The Mjglner System

Mjelner System Tutorial

Mjalner Informatics Report
MIA 94-24(1.4
November 1997

Copyright ©1994-97 Mjglner Informatics ApS.
All rights reserved.
No part of this document may be copied or distributed
without the prior written permission of Mjglner Informatig

Introduction

This manual is atutorial on the Mjglner System. The tutoria gives an introduction to
the Mjglner System environment to someone who aready knows how to program in
another (object-oriented) language and want to know how to do it in BETA.

Often a hidden strength of a language lies in the available libraries and the ease with
which it can interact with the operating system or other software.

We present a sequence of tutorial programs designed to teach the essentials of BETA
programming. The programs start with trivial objectives like printing out “Hello
world” and doing arithmetic and gradually cover things like input/output, files, arrays,
procedures, objects, containers, GUI, and persistence.

How to install the Mj@iner System, call the compiler, etc., will not be described in this
tutorial. This information can be found the system manuals [MIA 90-2], [MIA 90-4],
and [MI1A 90-6].

Most of the tutorial programs developed in this tutorial, are supplied along with the
Mjglner System in thet ut ori al demo directory.

Although it is not necessary, it will be an advantage for the reader to be familiar with
the basic concepts of the BETA language. The BETA Language Introduction [MIA
94-26] gives an introduction to the BETA language. The BETA Book [Madsen 93] is
the main reference for the BETA language and every programmer with intend to use
BETA extensively should read this book.

Acknowledgment

This tutorial is based on a set of tutorial notes written by Jean Vaucher, Professeur
dinformatique, Universite de Montreal, on sabbatical at CRIM, November 1993.
Mjainer Informatics are grateful to Jean Vaucher for taking the initiative in writing the
first BETA tutorial notes. By permission of Jean Vaucher, we have adopted these
notes for this tutorial and extended them with more sections containing examples on
repetitions, texts, containers, persistence, and GUI programming.

Contents

a1 A oo 18 Tox 1 o] o PO TP i
L7001 1= 0 1 £ J R P U PR PR ii
(RS o) oo = Ty o TP iv
o 1= o Yo o SO PR 1
2SiMPIe TYPES AN OULPUL ..c.viitiitieitietieteete ettt st sae e b e esee e eaes 3
SATITNMELIC AN EXPIrESSIONS ...ctiiitiiitietieitieteete ettt s sb e e nne s 6
3oL CONSEANES. ...ttt ettt et e e e h et r e nn e e nr e nr e nnnee e 6
L2 EVAIUALIONS. ...ttt ettt b e b et e ettt e ettt e st e sb e e nbe e beenbe e reeneenteea 6
AMUIIPHCALTION TaADIE....cotiiieeee bbb bbb b b naeas 10
5 L00PS AN FUNCLIONS......iitiiiiiieeie ettt ettt ettt et st esate e sbeesbeenbeeneens 15
6 Assignment and Procedur @ CallS ..ottt 17
7 PatterNS and VariahleS.......coui oottt re e 21
7.1 PatternS and Variabl €Scoouioiieieieee e e e 22
7.2 ATHIDULE ACCESS... ettt sttt sa e s a e s a e s b e e b e s ate et st e st eaes 22
8 DYNAMIC DALA SEFUCTUI ES..cvieiieie ettt ettt ettt st b ettt beeste e b e snneenbeenbeens 24
8.1 PriMITIVE TYPES .ottt b bttt ae e s b e s bt e s ae e s be e s be e s be e st e eatesneesanenaes 27
O REPELITIONS (AT TAYS) .t etieteeieete ettt s bttt ettt bttt e be e et e s bt e sbe e beebeenbeeabeesbesaseesbeesbeenseeseens 28
9.1 Multidimensional REPELITIONS.........coiuieriiiieiieiee e s 31
L0 FIlBS ettt bbbt h e Rt bbbttt et e eae e eaee b e e 33
10.1 CommaNd-1iNE @rQUMIENES........coitiiiieiiete ettt sttt sttt ettt sb e bbb e b e e beebeenneas 34
10.2 Storing Characters in @ REPELITION...........ceviiiiiiiiiieeiie et 36
R DT = v (o] TR RPN 38
12 TeXt MANIPUIBLION. ..cc.eiiieiee ettt ettt ettt sae ettt esneeeaes 40
12.1 Advanced Formatted INpUt and OULPUL............eoreerieeieerieeiee e 42
13 CONTAINET LiDEAIY ittt sttt ettt st e st e sae e et e ntesntesneeeaes 44
13,0 LSt EXAIMPIE. ettt b e bbbttt b e bt b e e b b naean 44
13.2 HashTable EXAMPIE......c.ooiiieieeieee ettt s 45
I ot o] o TP RPR PR 48
14.1 ExampleS USING EXCEPLION.......oiuiiiiiiieiieiieeestie ettt 48
15 Accessto External FUNCLIONS and Dat@.........ccceeueriiiiiiie et 50
T = o o] = OO 50
16 USING the PerSiStENCe LibIary. .o ittt s 54
17 Graphical UsSer INTEIFaCE......c.i i e e 56

L7. 0 GUIENV. .ttt b e e bt e et e st e e eb e e s e e nn e e s nn e e nan e 56

2 Y, 0 1 = Y/ 61

18 CONCUITENTE LIDE AN Y. ittt et b ettt sab e et st st eaes 64
RS = o o] ORI 64
18.2 Concurrency and User Interface ENVIroNmentS..........cooeeieeieiieeieenie e 66

19 THE FragMeEnt SYSLEIML... ..ottt ettt sttt st st ebe et eaes 72
19.1 Interface and IMPlEMENTALIONc.eiiieiieieeeee e eeas 74

RN BICES. ...ttt ettt et ettt et ea bbbt ab et eae e et e e 77

List of Programs

Program 1: HEOWOrTA.DEL ..o 1
Program 2.1: SImpleTypesWithErrorshet.........occovvieiiniiieee e 3
Program 2.2: SImpleTYPES.DEL.......c.ooiiiie e 5
Program 3: EXPlOreTYPES.DEL.......ooiiiiiei e 8
Program 4.1: MultiplicationL.DeL..........cooeoiieiieiieieeee e 11
Program 4.2: MUltiplication2.beL...........ooeoiiiiiiiieieee e 13
Program 5: SQUAreROOL.DEL..........cceeiiiiiieiieie e 16
Program 6: MultipleAsSigment.DeL...........cooveiieiiinieee e 19
Program 8: StaticANADYNamMIC.DEL........cceoiiiiieieieee e 27
Program 9.1: QUICKSOIT.DEL.......c.eiiiiiieieee e 30
Program 9.2: MultiplicationTable.bet..........oooiiiiiiieeee 32
Program 10.1: CountChar.Det...........cooiiiiiiiiieee e 34
Program 10.2: CountCharl.DeL..........cceeiieiiiiieie e 35
Program 10.3: CountChar2.Det..........ccooiieiieneeiie e 37
Program 11: LiStDirDet........cooiiiiiiieieeee e 39
Program 12.1: FileCount.DeL.........ccooiiiiiiieeeee e 41
Program 12.2: StaticAndDyNamiC2.bet.........ccceevieiiiieinieieneeee e 43
Program 13.1: SaveListDir.Del........cooiiiieiiiiee e 45
Program 13.2: DirTable.Det.......cc.ooieiieeeee e 46
Program 15: Person.DeL........cooioiiiiiiieeee s 53
Program 16.1: DirLiSt.Del......ccueoiieieeieee e 54
Program 16.2: SaveListDir2.D6t........cccooviiiiiiieiieieeee e 54
Program 16.3: SaveListDir3.D6t........cceoiiiiiiiiieee e 55
Program 16.4: GetListDir.bet.........ccoooeiiiiiiiee 55
Program 17.1: TeXtEAItOr.Det........cceoiiiiieieeeee e 59
Program 17.2: HEllO.DEL.......ooiiiieeee e 62
Program 17.3: SCAlE.DEL........cooiiieicee e 62
Program 18.1: SECONUS.DEL........ccueiiiiiieieeieee e 65
Program 18.2: CIOCK.DEL........cc.eoiiiiiieiieiee e 66
Program 18.3: Clock TeXtEditor.et...........coveveeiiiiiieeee, 69
Program 19.1: HelloWorld.Det..........coooiiiiiieeeeeeeeee e 72
Program 19.2: HelloWorld with filled program sSlot..........ccccovevieneeneinennnen, 73
Program 19.3: putBoxed.Det...........c.ooiiiiiiie 73
Program 19.4: HelloWorld.Det..........coooiiiiiiieeeeeeeee e 73
Program 19.5: Helloworld with filled program and LIB slat...........ccccevueeneee. 74
Program 19.6: putBoxed.Det...........c.ooiviiiiiiii 75
Program 19.7: putBoxedBody.Det...........cooiiiieiiiieeeee e 75
Program 19.8: HelloWorld.Det..........ccooiiiiiiiieeeeeecee e 75

Program 19.9: HellowWorld with filled program and LIB slat...........ccccceeueeneee. 76

1 Hello World

We start with the simplest of all programs that prints the statement “Hello World” on
the screen.

ORIA@ N ' ~bet a/ basi clib/ vl1.6/betaenv'
--- program descriptor ----

(#
(* Hellowrld.bet:
*
* Aut hor: J. Vaucher
*
* Pur pose
* This is the sinplest program possible.
* Being able to conpile and run it shows that the
* conpi l er exists and that PATHS and ALI ASES have been
* correctly set. It also brings out “rmeta-progranmm ng”
* considerations like the “fragnent” system
*
")
do
"Hello world !'" -> putline
#)

Program 1: HelloWorld.bet

Thisillustrates the basic syntax of a BETA program:

(#
<decl arati ons>
do
<st at enent s>
#)
In this case, there are no declarations and the statement part is merely a simple output Declarationsand
statement. Statements

The bulk of the program text is in the form of a comment traditionally delimited by (*
and *) . In the BETA book [Madsen 93], comments are shown delimited by { and }
but the compiler only recognizes the form shown in Program 1.

The first two lines of the program are not strictly BETA (but are essentia for correct
compilation). They are part of the fragment specification language that describes inter-
relationships between the various BETA modules that compose a complete program.
A brief introduction of the fragment system is given in the last section of this tutorial.

The firgt line formally identifies the library environment required by our program; in betaenv
other words, it gives the file path name of the BETA module where al the basic func-

tions and procedures (such as putline) have been defined. In this respect, it acts

much like the #i ncl ude <stdio. h> statement seen at the beginning of most C pro-

grams.

The body of the program is a simple procedure call to do output. It is interesting to
compare the syntax of BETA's procedure calls with that of other languages:
Ct+: cout << "Hello world !"; Screen Output

C printf("Hello world '\'n");
BETA: "Hello world ! -> putline;

In BETA, the syntax of procedure callsis made identical to that of simple assignments
(or message passing). Evaluation is strictly left to right: parameters are evaluated; then
passed (- >) to an object put | i ne whose role is to output them to the screen. Finally,

note that text constants are delimited by apostrophes (*").
The bet aenv library and many of the other libraries used in this tutorial are docu-
mented in theM @l ner System manual [MIA 90-8].

More information

2 Simple Types and Output

In our next program we declare variables of the 4 basic types defined in BETA:
i nteger , real , char and bool ean. Values are assigned to these variables and they are
written out. The first version of our program is shown in Program 2.1.

CRIA N ' ~betal/ basiclib/ vl.6/betaenv' Simple types

---- program descriptor ----
(***

*

* Sinpl eTypesl. bet: A programto show handling of sinple types
*

* Note: this programw |l not conpile
*

***)

(#1,j,k: @nteger;

X,Y,z: @eal;
c: @har;
b1, b2: @ool ean;

do 111->i;
10->) -> k;
i +3* j->k ;
3. 1415- >x;
10e5- >y;
"X ->c;
true->bi;
new i ne;
"Printing out integers'->putline;
" i ="'->puttext; i->putint; newine;
" j ='->puttext; j->putint; newine;
"k ="'->puttext; k->putint; newine;
new i ne;
"Printing out reals: '->putline;
' X ='->puttext; x->putreal; newine;
'y ='->puttext; y->putreal; newine;
'z ='->puttext; z->putreal; newine;
new i ne;
"Now for a character, C="'->puttext; G >Put;
"" and as a integer: '->puttext;

G >putint; newine;

new i ne;

"Printing out bool eans: '->putline;

' Bl = '->puttext; bl->putbool ean; new i ne;

' B2 = '->puttext; b2->putbool ean; new ine; new i ne;

"Now for sonething very Glike."->putline;
"' A T+ 3->put: ' ->puttext;
"A + 3->put;

new i ne;
#)

Program 2.1: SimpleTypesWithErrorsbet

Again, one notes the initial fragment ORI G N statement, a comment, and then the pro-
gram.

