. A
customer operates the machine by pushing either makeCoffee  or makeSoup . If make-
Coffee  has been pushed, then the customer may obtain the coffee by means of get-
Coffee . Similarly if makeSoup  has been pushed then the soup may be obtained by
means of getSoup .

The system  pattern has a port  attribute which may be used to define synchronization
ports. The drink machine described below has three such ports, activate , cof-
feeReady , and soupReady . A port  object has a pattern attribute entry  which may be
used to define procedure patterns associated with port . For the port activate , two
procedure patterns makeCoffee  and makeSoup  are defined. For coffeeReady  and
soupReady , the procedure patterns getCoffee  and getSoup  are defined.

An execution of a port-entry operation like aDrinkMachine.makeCoffee  will only be
executed if the drinkMachine  has executed a corresponding accept  by means of ac-
tivate.accept .

• Initially a drinkMachine  is ready to accept either makeCoffee  or makeSoup .

Procedure pat-
tern conc
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• If e.g. makeCoffee  is executed, then when “the coffee has been made”, the
drinkMachine  is willing to accept the operation getCoffee . This is signaled by
executing an accept on the port coffeeReady . Technically this is implemented by
assigning a reference to coffeeReady  to the port reference drinkReady . The do-
part of drinkMachine  then makes an accept on drinkReady .

• When the operation getCoffee , has been executed, the drinkMachine  is again
ready to accept a new operation associated with the activate  port.

drinkMachine: system
  (# activate: @port;
     makeCoffee: activate.entry
       (# do … coffeeReady[]->drinkReady[] #);
    makeSoup: activate.entry(# do … soupReady[]->drinkReady[] #);
    coffeeReady, soupReady: @port;
    getCoffee: coffeeReady.entry(# do … exit someCoffee [] #);
    getSoup: soupReady.entry(# do … exit someSoup [] #);
    drinkReady: ^port
  do cycle(# do activate.accept; drinkReady.accept #)
  #)

The drinkMachine  may be used in the following way:

  aDrinkMachine: @| drinkMachine
  …
  aDrinkMachine.makeCoffee; … aDrinkMachine.getCoffee;
  aDrinkMachine.makeSoup; … aDrinkMachine.getSoup;

As may be seen the use of the patterns system , port  and entry  makes it possible to
describe a concurrent program in the style of Ada tasks that synchronize their execu-
tion by means of rendezvous. A port  object defines two semaphores for controlling
the execution of the associated entry patterns. The actual details will not be given in
this language introduction.

It is possible to specialize the drinkMachine  into a machine that accepts further oper-
ations:

extendedDrinkMachine: drinkMachine
  (# makeTea: activate.entry(# do … teaReady[]->drinkReady[] #);
     teaReady: @port;
     getTea: teaReady.entry(# … exit someTea[] #)
  #)

The extendedDrinkMachine  inherits the operations and protocol from drinkMa -
chine  and adds new operations to the protocol.

The basic mechanisms in BETA for providing concurrency are component-objects
(providing threads), the fork-imperative (for initiating concurrent execution) and the
semaphore (for providing synchronization). As has been mentioned already, these
mechanisms are inadequate for many situations. The abstraction mechanisms of BETA
make it possible to define higher-level abstractions for concurrency and syn-
chronization.

Please see the manual [MIA 90-8] for details about the concurrency library. More information
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10 Inheritance

The subpattern mechanism combined with the possibility of redefining/extending vir-
tual procedures is widely recognized as a major benefit of object-oriented languages.
This mechanism is often called inheritance since a subpattern is said to inherit proper-
ties (code) from its superpattern. Inheritance makes it easy to define new patterns from
other patterns. In practice this has implied that subpatterns are often used for sheer
inheritance of code without any concern for the relation between a pattern and its
subpatterns in terms of generalization/specialization. The use of multiple inheritance is
in most cases justified in inheritance of code and may lead to complicated inheritance
structures.

In BETA subpatterns are intended for representing classification and inheritance of
code is a (useful) side effect. In BETA it is not possible to define a pattern with mul-
tiple superpatterns corresponding to multiple inheritance. There are indeed cases
where it is useful to represent classification hierarchies that are not tree structured.
However, a technical solution that justifies the extra complexity has not yet been
found.

BETA does support multiple inheritance, but in the form of inheritance from part-ob-
jects. A compound object inherits from its parts as well as its superpattern. The reason
that this has not been more widely explored/accepted is that in most languages inheri-
tance from part-objects lacks the possibility of redefining/extending virtual procedures
in the same way as for inheritance from superpatterns. Block-structure and singular
objects make this possible in BETA.

Assume that we have a set of patterns for handling addresses. An address has proper-
ties such as street name, street number, city, etc., and a virtual procedure for printing
the address. In addition we have a pattern defining an address register.

address:
  (# streetName: @text; streetNo: @integer; city: @text; …
     print:<
       (#
       do inner;
          streetName->puttext;
          streetNo->putint; (*etc.*)
       #);
  #);
addressRegister: register(# element::< address #)

We may use the address  pattern for defining part-objects of employee /company  ob-
jects:

employee:
  (# name: @text; {the name of the employee*)
     adr: @address(# print:: (# do name->puttext #)#)
  #);
company:
  (# name: @text; (*the name of the company*)
     adr: @address(# print:: (# do name->puttext #) #)
  #);

The object adr of employee  is defined as a singular address  object where the virtual
print  pattern is defined to print the name of the employee . As can be seen it is possi-
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ble to define a part-object and define its virtual procedures to have an effect on the
whole object. The company  pattern is defined in a similar way.