The declarations are Pascal-like with the addition of the @character. In BETA, the
same declaration syntax will be used for types, variables, classes and procedures. In
this context, the @denotes a static variable declaration whereas a declaration without
the @corresponds to atype declaration.

The first few statements after the do show arithmetic and assignment. Arithmetic ex-
pressions follow convention; the usual operators (+,- ,* , / (or div) and nod) are
provided. Assignment goes left to right following the arrow and multiple assignment is
allowed.

The next few lines show the syntax of real, character and boolean constants. Note that
characters use the same delimiters as text strings.

In the remainder of the program we do output. The procedures used are:

* newine: skipsto anew line

* puttext: writes a text

* putline: same asput t ext followed bynew i ne
* putreal : outputs area

* put: outputs a character

* putboolean: outputsaboolean

Characters are type compatible with integers and can be used interchangeably in
expressions. An example of thisis shown at the end of the program.

When we try to compile SinpleTypesWthErrors.bet , we get the following
semantic error message:

put r eal
*****Name i s not decl ared

put bool ean
*****Name i s not declared

There is also a complete listing of the program text with the same error messages in
Si npl eTypesWthErrors. st to help localize the errors. In this case the error is due
to the fact that put real isnot in the standard environment. putreal isin alibrary that
must beincludedin the progrant. Likewiseput bool ean isinthetext Wils library.

The Mjglner System comes with a library supporting a wide range of input and output
for numbers (integers, based integers, reds, etc.) called nunberio. In order to print
reals on the screen, this library must be included. A library isincluded using a fragment
I NCLUDE statement:

CRIA N ' ~beta/ basiclib/ vl1.6/betaenv';
| NCLUDE ' ~beta/basiclib/ vl1.6/nunberio';
| NCLUDE ' ~beta/basiclib/ v1.6/textWils';
---- program descriptor ----
(#

i,j, ki @nteger

1 putreal isnotinthe standard environment in order tominimize the size of the resulting binary
excutable for simple programs that only uses the basic enviranent. nunber i o contains
operations like,put /get real and put /get based .

Static Variables

Screen Output

Type
Compatibility

Static Semantic
Errors

Simple types
with numberio

< original program >

#)

Program 2.2: SimpleTypes.bet

And the results are shown below.

Printing out integers

i =111
j =10
k = 141

Printing out reals:
x = 3.141500
y = 1000000. 000000
z = 0. 000000

Now for a character, C="X' and as a integer:

Printing out bool eans:
Bl = true
B2 = fal se

Now for sonething very Glike.
"A+ 3->put: D

88

3 Arithmetic and Expressions

We will start with the simplest of all expressions:

3.1 Constants
BETA accepts constants in the usual formats:

Integer
1, 1666, 0, -12

There is also aformat (<base>X<nunber >) for integers in other bases. All the follow- Based Integers
ing constants representsL1:

2x1011, 3x102, 16xB, Oxb, 11
Predefined constants exist fonvaxl nt and M nl nt inbet aenv .
Reals
3.14159, 3E9 , 3.14E-9
Predefined constants exist fovaxReal and M nReal inthemat h library.
Booleans
true, false
Text and Characters
"a', 'ABC
* acharacter isatext of length 1.

» the text delimiter character can be represented by doubling: ' ''H "' , is the
text " H '

» following the C convention, many useful control characters can be introduced Control
by using the backslash: \ t* for tabulator and' \n* for newline. Characters

3.2 Evaluations

In BETA, the term evaluation is used to refer to expressions, assignment statements
and procedure calls.

For evaluations arithmetic, boolean and relational operators are provided. The opera-
tor precedence is similar to C with the AND and OR operators considered to be on a par
with * and + respectively. This means that parentheses will often be needed to obtain
the desired result. The priorities are shown below:

Relative Priority Class Operators Operator priority
least relational =, <> > >= <, <=

additive +, -, Or, Xor

multiplication *, 1, div), mod, and
highest unary not, -, +

When area value is assigned to an integer the fractional part is removed irrespective Math Library
of the sign of the value. Various functions for manipulating reals, including rounding,

| og, | 0g10, sin, cos, tanh, sqrt, and power are available in the mat h library. This
library aso contains predefined constants such as Pl , e, pi hal f (Pl/2), | og2e (log(e)
to base 2),1 og10e (log(e) to base 10),I n2 (natural log of 2), etc.

The max, mi n and abs functions are not generic; they do not work properly with reas
since they will convert input values to integers. Instead the functions f max, f m n and
fabs inthemat h library could be used.

Finally, since characters are type compatible with integers and there is no type control
at this level, some interesting evaluations may be done, such as:

(i+1) * ("a * i) / 4.33->putint

The program shown in Program 3 shows some of the things discussed here. First, it
includes both the nunberi o and the mat h fragments required for the numeric work. It
also shows our first proceduret ab, introduced to help simplify formatting the output.

CRIA N ' ~betal/ basiclib/ vl.6/betaenv';

| NCLUDE ' ~beta/basiclib/ vl1.6/nunberio';
I NCLUDE ' ~beta/basiclib/ vl1.6/math';
---- program descriptor ----

(#

(* p3.bet: Exploring types and functions

***)

i,j, ki @nteger;
X,Y,z: @eal;
tab: (# do ' "->puttext #);
do '\ nEnvironnent constants: \n\n'->puttext ;
"\t MaxInt = '->puttext; maxint->putint;
"\n\t MnInt ="'->puttext; mnint->putint;
"\n\t MaxReal = ' ->puttext; maxreal ->putreal (# do exp->style #);
"\n\t MnReal = '->puttext; mnreal ->putreal (# do exp->style #);
3->i; -10->j;
"\n\n *** S nple functions *** \n'->puttext;
"\n I J max(1,J) mn(l,J) abs(J) \n ->puttext;
tab ;

i ->putint; tab;

j->putint; tab;

(i,j)->max->putint; tab; tab;

(i,j)->mn->putint; tab; tab;

j ->abs->putint;

"\n\n *** Reals ***\n' ->puttext;

"\ nX Y fmax(X,Y) fmn(XY) fabs(-
3.6) \n' ->puttext;

3.01->x; 3.78->y;

X->putreal; tab;

y->putreal; tab;

(x,y)->max->putreal ; tab; tab;

(x,y)->fmn->putreal ; tab; tab;

- 3. 6->fabs->putreal ;

"\m\nPi ="'->puttext; pi->putreal;

‘\ncos(Pi/4) ="->puttext;

(Pi div 4)->cos->putreal;

"\n\nM xing types: (i+1) * ("'a""'" * i) [/ 4.33 ->

put Text; ' = '->put Text;
(i+1) * (*a * i) [/ 4.33->putint;
new i ne;

#)

Program 3: ExploreTypes.bet

Type
compatibility

In BETA, procedures, types and objects are treated in a unified manner asvariations of ;o1
a single concept, thepattern The general syntax for such a pattern declaration is:

<names>: <descri ptor>

In the smplest case, the object descriptor is what we have called a block which can

contain declarations and imperatives. In the case of procedures which need parameters

or functions which return results, there can aso be input and output parameters but we

leave that for later.

In our example;t ab is defined by: Procedure

tab: (# do' ' -> puttext #);

This has neither parameters nor a result. tab merely stands for the more lengthy
statement which outputs a string of 4 blanks. Contrast this declarations with that of the
variables for i,j, .,z which use @to indicate that space is to be reserved for the
variables.

Returning to our program, we first print out the maxi nt and ni ni nt constants defined
for both integers and reals. Note the use of control characters, e.g. ' \n' inthetitlesto
do some formatting.

Next, we show the use of the ni n, max and abs functions on integers. We aso use the
t ab procedure to space out the printed results.

After that we apply thef ni n, f max andf abs to reals.

Then we print PI , one of the built-in constants defined in nat h, as well as the value of
cos(45 degrees) . Note that angles must be expressed as radians.

To finish off, there is a mixed evaluation with integers, booleans, characters and real.
The results of executingexpl or eTypes are shown below:

Envi ronnent constants:

Maxl nt = 2147483647
Mnint = -2147483648
MaxReal = 1. 797693e+308

M nReal = 2. 225074e- 308
*** Sinple functions ***

| J mex(1,J) mn(l,J) abs(J)
3 -10 3 -10 10

* Kk Reals * k%

X Y f max(X, V) fmn(XY) f abs(- 3. 6)
3.010000 3.780000 3.780000 3. 010000 3. 600000

Pi = 3.141593
cos(Pi/4) = 0.707107

Mxing types: (i+1) * ("a" * i) / 4.33 = 268

For more sophisticated examples on use of reals and math functions, the reader should
look at the demonstrations programs:

e realtest. bet

 putreals. bet

These are located in the reals demo directory dsasiclib.

4 Multiplication Table

In this section, we will take on the simple task of printing out a multiplication table of
the integers from 1 to 9. For the purpose of illustration we shall introduce the follow-
ing concepts:

» procedure with parameters
* thefor imperative
* theif imperative

for printing in fixed width columns. We shall also show the correct BETA way to do
formatted output, involving introducing an extension to a virtual pattern.

The f or imperative

In BETA, al syntactic structures have a smilar form of delimiters with opening and
closing parentheses and the or is no exception:

Block: (# ... #)
Comment: (* ... *)
For:(for ... for)

In opposition to other languages where the f or can count up or down and the step can
be varied, in BETA only a smple version exists going from 1 to N where N is an ex-
pression (or evaluation to use the BETA terminology). This follows the BETA mini-
malist philosophy of providing the strict minimum combined with powerful extension
mechanisms.

More precisely, there are two forms of the f or , depending on whether one wants to Two kinds off or
have access to the counting variable or not. These are:

(for <eval uati on> repeat <inperatives> for)

and

(for <var> : <eval uation> repeat <inperatives> for)

Both forms will be used in this section. Note that the loop variable <var > acts as a lo-
caly defined variable and is only accessible inside the f or imperative. Thus the loop
variable<var > need not be declared elsewhere.

Neglecting labels, the body of our program could have the following form:
(for i:9 repeat
(for j:9 repeat
i*j -> putint;
2 -> tab;
for);
new i ne;
for);

Where tab is a procedure that outputs blanks to separate the integers printed with
putint . In contrast with previous versions of tab which printed a fixed number of
blanks, here we provide it with a parameter N to indicate the number of spaces to
write. Above, in2 -> tab, we want to print out 2 spaces.

In BETA, parameters are considered to be local variables which are assigned values o, .meter list
from an input list before executing the procedure body. Hence they are declared the
same way as any other loca variable. The number of actual parameters that must be
supplied and which local variables will receive these values is specified by an ent er
list. t ab can be defined as follows:
tab: (# N @nteger
enter N

do (for N repeat
#);

-> put for)

The enter list comes after the declarations and before th# part.
Here is the program:

ORIA@ N " ~bet a/ basi clib/ vl.6/betaenv'
---- program descriptor ----
(#

(* Multiplication Table

*

* (bjectives:
* - use the FOR inperative
* - introduce a paraneterized procedure

*)
tab: (# N @nteger

enter N
do (for Nrepeat ' ' -> put for)
#);
do "\n\t** Miltiplication Table ** \n\n'-> puttext;
4 -> tab;
(for i: 9 repeat

i -> putint; 2->tab;
for);

new i ne; new i ne;

(for i: 9 repeat
i->Putint; 3 -> tab;
(for j: 9 repeat

i *j->putint ;
2 -> tab;
for);
new i ne
for)
#)

Program 4.1: Multiplicationl.bet

Since this program uses no reals, we have used the same smplified fragment state-
ments that we used in our first program. The results are shown below:

** Miltiplication Table **

[N
N

4 5 6 7 8 9

8 10 12 14 16 18
12 15 18 21 24 27
8 12 16 20 24 28 32 36

3
3 4 5 6 7 8 9
6
9

OCOO~NOUIRA~AWNBE
OCoO~NOUOPR~WNBE
l_\

o
H
(6)]

)

o
N
(6)]

w
o
w
(€3]

N
o
N
ol

In this output, the columns do not line up because some of the integers use require a
single digit and others require 2 an@ut i nt prints with minimum space.

To overcome this, we will write a simple procedure to output an integer in afield of
width w. By simple, we mean that it will only work with positive integers less than
1000. To determine the number of digits required to print an integer we use the i f
imperative. The f imperative has two forms:
(if <BExp> then
<l nper at i ves>
el se

<l nper at i ves>
i);

and
(if <Exp>
/1 <Exp> then <l nperatives>
/1 <Exp> then <l nperatives>
/1 <Exp> then <l nperatives>
el s.e. .

<l nper at i ves>
if);
A first crack at the code to computenD the number of digitsin an integer is:
(if true
/i <10 then 1 -> ND
/1 i <100 then 2 -> ND
else 3 -> ND
if)
This is coded along the lines of the standard i f ..el se if.else if... pattern of other
languages such as Pascal or Simula but is not quite correct according to the strict
definition of the i f imperative, because the i f does not specify that the aternatives
will be evaluated in a sequential manner. Therefore if 1 = 5, ND could receive either 1
or 2 as avalue. Although the code would probably work, it should be written as:

(if true

/1 i <10 then 1 -> ND
/1 (i>=10) and (i<100) then 2 -> ND
else 3 -> ND

if)
Remember that the parentheses are required in the second alternative due to the opera-
tor priorities.

Now we can design a procedure, (N, W -> Qutint , that will print an integer N right
justified in a field of wspaces wide. This procedure will require alist of 2 parameters
when it iscalled.

Qutint:

(# NW @nteger;

enter (N W

do (if true
/1 N<10 then 1 -> ND
/1 (N>=10) and (N<100) then 2 -> ND

else 3 -> ND

if);
ND -> tab;
N -> putint;

#);

The complete modified program is given below and the output follows.

Simplei f

Generali f

Procedure
arguments

ORIA@ N ' ~bet a/ basi cli b/ vl1.6/betaenv'
---- program descriptor ----
(#

(* Multiplication Table 2

*

* (bj ectives:

* - use the IF and FOR i nperatives
* - use procedures & paraneters
*
)
tab: (# N @nteger;
enter N
do (for Nrepeat ' ' -> Put for)
#);
Qutint:
(# NW ND: @nteger;
enter (N W
do (if true
/1 N<10 then 1 -> ND
/1 (N>=10) and (N<100) then 2 -> ND
else 3 -> ND
if);
WND -> tab;
N -> putint;
#);

do
"\n\t** Miltiplication Table ** \n\n'-> puttext;

4 -> tab;

(for i: 10 repeat
(i,4) -> Qutint;

for);

new i ne; new i ne;

(for i: 10 repeat
(i,4) -> Qutint;
(for j: 10 repeat

(i*j,4) -> Qutint;

for);
newl i ne

for)

#)

Program 4.2: Multiplication2.bet

and the results:
** Miltiplication Table **

[N
N

3 4 5 6 7 8 9 10

QUOONOOUDNWNE
QOWONOOUIDNWNBE
H
N
l_\
0
N
~
w
o
w
(o]
N
N
N
(0]
a1
N
o))
o

=
[

Finally, the way formatted output is done in the demo programs distributed with the 1 atted output
Mjdner System. It involves extending the virtual pattern f or mat defined in putint .
Thustheaut | nt procedure of Program 4.1 should be rewritten as follows:
Qutint:
(# NW: @nteger;

enter (N W
do N -> screen.putint(# format:: (# do W-> width #)#)

#);
and the results would be identical to those obtained previously. The latter procedure
would be much more robust, accepting any positive or negative integer value. Program
Multiplication3.bet uses this procedure. See also Section 12.1.

5 Loops and Functions

In this section, we take on the task of writing a function that computes square roots.
This will lead us to consider conditional looping and the definitions of functions, or in
BETA terms, patterns that can return values.

To compute a square root we will use Newton's algorithm where the computation is
done by successive approximations until the error is less than a preset level (epsilon).

The usua way to program this involves a while loop. In C, the code to get the root of
X could look like this:
Root = X;
whil e (abs(X-Root**2) > epsilon) {
Root = (Root +X/root) / 2;
}

Assuming thatX = 100, the calculated values ofRoot in each iteration will be:

150.5

226. 2401

315. 0255

410. 8404

510. 0326

610. 0001

710. 0000... and the | oop ends.

Surprisingly, there is no while loop in BETA language. BETA is designed with a more
fundamental (and extensible) feature as the ability to either leave or restart any labeled
imperative. In the basic BETA environment bet aenv, a loop pattern using these
featuresis defined and can be used like:

X -> Root; While loop
Loop(# while:: (# do (X Root*Root -> fabs) > X/ 10E6 -> val ue #); in betaenv
do (Root + X/root) / 2 -> root;
#);

A while loop can aso directly be implemented using a labeled imperative with a
restart . The following BETA code is a repeated conditional imperative implemented
using alabeled f with arestart imperative at the end:

X -> Root; While loop using
L: (if (X Root*Root -> fabs) > X/ 10E6 then labeled
0.5 * (Root + X div Root) -> Root; imperative and
restart L; restart

if);
Here, the error, epsilon, is set at one part in a million. The complete program code is
given in Program 5 below. Here the code for the Square Root has been put in the form
of a procedure which returns a value: that is to say a function. As shown in the exam-
ple, afunction call has the following syntax:

i ->Sgrt -> Res;
We have already seen the notation <par anet er s> -> <procedure> Wwhereby data is

passed (as parameters) to the procedure object. In BETA, the same syntax is used to
show that results are obtained fronsgrt and passed on toRes.

CRIA N ' ~betal/basiclib/ vl.6/betaenv';

| NCLUDE ' ~beta/ basiclib/ vl1.6/nunberio
'~beta/basiclib/ vl.6/math';

---- program descriptor ----

(#

(* SquareRoot. bet: Exploring functions
* + conditional | oops
*)

Res: @eal;

Sort:
(# X, Root: @eal;
enter X
do X -> Root;
Loop(# while::
(# do (X-Root*Root -> fabs) > X/ 10E6 -> val ue #)
do (Root + X/root) / 2 -> root;
#);
exit Root
#);

t ab:
(# N @nteger;
enter N
do (for N repeat
#)

"-> put for)

do "\n\t ** Functions and variables **\n'" -> putline;
" sgrt(i) ' -> putline;
(for i:10 repeat
i ->Sgrt -> Res;
i ->putint(# format:: (# do 2 -> wi dth#)#);
3-> tab;
Res -> putreal;
new i ne;
for)

Program 5: SquareRoot.bet

The declaration of Sgrt shows an exit list which defines the list of values obtained Function results
after executing the body of the function. In this case, there is only one value, areal, but
BETA functionscould return multiple results.

The output obtained upon execution are shown below.

** Functions and vari abl es **

sgrt (i)
1. 000000
1. 414214
1. 732051
2. 000000
2. 236068
2. 449490
2. 645751
2. 828427
3. 000000
3. 162278

QOWO~NOOUITRA,WNE—

=

6 Assignment and Procedure Calls

We have previously mentioned that BETA strives for minimalism along with orthog-
onadlity. So far we have hidden this fact by programming in a standard fashion and
presenting the programs with traditional concepts such as variables, functions, as-
signment statements, etc. Now we shall begin the study of BETA’s particularities by
considering assignment.

We have aready noticed that BETA evauates expressions left to right and uses an
unusual assignment operator, ->. Our examples have shown simple examples of as-
signment such as:

i+l ->i;

In BETA, we can do more: assignment is defined to operate on lists of values with
single value assignment being a special case. Thus we can say:

(1,2,3) -> (i,j,k);

Which has the same effect as the series of simple assignments:
1->i; 2->j; 3->Kk;

We can also cascade such assignments:
(a,b,c) ->(mn,o0) ->(x,y,2) ;

If we just consider the first items in the lists, the above statement means that we take
the value ofa and pass it on tom then we take the value ofmand we pass it on tox.

If the number or types of the itemsin lists do not match, an error is signaled:

(111, 222) ->i;
or

"string' ->i; (* where i is an integer *)
So far, thisis all pretty obvious but, in BETA, the destination of an assignment is not
restricted to being a simple variable or a list of such variables; the target of an as-
signment can also be a more complex object with an enter list. In that case, assign-

ment takes place between the values in the list on the left and the variables named in
thetarget’ senter list.

If both the sources and target T of an assignment are complex objects, the assigment:
S->T;

becomes a multiple assgnment between theexi t listof S, (0L, .., G, ..) and theent er
lissof T(11,..,1i,.). Inaddition, thedo part of S is executed before this multiple as-
signment and thedo part of T is executed after. In other words, this happens:

1. Executedo of S
2.(a,.a.)->(1,.Li.)
3. Executedo of T

For cascaded assignments:
S->T-> U

Evaluations

Complex
evaluations

We have:
1. Executes
2. Output of S -> input of T
3. ExecuteT
4. Output of T -> input of U
5. Executeu

Note that the body of each object mentioned in the assignment is executed once. Of
course, defining assignment between complex structures or objects in terms of as-
signment between individua exit expressons and enter variables is a recursive
explanation which eventually leads to assignment between primitive objects like inte-
gers which has an obvious interpretation in terms of machine code. This is described in
great detail in section 5.8 of the BETA Book.

Note that absence of a do part has no effect on assignment: it is equivalent to a null
statement; but absence of an enter or and exit part has great importance. An object
without an exi t part cannot appear as a source in an assignment. Similarly, an object
without anent er cannot appear as atarget.

This property is exploited in the mat h fragment to define read-only objects or con-
stants These have only arexi t list:

e: (# exit 2.7182818284590452354 #);
Pi: (# exit 3.14159265358979323846 #);

BETA'’s generalized definition of assignment means that there is no fundamental dif-
ference between assignments and procedure calls. Following from this argument is the
fact that procedure declarations and type declarations will be syntactically identical. To
illustrate this, consider the following declarations. The first is a type definition for a
complex numbers with two real attributes. The second is a procedure that adds reals
numbers.

complex: (# Re,Im @eal;
enter (Re,Im
exit (Re, 1M
#);

add: (# A B @eal;

enter (A B)

exit A+B

#);
These definitions have been purposely made aike. There is no do part in ether; the
computation for add being done by an expression in the exit list. Each has 2 local
real attributes. Each has an enter list and an exit list, meaning that objects of the type
conpl ex and those of the type add can be assigned values and can provide values and
thus can be used on both sides of an assignment statement. For example:

(1.0, 3.3) -> conplex -> (X,Y);
(1.0, 3.3) -> add -> x;

In the case of conpl ex, the output value is an exact duplicate of its local state and of
the input values: conpl ex objects will be used mainly for their storage potentia (as
variables). With add, the output value is computed from the state (input) values. add
objects are more useful for this computational aspect. In actual fact, conpl ex would
seldom be used directly in such an assignment; it would more properly be used as a
model for variables which would in turn be used in assignments.

Constants

Procedureand
type declarations

Local state

(# cl1,c2: @onplex;
do (1.0, 3.3) -> cl;
cl -> c2;
#)
The point, however, isthat BETA does not distinguish between types and functions. It
considers both as examples of a more fundamental concept: the object, which can be
used for many things depending on how the programmer chooses to define and use it.

The program below shows the examples that we have talked about:

ORIA@ N ' ~bet a/ basi clib/ vl.6/betaenv'
---- program descriptor ----

(#

(* Mil tiple assignment and function calls *)

i,j,k : @nteger;

N nes: (# exit 99999 #); (* Constant *)
conplex: (# Re,Im @nteger;
enter (Re,1m
exit (Re,Im
#);
add: (# A B @nteger;
enter (A B)
exit AtB

#);
do
' Exanmpl es using multiple assignnent and function calls' ->
putline; newine;
"Qutputting a constant: N nes="' -> puttext;
N nes -> putint;
new i ne; new ine;
'(1,2,3) -> (i,j,k); "-> putline; newine;

(1,2,3) -> (i,j,k);

" I="->nputtext; i -> putint;

', J='"->puttext; | -> putint;

", K='->puttext; k -> putint; newine,;
newine; "(i,j) ->(j,i): ' -> puttext;
(i,0) ->(,1); _ _

" I="->puttext; i -> putint;

", J='-> puttext; | -> putint; newine;

"Note that (x,y) -> (y,x) doesn''t inply swap semantics.' ->
putline; newine;

(*** More exanples ***)' -> putline; newine;

(111,999) -> conplex -> (i,j);
(111,999) -> add -> Kk ;

" I="->nputtext; i -> putint;

, J='-> puttext; | -> putint;

", K='->puttext; k -> putint; newine;

#)
Program 6: MultipleAssigment.bet

Now for its output:

Exanpl es using rultiple assignnent and function calls
Qutputting a constant: N nes= 99999
(1,2,3) -> (i,]j.,k);

=1, J=2, K= 3

(i,j) ->(j,i): =1, J=1
Note that (Xx,y) -> (y,Xx) doesn't inply swap semanti cs.

(*** More exanpl es ***)

=111, J= 999, K= 1110

7 Patterns and Variables

In this section, we get a bit more formal with the BETA way of expressing object-ori-
ented concepts. This section treats topics from chapter 3 of the BETA Book but with a
slightly different approach.

Often object-oriented concepts are summarized as follows:

1) Objects are meant to represent the things that we see or talk about in the real
world.

2) Objects have properties. These are often divided between state (attributes) and
potential actions (services, methods or scripts).

3) Objects which have the same attributes and behave the same way are said to be-
long to the same class. A class definition specifies the attributes and actions
common to all objects of the same class. The objects described by a class are said
to be instances of that class.