It is possible to handle the address aspect of employees and companies. An example is
an address register:

AReg: @ addressRegister;
…
employee1.adr[]->AReg.insert; employee2.adr[]->AReg.insert;
company1.adr[]->AReg.insert; company2.adr[]->AReg.insert;
AReg.scan(# do current.print #)

The AReg  register will contain address  objects which are part of either employee  ob-
jects or company  objects. For the purpose of the register this does not matter. When
the print  procedure of one of these address  objects is invoked it will call the print
procedure associated with either employee  or company . The scanning of the AReg  reg-
ister is an example of invoking the print  pattern.

The example shows that in BETA inheritance from part-objects may be used as an
alternative to inheritance from superpatterns. The choice in a given situation depends
of course on the actual concepts and phenomena to be modeled. In the above example
it seems reasonable to model the address as a part instead of defining employee  and
company  as specializations of address .

In general it is possible to specify multiple inheritance from part-objects since it is
possible to have several part-objects like the address  object above. This form of
multiple inheritance provides most of the functionality of multiple inheritance from
C++ and Eiffel. It is simpler since the programmer must be explicit about the combi-
nation of virtual operations. It does, however, not handle so-called overlapping super-
classes. The programmer must also explicitly redefine the attributes of the component
classes. This may be tedious if there is a large number of attributes. However, a re-
naming mechanism for making this easier has been proposed for BETA, but it is not
yet implemented in the Mjølner System. Multiple inheritance from part-objects should
be used when there is a part-of relationship between the components and the
compound. This also covers situations where implementations are inherited. It should
not be used as a replacement for multiple specialization hierarchies.

A common example of using multiple inheritance is modeling windows with titles and
borders. This may be modeled using block-structure. Since a window may have a title,
a border or both, the following class hierarchy using multiple inheritance is often used:

In BETA this can be described using nested patterns:
window:
  (# title: (# … #);
     border: (# … #);
   …
  #);
aWindow: @window(# T: @title; B: @border #)

The descriptions for title  and border  are made using nested patterns. For a given
window, like aWindow , a title  object and a border  object may be instantiated. If e.g.
two titles are needed, two instances of title  are made. This example illustrates
another situation where multiple inheritance may be avoided.

Multiple inheri-
tance using part-
objects
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Appendix
BETA Quick Reference Card

A summary of all special characters in BETA, and a short list of the syntax of the
language is given below along with a short description of their semantics:

Special characters Semantics
: Pattern Declaration
: @ Static object reference declaration
: ^ Dynamic object reference declaration
: ## Pattern reference declaration
: @| Static component declaration
: ^| Dynamic component declaration
: [range] Declaration of repetition. range  must be an integer evaluation
:< Virtual declaration
::< Extended binding of virtual declaration
:: Final binding of virtual declaration
& Dynamic creation of item; new
&| Dynamic creation of component
-> Assignment
[] Object reference

Pattern reference
(# Object descriptor begin
#) Object descriptor end
// Selection in if-imperative
do Beginning of action part
enter exit inner
leave restart
(if if) then else
(for for) repeat
none this suspend

Additional keywords (for their usage, see below)
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Short syntax Semantics
P: (# … do … #) Definition of a pattern
PP: P(# … do … #) Definition of a subpattern
enter … Specification of enter-parameters
exit … Specification of exit-parameters
inner P Execute the actions in the subpattern.

P is an optional name of an enclosing pattern.
this(P) Denotation of this object
this(P)[] Reference to this object
E.P Remote name
(E).P Computed remote name
L: Imp In action part: labeled imperative
L: (# … do … #) In action part: labeled imperative
leave L Terminate labeled imperative or object instance L
restart L Goto beginning of labeled imperative or object instance L
suspend Component suspension
E1 -> E2 Assignment imperative
(if E then Imp1
 else Imp 2
if)

Simple if:
Evaluation of E, Imp1 is executed if E is true, otherwise
Imp2'  is executed.  ‘else Imp2’ is optional

(if E
 // E1 then Imp1
 // En then Impn
 else Imp
if)

General selection imperative:
Sequential evaluation of E, E1, … En. First Impi is executed
where Ei=E If no Ei=E, then Imp is executed 'else Imp' is op-
tional

(for range repeat
     Imp
for)

Repetition imperative:
Execute Imp 1..range] times

(for I: range repeat
     Imp
for)

Repetition imperative:
I is a locally scoped integer variable within Imp. Execute Imp
with I assigned each value in [1..range]

NONE The nil reference value
R[i:j] Repetition slice
R[i] Indexed repetition element
(e1, e2, …, en) Evaluation list

Please note, that the above description is by no means complete, and in some cases
ambiguous. The ultimate reference is naturally the BETA grammar as defined in the
BETA book [Madsen 93].
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