4) Often it is useful to introduce the notion of class hierarchy to reflect various
levels of similarity. The specification mechanism which allows incremental de-
scription of the similarities at each level is calledheritance

Object-oriented
concepts

Inheritance

5) Additionally, some languages model the fact that individual objects can operatein Concurrency

parallel. Theseactive objects are sometimes called agents, processes or actors.

Actualy, in this section, we will only talk about points 2 and 3. Point 1 is included for
completeness and point 4 is not covered in this tutorial (see the BETA language in-
troduction [MIA 94-26] or the BETA book [Madsen 93]). Point 5 will be covered
later.

In BETA, objects are described by a syntactic construct called an object-descriptor (or
descriptor for short). This has the form:
(# ... #)

and is used to specify the local attributes and actions of an object (or class of objects).

An unusual feature of the BETA object-descriptor (compared to other object-oriented
languages) is that, with enter and exi t lists, it introduces the notion of value for ob-
jects. The different facets of an object are defined by the various (optional) parts of the
object description:

(# <decl arati ons> Descriptor

enter <input list>
do <i nperati ves>
exit <output l|ist>
#)

This single concept of descriptor has been used to replace many diverse concepts that
we are familiar with from traditional languages. In particular, it is used for procedures,
functions, types, classes, macros and local blocks. These different roles are achieved by

using the descriptor in different contexts, by combining it with other operators or by
selective use of the internal parts.

7.1 Patterns and Variables

In BETA, a descriptor can be given a name. Thereafter, the name becomes a short-
hand form for the full description. The association of name and descriptor is written
amongst the declarations and is known as a pattern declaration. It has the following
syntax:

<pattern-nane>: <prefix> <descri ptor> Pattern

Thereafter, the pattern name or the descriptor can be used interchangeably and the declaration

term pattern is used to mean either form. prefi x is an optional name of a pattern that
pat t er n- name inherits from.

As we have seen previously, variable declarations are characterized by tB&ken:

<vari abl e- names>: @pattern> Static variable

declarations
Examples:

PONT:. (# X Y. @eal;
enter (XY)

exit (XY)

#);

P1, P2: @oi nt;
P3: @# X Y. @eal;
enter (XVY) exit (XY
#);
P1 and P2 are considered to be objects of the same class. Note also that case isimma
terial in BETA:PO NT being the same asPol Nt or poi nt .

Thereafter, the following assignments are allowed:
Pl -> p2;
(0,0) -> pl -> p2 -> p3;
Note that BETA uses structural equivaence in its value assignments and comparisons. Structural
This is not as strict as in other languages and assignment is possible between variables €duivalence
of any two patterns with similar enter and exi t lists. This was shown above (with
identical lists) and if we define another pattern conpl ex with two reals as value,
assignment will be allowed betweeRoi nt and conpl ex objects.
Cl: @Q# Re,Im @eal;
enter (Re, 1M
exit (Re, I M
#),

7.2 Attribute Access

So far we have concentrated on showing that BETA objects can behave either as
classica data variables or as procedures. The example patterns that we showed often
had local attributes (of primitive types) used either to implement value or to hold
temporary results of computations.

BETA objects also function as structured (or record) data and the local attributes are Structured data
accessible via the traditional dot notation. For the PO NT P1 defined in the previous
section, the examples below show how its local attributes X and Y can be both read and
set directly:
0->PLX 123 -> PLY;
P1. X -> putint;

Notice, that the first lineis equivalent tof 0, 123) -> P1 .

The local attributes can have any type and could be function objects. Below, we use a
modified Poi nt pattern which has a third attribute di st to compute the distance from
the origin.

Point: (# X Y. @eal;
dist: @# exit (X*X + YY) -> sqgrt #);

enter (XY)
exit (XY
#);

P1, P2 : @%oint;

This third attribute is read-only (because it has no ent er list) but can be consulted just
likex andy:

(3,4) -> P1;

Pl.dist -> putint;(* will print "5" *)
Many object-oriented languages enforce encapsulation by disallowing direct reading or
writing of the local variables and restrict access to the invocation of the local methods.
Smalltalk is the obvious example of this approach but even Simula, where by default all
local data and methods are accessible, introduced a Hidden/Protected mechanism to
allow protection. Thisis meant to enforce separation of the provided behavior from the
details of implementation.

In the BETA language, there is no provision for hiding the internal details of an object.
The mechanisms for protection as well as those for modularization and configuration
management are relegated to a separate fragment system which is described in the last
section of this tutorial.

Local function

Encapsulation

8 Dynamic Data Structures

The variables that we have declared so far (with @ are said to be static objects and the
variable names are said to batatic references

Advanced programming requires more than just static data structures. In particular, list
processing is based on the notion of dynamically created objects linked by pointers.
Recursive procedures also rely on dynamically allocated activation records. More to
the point, objects are generally created on demand withraew operator.

In BETA, pointers or dynamic references as they are called are declared very much as
in C using the * token. Below, we declare ref A and r ef B to be references to Poi nt
objects whereas the declaration for P1 and P2 cause storage space to be reserved for 2
points and associate (permanently) the namegl and P2 to those points.

refA refB: ~Point;
P1, P2: @oi nt;

Initially, ref A and ref B point nowhere and have the value NONE whereas P1 and P2
designate real live points. Thus, we can assign data ted but not tor ef A.

P1L -> P2 (* &K *)

PL -> refA (* run-tine error because refAis NONE *)
This seems norma but reread these two imperatives carefully. Anyone having used
pointers in other languages should notice that the BETA pointer concept is alittle dif-
ferent that most other languages. We have used (correctly) the same notation for the
variableand for thepointer. If this were C, with:

Poi nt p1, p2;

Poi nt *ref A *refB;
then r ef A would represent the address of aPoi nt and *r ef A would be used to denote
the contentsof that Poi nt . In C, the assignments would have read

p2 = pl;

*ref A = pl,;
Now we can return to the BETA approach to dynamic data which is quite different
from the traditional one.

In BETA, apointer is treated as areference which may point to different objects (or to
NONE) at different times during execution whereas a variable is considered to be a
reference which will always denote the same object. Thus both are references but one
is static and the other dynamic and they will be used in the same way to access the
data. The concept of pointer storage address is avoided.

In BETA, smple use of a reference (static or dynamic) in an evauation refers to the
contents of the object referenced. Thus, assuming that r ef A and r ef B designate Points
(and not NONE) then,

(0.0, 0.0) ->P1 ->refA->refB-> P2 ;
means that the contents (or value) of each point is set to (0,0).

To manipulate references to objects and not just the contents, we need to use a refer-
ence operator. In BETA, this is a postfix operator written [] (read box). Thus the
following imperative:

Dynamic
references

Static and
dynamic
references

Reference
operator

refAl] ->refB];
has the effect thatr ef B now points to (references) the same object asef A.

BETA's approach is the converse of C's: BETA uses a referencing operator and C
uses a dereferencing operator.

Assignment Type | BETA | C

Content refA -> refB; *refB = *ref A
Reference refAl] ->refB[]; refB= refA

In BETA, it is also possible to make a dynamic reference denote a static object. This
can also bedonein C:

BETA: P1[] -> refA[]

C ref A = &P1;

This is one way to give dynamic references values other than NONE. The other and
more obvious one involves dynamic creation of new objects at run-time. In BETA, the
new operator iswritten&. Thus,

&Poi nt
causes a new point object to be created. Now, comes a delicate aspect.
To create a new object and to get the address of this new Poi nt , we aso need the ref-
erence operator:

&Point[] ->refAl;

As mentioned in section 3.2.3 of the BETA book, thisis a subtle point:

“The difference between & and &P[] is very important: the expression & means
‘generate a new instance of P and execute it’; the expression &[] means ‘generate a
new instance ofP without executing it and return a reference to this new object’.”

In C aPoi nt isallocated like this:
refA = (Point*) malloc(sizeof (Point));

The following program shows the use of static and dynamic references. This uses a
Poi nt user-type with integer attributes. There are 2 static references, P1 and P2, and a
dynamic reference, r ef A. At various points in the program r ef A points to either P1 or
P2 or to a dynamically allocated object. Note that access to Poi nt s via the static or
dynamic variables is syntactically identical. We assign various values to the three ref-
erences and use dunp to show the contents of the first attributes of al three. This
shows that effectively ref A designates various Poi nts during execution. At the end,
we show the use of a dynamically generated Poi nt in a cascaded assignment. In this
case, the purpose is just to show that it can be done and what happens. Useful version
of this dynamic generation will be shown later.

(111, 333) -> &Point -> Pl;
What happens hereis that
1) anew Poi nt object is created,

2) the values (111, 333) are assigned to the variables in the enter list of the new
Object,

3) the (empty)do part of the object is executed,

Dynamic
reference to
static object

New operator

Create and
execute

4) avalue assignment is done between the exi t list of the Poi nt and the enter list
of p1 and

5) finally, the (empty) do part of P1 is executed. The newly created Poi nt is inac-
cessible and the space it occupies will be reclaimed by the garbage collector.

Instead using the reference operator gives:
(111,333) -> &Point[] ->refAl;
What happens hereis that
1) anew Poi nt object is created,

2) the values (111, 333) are assigned to the variables in the enter list of the new
object,

3) a reference assignment is done between newly created object and ref A. ref A
now refers to the new object.

ORIA@ N ' ~bet a/ basi clib/ vl1.6/betaenv'
---- program descriptor ----
(#

(* Static and Dynanic references *)

Point: (# X Y. @nteger;

enter (XY)
exit (XY
#);
refA : "Point;
P1, P2: @oint;
Dunp:
(#
do 'P1: ' -> puttext;
P1. X -> screen.putint(# fornmat:: (# do 3->w dt h#) #);
', P2: ' -> puttext; P2.X -> putint;
", refA " -> puttext; refA X -> putint;
new i ne;
#);
do
"Dynanmic references' -> putline;
new i ne;

&Point[] ->refA];

(1,1) -> P1-> P2 -> refA

Bunp;

(2,2) -> P2
(3,3) ->refA
Bunp;

P1[] ->refA]; Dunp;
P2[] ->refA]; Dunp;

(1,1) ->P1; (2,2) ->P2; (3,3) ->refA
Bunp;

(111, 333) -> &Point -> P1;

Dunp;
Newl i ne;
#)

Program 8: StaticAndDynamic.bet

Create and return
areference

The results from execution are shown below:
Dynani c references

P1: 1, P2: 1, refA 1
P1: 1, P2: 2, refA 3
P1: 1, P2: 2, refA 1
P1: 1, P2: 2, refA 2
P1: 1, P2: 3, refA 3
P1: 111, P2: 3, refA 3

8.1 Primitive Types

In the previous section, all examples of static and dynamic references dealt with a user
defined type, Poi nt . Could we have done the same thing with one of the four primitive
types in BETA: integer , char, bool ean Or real ? The answer is no. For these 4
types, it is not legal to apply neither the new nor the reference operators. Similarly, we
shall see later that other limitations apply and these types cannot be used as prefixes
for other object definitions.

Thus the following expressions are illegal:

Ref Int: ~integer; (* |LLEGAL *)
&eal -> ...(* ILLEGAL *)

The reason is that for safe pointer operation, each object that can be designated by a
dynamic reference (pointer) needs extra space for administrative data. In the case of
primitive types, this overhead can be overwhelming and it has been chosen to handle
them differently (and more efficiently) than other patterns. This is the same approach
used in Simula, Pascal and Eiffel.

In Smalltalk, another approach was used: the language tries to treat all objects (and
types) in exactly the same way. This makes for a very powerful system but, in spite of
considerable research, Smalltalk programs are still bulky and notoriously slow.

With the & operator, C allows pointers to anything and this is a major source of errors
in C code that neither the compiler nor the run-time system can help to control.

For situations where one would like to use primitive objects in ways identical to user-
defined objects, BETA has defined 4 specid patterns: | nt eger Qoj ect , Char Obj ect
Real (bj ect and Bool eanObj ect . These are completely compatible with their primi-
tive counterparts (assignment, comparison, etc.) but dynamic creation (&), the refer-
ence operator (]), inheritance, etc., are allowed on them.

Objects of
primitive types

9 Repetitions (Arrays)

In BETA arrays are called repetitions
A [10] @nteger;
This repetition describes a set of static references to integers. 10 is called the range of Flexible and

the repetition (the upper bound). In spite that the lower bound is always 1, repetitions fé‘;‘;‘iﬁl‘gr’g
are flexible since the upper range is accessible as alocal attribute of the repetition, they
can be assigned, extended and sub-range access is possible (slices).
BETA repetitions compared to its C counterpart:
Language BETA C
Declaration A [10] @nteger; int [10] A
Lower 1 0
Upper A. range 9
Size A. range 10
Access Al Ai]
Assignment A -> B not possibl e
Extend 10 -> A extend not possible
Slices A 2.. 3] not possible
It should be noted that it is not possible to take the address of a repetition, i.e. A[] is
illegal (legal in C agA).
In the current Mjglner implementation, it is possible to declare repetitions of types.
char , bool ean, i nt eger , real , and any object reference:
(# Record: (# ... #); Object reference
A [100] “Record; repetitions

do &Record[] -> Al 1][]; (* create a new instance of Record and
* assign it to first entry in A *)

#)

Besides assigning values to the elements of a repetition, whole repetitions can be as-
signed to other repetitions regardless of their ranges, e.g.:

a: [10] @nteger;
b: [1] @nteger;
do (for i: Arange repeat (* initialize a *)
i ->a[i]; (* put i intoi’th position in repetition a *)
for);
14 -> b[1]; (* ais [1,2,3,4,56,7,8,9,10], and
* bis [14]
*)
a -> b; (* make repetition assignment:
*ais[1,2,3,4,5/6,7,8,9,10], and
*bis[1,2,3,4,56,7,8,9, 10]
*)
The next program illustrates how to use repetitions in a smple sorting program called Quick sort
quick sort, originating from C.A.R Hoare. Given a repetition, one element is chosen €xample

and the others partitioned into two subsets: those less than and those greater than or
equal to the partition element. The same process is then applied recursively to the two
subsets. When a subset has fewer than two elements it does not need any sorting and
the recursion stops.

In BETA it isillegal to use the reference operator on repetitions, and since the quick
sort algorithm is inherently recursive with the repetition as function argument in each
recursion, we face a problem. However, this problem is easily solved in BETA. We
simply define a pattern containing a repetition, and using an object of this type as the
argument to quick sort.

nunber Repetition: (# r: [1] @nteger #);

gsort:
(# nr: “nunber Repetition;
enter (nr[], ...)
do
#);
nunbers: @unber Repetition;
do

débrt(nun‘oers[] v)

So the limitation of not being alowed to take a reference to repetitions is easily cir-
cumvented.

The quick sort algorithm also uses a swap operation, that swaps two elements in the Local swap
repetition. This operation can be define locally inside (statically nested inside) gsort , function
SO swap can operate on the same repetition:

gsort:
(# nr: “nunber Repetition;
swap:
(#1i,j: @nteger;
tenp: @nteger;
enter (i,j)
do nr.r[i] -> tenp;
nr.r[j] ->nr.r[i];
tenmp ->nr.r[j];
#);
enter (nr[], ...)
do ...
#);

The complete code including a loop for reading numbers to be sorted from the key-
board follows below:

ORIA@ N ' ~beta/basiclib/ vl.6/betaenv';
---program descriptor---
(# (* Hoare QuickSort programillustrating howto use
* repetitions, sinple pattern declarations,
* bl ock structure and recursion.
*
nunber Repetition: (# r: [1] @nteger #);
gsort:
(# nr: “nunber Repetition;
left, right, last: @nteger;
swap:
(#1i,j: @nteger;
tenp: @nteger;
enter (i,j)
do nr.r[i]->tenp;
nr.rfjl->nr.r[i];
tenp->nr.r[j];
#);
enter (nr[], left, right)

do L: (if left >=right then (* stop if rep. contains *)
| eave L; (* fewer than two el enents *)
el se
(* move partition element to nr.r[1] *)
(left, (left+right)/2) -> swap;
left->last;
(* partition *)
(for i: right-left repeat
(if nror[i+left] <nr.r[left] then
| ast +1->| ast;
(last,i+l eft) -> swap;

if);
for);
(left,last) -> swap; (* restore partition elem *)
(nr[],left,last) -> gsort;
(nr[],last+1,right) -> gsort;

if);
#);
nunbers: @unber Repetition;
t: ~Text;
i: @nteger;
do
(* initialize a repetition with nunbers typed

* by the user
*

' Type sone nunbers: '->puttext;

getline->t[]; (* read all what the user types until newine *)
1->i;

t.reset;

L: (if not t.eos then

(* parse the text;

* assuming that the user only types nunbers

*

(i f i>nunbers.r.range then
(* remenber to extend the repetition *)
nunbers. r. range- >nunber s. r . ext end;

i)

t.getint->nunbers.r[i];

i +1->i

restart L;

if);

(* sort the repetition *)
(nunbers[],1,i-1) -> gsort;

"Sorted nunbers: '->puttext;

(for j: i-1 repeat
nunbers.r[j]->putint; " '->put;

for);

new i ne;

#)
Program 9.1: QuickSort.bet

Running the program and typing some numbers results in the following output:

ni | % Qui ckSort
Type some nunbers: 9846 3827 124527856102
Sorted nunbers: 01222345667 889 1245 78

9.1 Multidimensional Repetitions

It is not possible to make multidimensiona repetitions using the current version of the
Mjalner System. However, multidimensional repetitions are easily constructed, e.g. a
repetition with dimension NxM can be declared like:

mul _table: [N'M @nteger;
which isintended to realize atwo-dimensional array of the form:

j—=> M

The following example shows how the multiplication table constructed in section 4
previously can be stored in atwo-dimensional repetition:

ORIA@ N " ~bet a/ basi clib/ vl1.6/betaenv'
---- program descriptor ----

(* Multiplication Table 3
*

* (hjective: Store values in a repetition
*
N, M @nteger;
do
"\n\t** Miltiplication Table ** \n\n'-> puttext;
"Enter dinensions (NxM: '->puttext;
getint -> N
getint -> M
(# mul _table: [N*M @nteger;
do (* build table *)
(for i: N repeat
(for j: Mrepeat
i*j ->mul_table[(i-1)*M+ j];
for);
for);

(* print table *)
new i ne;
' '->puttext;
(for i: Mrepeat
i ->screen.putint(# format:: (# do 4-> width #)#);
for);
new i ne;
(for i: N repeat
i ->screen.putint(# format:: (# do 4-> width #)#);
(for j: Mrepeat
mul _table[(i-1)*M+ j]
-> screen.putint(# format:: (# do 4-> width #)#);
for);
new i ne;

Program 9.2: MultiplicationTable.bet

10 Files

Our objective in this section is to open afile and analyze the characters that it contains.
This means that we will be doing input for the first time. At first, we will merely count
the characters in the file but we will aso use command-line arguments to apply the
program to variousfiles.

File handling in BETA is quite painless. Files for both input and output are imple- File Library
mented through a single pattern: fi | e. This pattern is not in the standard environment

bet aenv but in an extended library called fil e which includes bet aenv 0 it is suffi-

cient to replacebet aenv byfile intheOR G N statement.

A complete program skeleton to read afile calledat a1 is asfollows:

ORIA@N ' ~beta/basiclib/ v1.6/file'
--- program descriptor ---
(# F. @ile

do 'datal' -> F. Nane;
F. openRead;
(*... use F ...*)
F. cl ose;

#)

Here, F isdeclared as afil e variable. The externa file name is provided then open-
read isinvoked. After use, the cl ose operation should be caled. Here we have used
only three attributes of the patterrfile:

e Name File attributes
¢ penRead
* Jdose
Other useful attributes/operations are:
* penWite: creates an empty file or erases the current contents of an existing one
* (penAppend : positions for writing at end of existing data
* penReadWite : toallow Get , Put andPos operations
* Cet: returnsthe next character
* Put : writes or appends a character
* Eos: end-of-file check

The standard whi | e <not end-of-file> I oop for sequentially handling the contents
of afiletranglates into the following BETA code:
Loop: End-of-file loop

(if not F.Eos then
F.get -> ch;(* reading the next elenent *)

;éétart Loop
if);
Here is the whole program for counting the characters in the file datal. We have
added visual feedback to the user by printing "' on the screen for every 10 characters

read. Note that using the input/output predicates directly (i.e. put or get) without .
notation (i.e.f. get) accesses the standard streamsKeyboar d andscreen).

ORIA@N '~beta/basiclib/ v1.6/file'
---- program descriptor ----

(# (*
* Count Char . bet: Sinple file handling program
* -Counti ng characters-
*)
inFile: @ile;
Ch: @har ;
nc: @ nt eger;
do
"datal' -> inFile.name; inFile.openRead; (* CPEN NG *)
'Readi ng: '-> puttext; inFile. nane -> putline;
Loop:

(if not inFile.eos then
inFile.get -> ch;
nc + 1 -> nc;
(if nc nod 10 = 0 then '." -> put if);
restart Loop

if);
new i ne;
nc -> putint; ' characters in file' -> putline;

inFile.close;
#)

Program 10.1: CountChar.bet

The output looks like this:
ni | % Count Char
Readi ng: datal

.4.1”characters infile

If the filedat a1 is not present, execution gives the following error message.
ni | % Count Char File Exception
**x* PException processing
File exception for 'datal'
No such file
Beta execution aborted: Stop is called
Look at Count Char. dunp'

10.1 Command-line arguments

At present, our program only works with onefile dat a1. It would be more useful if the
name of the file could be specified by the user. A common way to allow thisin UNIX
is to pass the name of the files to be used as arguments on the command line used to
invoke the program. For example, to count the charactersin file dat a2, we would like
to invokecount asfollows:

% Count Char dat a2
The demo file programs that come with BETA all work thisway. To do this, there are

two useful functions in the standard environment which correspond to the UNIX C
argc andar gv variables. These are:

* noCF Argurent s : which returns the number of arguments on the command line
and

* argunents : which given an integer parameter N returns the n'th argument on the
command line. Remember that argument 1 is the name used for the program -
Count Char 1 in our example - and that the one we want will be argument 2.

Below, we show how count has been modified to use the command argument. To
keep things simple, we do not check the number of arguments or provide for an error
message. For examples of how to do this, see the demo programs.

ORIA@N '~beta/basiclib/ v1.6/file
---- program descriptor ----

(# (* CountCharl.bet: Sinple file handling program
* -Counti ng characters-

*)
inFile: @il e;
Ch: @har ;
nc: @ nt eger;

do
2 -> Argunents -> inFile. nang;
i nFil e.openRead; (* OPEN NG *)

"Readi ng: '-> puttext; inFile. nane -> putline;
Loop:
(if not inFile.eos then
inFile.get -> ch;
nc + 1 -> nc;
(if nc nod 10 = 0 then '." -> put if);
restart Loop
i),
new i ne;
nc -> putint;
i nFile.close;

characters in file' -> putline;
#)
Program 10.2: CountCharl.bet

And below we show the application ofount Char 1 to the count program itself.

ni | % Count Char 1 Count Char 1. bet
Readi ng: Count Char 1. bet

681 characters in file
ni | %

A nice thing about passing file names as command line arguments is that the shell will
expand the file name as expected. In particular, the '~ and *' characters are interpreted
correctly in the example belov¢:

ni | % count ~/ Beta/ dat*
Readi ng: ../Betal/datal

41 éharacters infile
These also work:
e count ~vaucher/Beta/datal
e count ./datal

e count ../Beta/file/../datal

2 For Unix shells only.

Were we to set the filename directly, it would be OK to include “.” and “..” in the path
name but “~" would not be handled properly.

10.2 Storing Characters in a Repetition

The following example program illustrates how to count each occurrence of characters
in the input file. The count for each character is stored in a repetition:

occurrences: [256] @har;

using the assignment:

occurrences[Ch] +1- >occur rences[Ch] ; Indexing using a

. . char
and the occurrences are printed using &or and ani f statement:

(for i:256 repeat
(if occurrences[i]>0 then (* only print if >0 *)
i->put; (* notice how a char can be printed *)
"1 '->puttext;
occurrences[i]->putint;
new i ne;
if);
for);
The complete program is as follows:

ORIA@N '~beta/basiclib/ v1.6/file'
---- program descriptor ----

(# (* CountChar2.bet: Sinple file handling program
* -Counting occurrences of characters-

*)

inFile: @il e;

Ch: @har;

nc: @ nt eger;
occurrences: [256] @har;

do
2 -> Argunents -> inFile.name ;
i nFil e.openRead; (* OPEN NG *)

Loop:

(if not inFile.eos then
inFile. Gt -> Ch;
nc+1- >nc;
occurrences[Ch] +1- >occur rences[Ch] ;
restart Loop

if);

new i ne;
(for i:256 repeat
(if occurrences[i]>0 then (* only print if >0 *)
i->put; (* notice how a char can be printed *)

"1 '->puttext;
occurrences[i]->putint;
new i ne;
if);
for);
"Total '->puttext;

nc -> putint;
" characters in file' -> putline;
inFile.close

#)

Program 10.3: CountChar2.bet

And below we show the application of Count Char 2 to the Count Char 2. bet program
itself.

ni | % Count Char 2 Count Char 2. bet
241

S

U NS
N 000N
=

CQUIRANROT

H

N [
\'

GINCIUOIRPEPNENRAROWWORORRARPNONNRPWWNNN

SSETNTNTReEIT IR TLT TTHANATOZI TOMMOPQN !

= 1< X

otal 952 characters in file
nil%

11 Directory

Directory handling is very smilar to file handling in the Mjginer System. Files and Directoryand
directories have similar properties like name, path, etc. Files are special since the F''®
contents typicaly are characters that can be read and written, directories are special

since the contents are files and directories. These similar and special properties are

both modeled inth& il e anddirectory libraries.

When using thedi rect ory library, adirectory is simply declared as
CORIA N '~beta/basiclib/ vl.6/directory';

..d: @i rectory;

A directory can be given aname:

‘nyDr' -> d. nane; Directory

' i i ttribut
And it can be tested for existence, content, entries, and be scanned: attributes

* d.exists: returnstrueif the directory exists
* d.enpty:returnstrueif the directory has some content

* d.noOEntries : returns the number of entries (files and directories) in the direc-
tory.

* d.scankntries : calsINNER for each entry {ound) in the directory.

The following program shows a simple use of directory: The directory with the path
given as argument is scanned, and the names of all the entries are printed.

ORIA@N '~beta/basiclib/ vl.6/directory';
---program descriptor---
(# d: @irectory;
do (if noCf Argunents <> 2 then
"Usage: ' -> puttext; 1->argunents->puttext;
st op;
i),

(* set nane of directory *)
2 -> argunents -> d. nane;

path' -> putline;

(* print name of directory *)
new i ne;
d. nane -> puttext;

(* test for content *)

(if d.enpty then ' is enpty.' -> putline;
else ' is not enpty.' -> putline;

i),

"It contains the following '-> puttext;
d.noOEntries -> putint;
" entries:' -> putline;

(* scan the entries *)

d. scanEntries
(# (* found refers to the current entry *)
do found. path -> putline;

#);
new i ne;
#)

Program 11: ListDir.bet

This program also checks for the number of arguments. If the number of argumentsis Stopoperation
not 2, then an error message is printed, and st op is called. st op is defined in the basic
environmentbet aenv , and when called, terminates the execution.

Below we show the output ofLi st Di r on the current working directory:

nil%ListDr .

is not enpty.
It contains the following 17 entries:

Count Char . bet

Count Char 1. bet
Count Char 2. bet

Expl or eTypes. bet

Hel | oVor| d. bet
ListDr

ListDr.ast
ListDr. bet

Ml ti pl eAssi gnrent . bet
Mil ti plicationl. bet
Mil ti plication2. bet
Mil ti plication3. bet
Si mpl eTypes. bet
Squar eRoot . bet
sun4s

12 Text Manipulation

The basic BETA environment defines a Text pattern for manipulating texts. Text
constants have been used a lot in the previous examples. Here we explore more on the
many facilities of the text concept. Constant texts can be assigned to text variables and
texts can be added:

(#t: @ext;(* declaret as a static ref. to a text object *)
r. “text;(* declaret as a dynamc ref. to a text object *)

i: @nteger;

do 'foo' ->t; (* assign a constant tot ="'foo *)
"' ->t.append; (* append one blank tot ="'foo "' *)
"' ->t.prepend; (* prepend one blank tot ="' foo ' *)

t.length ->i; (* assign the length of t toi (5 *)
(2,4) ->t.sub ->r[]; (* get substring 'foo' fromt *)
#)
Users do not have to bother about extending the text when adding or manipulating. Flexible and
The length of the text object will automatically be adjusted. Many functions on texts gé‘necr‘:l[')?'e text
uses acurrent positionin the text (¢ . pos). For example:
(# t: @ext;
do 'foo' ->t; (* sets pos to t.length *)
"bar'->t.puttext; (* adds 'bar' after current pos: t='foobar'*)
1->t. pos;
"bar'->t.puttext; (* t = 'barbar' *)
#)
Texts sub-strings can be fetched and assigned to another text object reference, and
texts can be inserted at a specified position:

(# t: @ext; (* declaret as a static ref. to a text object *)
r: ~text; (* declare t as a dynamic ref. to a text object *)
do' foo ' ->1t; (* assign a constant tot ="' foo ' *)
(2,4) ->t.sub ->r[]; (* get substring 'foo' fromt *)
("bar',5) ->t.insert; (* insert substring "bar' int ="' foobar ' *)
#)
Texts can be compared using thequal function.
(# t: @ext; Comparing texts
b: @ool ean;
do ...
"foo' ->t.equal -> b; (* case sensitive conparison *)

"foo' ->t.equal NCS -> b; (* not case sensitive conparison *)
#)
The following example program is an extended version of the character counting pro-
grams constructed before. The program can count either characters or lines in the in-
put file. In addition to text comparison, the program uses two new features.

* getline: reads from input, i.e. what the user types. Waits until the user has typed
anew i ne

* ascii.newine: ascii ISan object defined in betaenv containing attributes for ASCII object
manipulating and comparing ASCII characters. new i ne is a generic definition of
the newline character. ascii aso contains conversion functions, e.g. t oLowver ,
definition ofwhite space e.g. i sWi t eSpace , €etc.

ORIA@N ' ~beta/basiclib/ v1.6/file
---- program descriptor ----

(# (* FileCount.bet: Sinple file handling program
* -Counting lines/characters-

*)

inFile: @ile;
Ch: @har ;
nc: @ nt eger;

answer: “text;
lines, chars: @ool ean
do
2- >Ar gunent s- >i nFi | e. nane ;
i nFi | e.openRead; (* CPEN NG *)
"Count what in '''->puttext; i nFi | e. nanme->putt ext;
""" (lines/chars)? '->puttext;
(* read from keyboard — what the user types *)
getline->answer[];
(if true
/1 (" 1ines'->answer.equal) then true->lines;
/1 (' chars'->answer.equal) then true->chars;
el se
" Unknown i nput' ->putli ne;
Stop; (* end execution *)
if);
Loop:
(if not inFile.eos then
inFile. Get->Ch;
(if true
//lines then (if Ch//ascii.newine then nc + 1->nc if);
//chars then nc + 1->nc;
if);
restart Loop
if);
new i ne;
nc- >putint;
(if true
//1ines then

lines '->puttext;

[/chars then ' characters '->puttext;
if);
“infile '"'"->Puttext;

i nFi | e. nanme->putt ext;
""'\n\n' ->puttext;
inFile.close

#)

Program 12.1: FileCount.bet

The output runningFi | eCount on itself is:

ni | % Fi | eCount Fil eCount . bet
Count what in 'FileCount.bet' (lines/chars)? lines

46 lines in file 'Fi | eCount. bet

ni | % Fi | eCount Fil eCount . bet
Count what in 'FileCount.bet' (lines/chars)? chars

1238 characters in file 'FileCount. bet
Finally, the table below lists some of the useful attributes of texts:

t.length
t.pos
t.enpty -> b
t.clear -> b
c ->t.put
t.get ->c

t.peek -> ¢

r(] -> t.puttext
r(l] ->t.prepend
r(l] -> t.append
i ->t.putint

t.getint -> i
t.getAtom-> r[]
t.getLine -> r[]

i ->t.inxget ->c

(c,i) -> t.inxput

t.copy -> r[]
r{]1->(t.copy).append->s]]
r[]->(t.copy). prepend->s[]
t.scanAton(# do ...#)

t.scanAl | (# do ...#)
(i,j) ->t.sub ->rJ]

(i,j) ->t.delete
r(] ->t.less

r[]->t.greater

t. makelLC
t . makeUC
c ->findAll (# do ...#)
t. ECSerror

Returns nunber of characters of text
Returns current position

Returns True if t is enpty

Sets the length to zero

Appends the character c to t

Returns the character at current position,
and increnents position by 1

Returns the character at current position,
wi t hout updating the position

Adds r tot starting at current position
Prepends the text r to t

Appends the text r tot

Inserts the integer i tot starting at
current position

Reads the next integer fromt starting at
current position
Reads characters until
and returns the text
Reads characters fromt until
and returns that text.
Returns the character at position i

Repl aces the character at position i
Returns a copy of t

Returns s[] where s =t cat r 3

Returns s[] where s =r cat t

Scans fromcurrent position until next

whi te-space and call INNER for each char
Scans all the elenents int and calls IN -
NER for each char

next white-space

next new i ne

Returns the text frompositioni to posi -
tionj fromt

Del etes characters in the range i:j

Tests whether r is less than t. Lexico -
graphic ordering is used

Tests whether r is greater than t. Lexico -

graphic ordering is used

Converts all characters to | ower case
Converts all characters to upper case
Calls INNER for each occurrence of c int
Cal | ed when readi ng past |ength of the

t ext

Useful Text
operations

Please see the basic libraries manua [MIA 90-8] for more details about the text con- More information

cept.

12.1 Advanced Formatted Input and Output

The Mjglner System aso provides facilities for formatted input and output (Smilar to
the scanf and printf functionsin C). These facilities are implemented in the form of
the get For mat and put For mat operations defined in the
'~bet a/ basiclib/ v1.6/formatio" library.

Both get For mat and put For mat take a text string as argument. This text string must
contain a format specification of the input to be read from (respectively output to) the
stream. The format string may be any string, possibly with one or more embedded
markers. The markers specify the variable parts of the expected input (respectively

3 Actually thisis an example of how to combine patterns that exits referencegppend is called on
the reference returned bycopy . This facility is calledcomputed remote

getFormat and
putFormat

output), such as integer values. The markers are indicated in the string by a leading '%.
Following the% is the specification of the marker type.

In section 8 previoudly, the example program uses a complex bunp function to print
out three numbers and some text. put For mat could have been used instead as illus-
trated in the folowing example.

ORIA@N ' ~beta/basiclib/ vl1.6/fornmatio
---- program descriptor ----
(#

(* Static and Dynanic references *)

Point: (# X Y. @nteger;

enter (XY)
exit (XY
#);
refA : "Point;
P1, P2: @oint;
Dunp:
(#

do 'Pl: 9%8d, P2: %, refA %\n'->
put Format (# do P1. X ->d; P2. X ->d; refAx -> d #)
#);

do
"Dynanmic references' -> putline;
new i ne;
&Point[] ->refA];

(1,1) -> P1-> P2 -> refA

Bunp;

(2,2) -> P2
(3,3) ->refA
Bunp;

P1[] ->refA]; Dunp;
P2[] ->refA]; Dunp;

(1,1) ->P1; (2,2) ->P2; (3,3) ->refA
Bunp;

(111,333) -> &Point -> P1;
Dunp;
New i ne;

#)

Program 12.2: StaticAndDynamic2.bet

The output is exactly the same as in section 8:

ni | % St ati cAndDynani c2
Dynani c references

P1: 1, P2: 1, refA 1
P1: 1, P2: 2, refA 3
P1: 1, P2: 2, refA 1
P1: 1, P2: 2, refA 2
P1: 1, P2: 3, refA 3
P1: 111, P2: 3, refA 3

13 Container Library

One of the strengths of the Mjalner System isthe large set of available libraries. One of
very useful libraries, is the container libraries. The container library supports a number
of different ways to store data: sets, multisets, lists, hashtables, stacks, etc. Here we
will show how to usetha i st and thehashTabl e .

13.1 List Example

The list library is available in the ' ~bet a/ cont ai ners/ v1.6/1ist' , thus this library
must be included when using lists.

We will use the directory example above, and make a list to store the entries of the di-
rectory.

A listissimply declared as follows:
dirList: List
(# elenent:: Text #);

Here we declare a pattern named di r Li st that inherits from the | i st pattern in the
'~bet a/ cont ai ners/ v1.6/1ist' library. We specify the type of the elements in the
list by extending the virtual pattern element to be the type of t ext . For details about
the BETA concept of virtual patterns, see the BETA language introduction [MIA 94-
26].

The di rLi st pattern inherits an operation from the |'i st pattern that can be used to
add elements, so we can simply add an element to the list by:
di rnane[] -> dirlList.append;

Lists have severa other operations. Some useful operations are briefly described in the
table below. Please see the container manual [MIA 92-22] for more details.

[.clear Renmoves all elements currently inthe list, mak -
ing it enpty

[.enpty -> b Returns true if the list is enpty

|.size -> i Returns the nunber of elements currently in the
list

equal :: (# ...#) Defines the equality test used by the inplenenta -

tion of the different operations. Users of |ist
nust further bind equal to contain the proper
equality test for the specified el ement type.
Default equality test for equal references (i.e.
t he same obj ect)

e[] ->I|.has Takes an el enent, and checks whether it is in the
list
| .scan(# ...#) Scans through the list, invoking INNER for each

elenment inthe list. In each turn of the scan,
"current" refers to the current elenment in the

list.

[.copy-> II]] Default copy is one-level (shallow) copying.
|.e. copying the list and all objects in the
list.

el m]->l.prepend insert elmas first element

el n]->l.append insert elmas |ast elenent

Virtual patterns
in BETA

Useful
operations on
List

In the table above, it is mentioned, that the equality test should always be defined. For
our directory list this can be done like:

dirList: List Specialize List

(# elenent:: Text;
equal : :
(# (* since the elenent type is text sinply test whether the
* two text strings are equa
*
do left[]->right.equal ->val ue;
#);
#);

The extended directory listing program can the be as follows:

CRIAN '~beta/basiclib/ vl.6/directory';
| NCLUDE ' ~beta/contai ners/ v1.6/list";
---program descriptor---
(# dirList: @ist
(# elenent:: Text;
equal :
(# (* since out elenent type is text sinply test whether the
* two text strings are equa
*

do left[]->right.equal ->val ue;

#);
#);
d: @lirectory;
do (if noCf Argunents <> 2 then
"Usage: ' -> puttext; 1->argunents->puttext; ' path' -> putline;
st op;
if);

(* set nane of directory *)
2 -> argunents -> d. nane;
(* print nane of directory *)

new i ne;
(* initialize list *)
dirList.init;

(* scan the entries and append to list *)
d. scanEntries
(# (* found refers to the current entry *)
do found. path -> dirlList.append;
#);
(* dirList now contains all the names of the entries in the

* directory
*

di rList.scan
(# (* current refers to the current text el enent *)
do current[] -> putline; (* print the text *)

#) ;
#)

Program 13.1: SavelistDir.bet
Later we shall see how thislist can be saved (persistent) and used in another program.

13.2 HashTable Example

We could aso choose to save the file list in a hash table. A hash table is typically used
to store objects that should be retrieved fast from the table. In order to store an object
in a hash table it is necessary to define a hash function that given an element returns a
value that can be used in the hash table implementation. A good hash function for our
filelist could be

hashFuncti on: :
(# (* scan all characters in the filenane and conpute a val ue
* for the hash function
*
do nane.scanA | (# do val ue*100 + ch -> val ue #);
#)

The hashtable can then be defined as follows:

dirTabl e: @hashTabl e
(# elenent:: Text;
hashFuncti on: :
(#
do e.scanAl | (# do val ue*100 + ch -> val ue #);
#)
#);

And the complete program using this hash table:

CRIAN ' ~beta/basiclib/ vl.6/directory';
| NCLUDE ' ~bet a/ cont ai ners/ v1.6/hashTabl e;
---program descriptor---
(# dirTabl e: @hashTabl e
(# elenent:: Text;
hashFuncti on: :

(#
do e.scanAl | (# do val ue*100 + ch -> val ue #);
#)
#);
d: @lirectory;

do (if noCf Argunents <> 2 then
'Usage: ' -> puttext; 1->argunents->puttext;
st op;
if);
(* set nanme of directory *)
2 -> argunents -> d. nane;
(* print name of directory *)
new i ne;
(* initialize table *)
dirTable.init;
(* scan the entries and append to list *)
d. scankEntries
(# (* found refers to the current entry *)
do found. path -> dirTabl e.insert;
#);
(* dirTable now contains all the names of the entries in the
* directory
*
dirList.scan
(# (* current refers to the current text element *)
do current[] -> putline; (* print the text *)

#) ;

(* print hashtable statistics on screen*)
"\nStatistics: '->screen. putline;
dirTabl e.statistics(# do screen[]->print #);

path' -> putline;

#)
Program 13.2: DirTable.bet

Running this program on the current directory gives the following output:
nil%DrTable .

St ati cAndDynami c. bet
Fi | eCount . bet

Expl or eTypes. bet
Count Char 2. bet

Count Char 1. bet
Count Char . bet

Mil ti plication3. bet
Mil ti plication2. bet
Mil ti plicationl. bet
Mil ti plicationTabl e. bet
Di r Tabl e. bet

Di r Tabl e. ast

Hel | oWr | d. bet
Saveli st Dir. bet

Qui ckSort . bet

Squar eRoot . bet

Ml ti pl eAssi gnrent . bet
Di r Tabl e

sun4s

ListDr. bet

Si mpl eTypes. bet

Statistics:

H stogram (0,2,1,3,0,0,0,0,2,3,0,3,2,0,0,2,0,0,0,1,2,2,2,0,1)
Maxi mum Col | i sions: 3

Mnimum Col lisions: 0O

Average Col lisions: 2

More information and more examples using the other containers in this library can be More information
found theMjglner System manual [MIA 92-22].

14 EXxceptions

The pattern exception defined in ' ~bet a/ basi clib/ v1.6/betaenv' is used as a Exception
superpattern for al exceptions in the Mjginer System. The default action of an Pattern
exception is to stop the program execution and print an informative error message on

the screen. In addition, the file <pr ogr amname>. dunp contains a dump of the call

stack. Except i on uses the pattern St op for termination. Specific error messages can

be defined by speciaizing the except i on pattern. The attribute nsg of exception isa

text object that is used to accumulate error messages . If you wish to prevent the

program execution from being stopped in order to handle the exception during execu-

tion, the boolean attributecont i nue of excepti on must be set totr ue.

The exceptions are often defined as a virtual pattern of other patterns (such as the
file pattern, discussed below).

In order to differentiate between potential fatal exceptions and more harmless excep- Notification
tions, thenot i fi cati on pattern isalso defined irbet aenv defined as: pattern

notification: exception(# do true->continue; |NNER #);

14.1 Examples Using Exception

In order to illustrate the use of exceptions, let us return to the previous file example.
Without using the exception handling facilities an attempt to open a non-existing file
produced the following error messages:

ni | % Count Char

**x* PException processing
File exception for 'datal'
No such file

Beta execution aborted: Stop is called
Look at Count Char. dunp'

Now let us see what can be done by using exceptions.

The binding of noSuchFi | eError shows how to prevent the system from stopping the
execution when the program attempts to open a non-existing file. Instead the user is
prompted for another file name. The binding of noSpaceError shows that a message
can be added tonsg.

ORIA@N '~beta/basiclib/ v1.6/file
(#inFile: @ile
(# noSuchFileError:: (* continue execution *)
(# do true->continue; false->XK #)#);
outFile: @ile
(# noSpaceError:: (* extend exception; put nessage to nsg *)
(# do "It is time to delete garbage!'->nsg. putline #)#);

K. @ool ean;
do 'in.bet' ->inFile.nane;
true -> &
openFile: (* labeled block *)
(#

do i nFil e. openRead;
(if not K then

"File does not exist!' -> screen.putline;

"Type input file nane: ' -> screen. puttext;
i nFil e.readFi | eNane

true -> &K

restart openFile (* restart |abeled block *)

if)#);

"out.bet' -> outFile. nang;

outFile.openWite;

readFi | e:

(#

do (if not inFile.eos then
false -> inFile.gettext -> outFile.puttext;
outFile.newine;
restart readFil e

el se leave readFil e

i £)#);

inFile.close

out Fi |l e. cl ose;

#)

An attempt to open a non-existing file will produce the following error messages:
Fil e does not exist!
Type input file name:

It gives the possibility to proceed with another file name.

In case of disk space exhausted, the following message will be printed on the screen
before the program execution is stopped:

**x* PException processing

Error in file "in.bet

File systemis ful
It is time to del ete garbage!

The first line is from the general pattern except i on, the second and the third lines are
from the binding of noSpaceError infile and the fourth line is from the binding
above, i.e. at the user level.

15 Access to External Functions and
Data

The Mjglner System alows a tight integration between the BETA language and
routines and data structures, originating from the C language. Many of the libraries in
the Mjgner System (such as the interface to the X Window System) is based on this
tight integration.

The integration allows for two types of integration, namely integration of routines, and
integration of data structures. The facilities give the BETA programmer the possibility
to invoke routines, written in C, and for accessing data structures, alocated in C.
Moreover, the facilities also works the other way around, namely by alowing BETA
patterns to be invoked (instantiated) from C routines, and BETA objects to be
manipulated by C routines.

15.1 Example

Imagine that we have a database with person records. The database has a C interface
and we like to use the database in BETA.

The following C declarations and functions illustrates a simplified database:

typedef struct Person {

long I D

char *firstnane, *surnang;

char sex; /* male) or f(enale) */
} Person;

#def i ne MaxPersons 200
Per son Per sons[MaxPer sons] ;

Person *get Person(long ID) {
if (1D>=0 && | D<MaxPersons)
return &ersons[|D];
el se
return O;
}

| ong putPerson(long ID, char * firstname, char* surnane, char sex) {
if (1D>=0 && | D<MaxPersons) {
Persons[1D . | D=l b
Persons[|1 D] . firstname=firstnane;
Per sons[| D] . sur name=sur nane;
Per sons[| D] . sex=sex;
return 1;
} else {
return O;
}
}

We can then interface to the two functions and the Person struct by the following
external andexternal Record declarations:

get Person: ext ernal
(# I D ©@nteger;

Integration of
routines and data

Callbacks from C
to BETA

The C database
interface

ptr: @nteger;

enter ID
exit ptr
#);

put Per son: ext ernal
(# I D ©@nteger;
firstname, surnane: [1] @har;
sex: @har;
result: @ool ean;
enter (1D, firstnane, surnane, sex)
exit result
#);
Per son: external Record
(# ID. @ong(# pos::(# do 0-> value #)#);
firstname: @ong(# pos::(# do 4-> value #)#);
surnane: @ong(# pos::(# do 8-> value #)#); (* char ptr *)
sex: @yte(# pos::(# do 12-> value #)#);
#);

Interfacing to C routines are done by specifying the ext ernal pattern as the superpat- €xt er nal
tern for the BETA pattern, which, when invoked, should invoke the C routine. The Patte™m
name of the entry call of the C routine should be the same as the name of the BETA
pattern. The BETA compiler will then generate a call to an external routine with the
same name as the BETA pattern, using C's style of passing parameters. The pattern:

get Person: ext ernal

(# I D ©@nteger;
ptr: @nteger;

enter ID
exit ptr
#);

describes the interface to an external C function with the nanget Per son .

Transferring data to and from the external languages is dealt with through two special c¢Struct and
purpose patterns: cStruct and ext er nal Record . cStruct isthe means for specifying SXt ernal Recor
aBETA object with a specific storage layout, and with the purpose of transferring this

object to the external language for processing. That is, acStruct object is alocated

by BETA and made available for processing externaly. ext er nal Record is the means

for specifying a BETA interface into some data structures, alocated externaly. The

pattern:

Per son: external Record
(# ID. @ong(# pos::(# do 0-> value #)#);
firstname: @ong(# pos::(# do 4-> value #)#);
surnane: @ong(# pos::(# do 8-> value #)#); (* char ptr *)
sex: @yte(# pos::(# do 12-> value #)#);
#);

describes an interface to an external allocated strucPér son) with four fields.
We can create a person by callingut Per son like this:
(117,' Roger',"'Smth',' m)->putPerson
We can get aper son from the database by:
117 -> get Person -> aPerson. ptr;
Notice, that we must assign to thept r attribute of theext er nal Record Person.

The Per son can now be examined like any other BETA object, except for the “string” c¢String
declarations fi r st name and sur name . These refers to C strings. The Mjginer System
includesacstring library for easy interface to these C strings, so we simply make a

small operation to print out the strings:

put CStri ng:
(# cstr: @String;
enter cstr
do cstr.get -> puttext;
#);
Finally we must specify where to find the C object file we are interfacing to. Thisis OBJFILE
done using acBJFI LE specification. The specification:
OBJFI LE nti " $/ cper son. obj '

nmac ' $/ cper son. obj '
default ' $/cperson.o';

means that we should link with the file cper son. o located in the subdirectory with the
name of the platform—the same name as the code subdirectory (' $' expands to name
of platform).

The C object file can also be created automatically by using make files. The MAKE
specification:

VAKE nti ' person_nti . nake'
nac ' person_nac. make'
defaul t ' person_uni x. make' ;

describes for each platform which make file must be used. The Unix version looks like:

$(MACHI NETYPE) / cper son. 0: cperson. ¢
$(CO -c -o $(MACH NETYPE)/ cperson. o cperson. c

And now the complete program:

CRIA N ' ~betal/basiclib/ vl1.6/external"';
| NCLUDE ' ~bet a/sysutils/ vl1.6/cstring';

OBJFI LE nti " $/ cper son. obj '
nac " $/ cper son. obj '
default ' $/ cperson.o';

VAKE nti ' person_nti . nake'

nmac ' person_nac. make'
defaul t ' person_uni x. make' ;
--program descriptor--
(#
get Person: ext ernal
(# 1D ©@nteger;
ptr: @nteger;

enter ID
exit ptr
#);

put Per son: ext er nal
(# 1D ©@nteger;
firstname, surname: [1] @har;
sex: @har;
result: @ool ean;
enter (1D, firstnane, surnane, sex)
exit result
#);
Person: External Record
(# 1D @ong(# pos::(# do 0-> value #)#);
firstname: @ong(# pos::(# do 4-> value #)#);
surnane: @ong(# pos::(# do 8-> value ##); (* pointers to

text *)
sex: @yte(# pos::(# do 12-> value #)#);
#);
put CStri ng:
(# cstr: @String;
enter cstr

do cstr.get -> puttext;

#);
aPerson: @person;
do

(* store a person in G database *)

(if not ((117,' Roger','Smth',' m)->putPerson) then
"Failed to store person' ->putline; stop;

if);

(* get person from G dat abase *)

117 -> getPerson -> aPerson. ptr;

(if aPerson.ptr = 0 then
'"Failed to retrieve person' -> putline; stop;

if);

"Person: ' -> puttext;
aPerson. 1D -> putint;

"' -> put;

"Name: ''' -> puttext;
aPerson. firstnane -> put CString;
"' -> put;

aPer son. surnane -> put CString;
"Y' -> puttext;

"Sex: ' -> puttext;

aPer son. sex-> put;

new i ne;

#)
Program 15: Person.bet

Output of running the program is:

ni | % Per son
Person: 117 Nanme: 'Roger Smith' Sex: m

16 Using the Persistence Library

The persistence library can be used to save your data on the disk for later use in an-
other program execution. Any object created can be saved using the persistence li-
brary. The patterns defining the objects do not have to be extended in any way before
the objects can be saved. Imagine that we like to save the character count in the pre-
vious example for usage in another program. The pattern definition of the direct o-
ryLi st can be described in a separate file (called r Li st . bet) asfollows:

CRIA N ' ~betal/contai ners/ v1.6/list
--- lib: Attributes ---
directorylList: List
(# ...
#);

Program 16.1: DirList.bet

Notice, that we do not define a program fragment in this file, instead we define at-
tributes only. A file describing ssimple pattern declarations only can use the ot called
l'i b defined in the bet aenv environment (see section 19 below about the fragment
system, for more details). The declarationsin the Di r Li st file can be used by including
the file in the program. Thus the program listed Program 13.1 can be changed like:

ORIAN '~beta/basiclib/ v1.6/file";

| NCLUDE ' DirList'

---- program descriptor ----

(# dir: @irectory;

dirList: ~directorylList;
do &directoryList[] -> dirList[];

#)
Program 16.2: SavelistDir2.bet

We can now save Di rLi st using the persistent store, The persistent store is available
as a library in the file ' ~beta/ persistentstore /vl.6/persistentstore. By
including this file we can use the per si stent store pattern to save the list. persis-
tentstore hasthe following useful operations:

* persistentstore.create : given atext create a persistent store with that name

* persistentstore.openWite : given aname opens the persistent store with read
and write permissionopenRead opens a store with read permission only

* persistentstore.get : given a name and a pattern variable, returns an object in
the storage with that type

* persistentstore. put : given aname and an object, stores that object in the per-
sistent store

* persistentstore.close : closesthe persistent store

The following program is similar to the one above, except that it storesthedirLi st in
a persistent store.

Making a library

Operations on a
persistent store

ORIA@N '~beta/basiclib/ vl1.6/file";

| NCLUDE ' ~bet a/ persi stentstore/ vl.6/persistentstore;
| NCLUDE ' DirlList'

---- program descriptor ----

(# (* Saving the file names in a persistent store *)

dir: @irectory;
theStore: @ersistentstore;
dirList: ~directorylList;

do &directoryList[] -> dirList[];

(* Program 13.1 *)

"fileStore' ->theStore. create;
(dirList[]," ' nyList')->theStore. put;
t heSt or e. cl ose;

#)

Program 16.3: SavelistDir3.bet

The persistent store is now located in the file directory: | eSt or e.
Finally, we can make a program that reads the list, and examines the data:

ORIAN '~beta/basiclib/ v1.6/file";

| NCLUDE ' ~bet a/ persi stentstore/ vl.6/persistentstore;
I NCLUDE 'DirlList'

---- PROGRAM descriptor ----

(# (* Reading counted occurrences of characters
* froma persistent store
*
theStore: @ersistentstore;
dirList: ~directorylList;
do
"fileStore' ->theStore. openWite;
("nyList', directorylList##)->theStore.get->dirList[];
dirList.scan(# ... #);

theSt ore. cl ose;
#)

Program 16.4: GetListDir.bet

A complete description of the facilities in the persistent store library can be found in More information
[MIA 91-20].

17 Graphical User Interface

In this section we will show how to use two different graphical user interface libraries.
The first example uses the device independent library called GUIEnv and the second
example uses the X11 specific MotifEnv library.

17.1 GUIEnv

GUIENV is a device independent graphical user interface library, intended for making
applications with graphical user interfaces running on:

* Macintosh
* X Window System(Motif Widgets)
* Windows(Win32)

GUlenv redlizes user interfaces of many different look-and-feels. GUlenv allows
construction of portable user interfaces in such a way that the look-and-feel of the ap-
plications, will conform to the standardized |ook-and-feel of the specific platform.

The basic GUI library is defined in the file ' ~bet a/ gui env/ v1.6/guienv' . An ap-
plication with a graphical user interface, thus must have origin in this file. The gui env
library defines a pattern also called gui env in which al the user interface attributes,
operations, and patterns are available. So every GUIEnv application typically has the
following outline:

ORIAN ' ~beta/guienv/ vl.6/guienv';

- program descriptor --
gui env

(# (* wite GJ code here *)
#)

Our task will be to develop a simple texteditor that can open a text file, edit the file
and save the file. We would like an application that looks like the following (Motif
version):

et d

e e

% Ueeleny Wonohediedy

0 Eredirdomit -7 i eSeechioniiia
ik ile ooerkeads,
ek e soEn

P uiniietrt 0% dn Srueeaiue

fn o~ trebert ol

=Y.

Yeale e eV ior oonkan

i

guienv
application
outline

Texteditor
example

We will need a window to display the text in. gui env defines a wi ndow pattern, that i, qow
we can use. We would like that this window is opened when the application starts up,
so in the do part of the specialization ofui env we open the window.

gui env

(# theWndow @n ndow
(# ...
#);

do t heW ndow. open;

#);

Inside the window we want a texteditor that can contain the text from the file. gui env TextEditor
supplies at ext Edi t or for this purpose:

t heW ndow. @ ndow
(# thetextEditor: @extEditor
(# open::
(#
do t heW ndow. si ze -> Si ze;
True -> bindBottom True -> bi ndR ght
#)
#);
open: : (# do thetextEditor.open #);
#);
do t heW ndow. open;

Thelines:
open: :
(#
do theWndow. si ze -> Si ze;
True -> bindBottom True -> bi ndR ght

#)
means that we extend the open virtual of t ext Edi t or , Set the size of the t ext Edi t or
to be same size as the window, and bind the t ext Edi t or to the bottom and right cor-
ners of the window.

The next thing we need to do, to complete the user interface is to make a menu. The File menu
application should have a menu with three items: open afile, save the file, and quit the
application. gui env supplies a standard menubar on each window for this purpose. We
extend the standard menubar with one menu called Fi | e, and we make three items in
this menu calleden, Save, andQuit .

menubar Type: :

(# fileMenu: @renu
(# openltem @renuitem

(# ... #);
saveltem @renuitem
(# ... #);
quititem @renuitem
(# ... #);
open: :
(#

do 'File' -> nang;
openlt em open; openlteni] -> append;
savel tem open; savelteni] -> append,;
quititemopen; quitlteni] -> append;
#)#)
open:: (# do fil eMenu. open; fileMenu[] -> append #);
#);

Like the t ext Edi t or , we extend the open virtual of the Fil e menu to open and ap-
pend the three items and to give the menu atitle.

Each menui t em has two virtuals that needs to be extended: event Handl er and open. Quit item
For the quit item we do the following:

quititem @renuitem
(# eventHandl er: :
(# onSel ect:: (# do Term nate #)
#);
open::(# do 'Qit"' -> nane #);
#);

The eventHandl er has a virtua called onSel ect that is invoked whenever this
menui t em IS selected. We call Ter mi nat e (defined in gui env) to stop execution. The
open virtual is extended to give the item a name.

Finaly, we need to do some file handling in the open and save items. The open item Open item
does the following when selected

onSel ect : :
(# theText: @tyl edText;
do theWndow] -> fileSelectionD al og -> textFile. nane;
text Fi |l e. openRead;
textFile.scan
(# while:: (# do true->value #);
do ch -> theText. put
#);
theText[] - >t heText Edi t or. contents. contents;
textFile.close;
#)

Firss wecall fil eSel ectionD al og that opens a standard file open dialog and returns Standard file
a name of a file that we can open (we ignore errors, pressing cancel, etc.). We open °P€"

the file, read al the file content into a Styl edText and sets the Styl edText as the

content of the t ext Edi tor . Styl edText isa specidization of Text with specification

of face, font, size, etc.

The save item does the following when selected: Save item

onSel ect : :
(# theText: @ext;
do textFile. openWite;
t heText Edi t or. contents. contents->textFil e. puttext;
textFile.close;
#)

Because Styl edText is a specidization of Text we can write the Styl edText con-
tents of theText Edi t or directly to the file using the puttextper ati on .

We open the same file, write theext Edi t or content into the file and close the file.
The complete code needed for this application is shown below.

ORIAN ' ~betal/guienv/ vl.6/guienv'; The complete
| NCLUDE ' ~bet a/ gui env/ v1.6/fields' code
~bet a/ gui env/ v1. 6/ stddial ogs'
~beta/basiclib/ vi.6/file'";
-- program descriptor --
guienv (* inherit fromguienv *)
(# theWndow @n ndow (* make a w ndow *)
(# menubar Type:: (* extend the nenubar *)
(# fileMenu: @enu (* make a file nenu *)
(# textFile: @ile; (* the file we open and save *)
openltem @renuitem (* rmake an open item*)
(# event Handl er: :
(* extend the virtual that is called when
* this menu itemis selected *)
(# onSel ect : :
(# theText: @tyl edText;

do theWndow] -> fileSel ectionD al og
-> textFil e. nang;
text Fi |l e. openRead,;
textFile.scan
(# while:: (# do true->value #);
do ch -> theText. put
#);
theText[]->
t heText Edi t or . cont ent s. cont ent s;
textFile.close;
#)#)
open:: (# do 'Qpen' -> nane #);
#);
saveltem @renuitem (* nmake a save item*)
(# event Handl er: :
(# onSel ect : :
(# theText: @ext;
do textFile. openWite;
t heText Edi t or . cont ent s. cont ent s- >
text File. puttext;
textFile.close;
#)#) ;
open:: (# do 'Save' -> nane #);
#);
quititem @renuitem (* make a quit item*)
(# event Handl er: :
(# onSelect:: (# do Termnate #) #);
open:: (# do 'Qit' -> nane #);
#);
open:: (* extend the open virtual of filemenu
* to open the itens *)
(#
do 'File' -> nane;
openltem open; openltenj] -> append;
savel tem open; savelteni] -> append,;
quitltemopen; quitlitenf] -> append;
#)#)
open:: (* extend the open virtual of the nenubar
* to open the filemenu *)
(# do fileMenu.open; fileMenu[] -> append #);
#);
thetextEditor: @extEditor (* our text editor *)
(# open:: (* extend the open virtual
* to set the size and the placenent *)
(# do theWndow. size -> S ze;
True -> bindBottom True -> bi ndR ght
#)#)
open:: (* extend the w ndow open virtual
* to open the textEditor *)
(# do thetextEditor.open #);
#);
do t heW ndow. open; (* open the wi ndow when the appl. start up *)
#)

Program 17.1: TextEditor.bet

The three screen snapshots following below show how this application appears on
Windows NT, Motif (X11), and Macintosh after the program has loaded its own
source code for editing, and with the menu opened.

Windows NT

thetextEditor via
g X

elect::<
eText: @StyledText;
do theWindow[] -> fileSelectionDialo E
textFile.name;
textFile.openRead;
textFile.scan
[# while::< [¥ do true->value #];
do ch -> theText.put
#):
theText[]->theTextEditor.contents.«
textFile.close;
##):
open::< [# do 'Open' -> name #); —

' 3|] 2]

X Window System—M otif

5T A LN

hend sl

% vheleony Woedieds

o Uretivdomty —7 TieReeeiomiiia
ik ile ooerkeads,
ek Ve ocan

B owini et t U Ao eue e

fn o~ trebert ol

=Y.

Preledn - rrne e At Nor conien

T

M acintosh

(# theText: @Styled Text;

do theWindow[] = fileSelectionDialog -=
textFile.name;
textFile.openRead;

textFile.scan

(# whileu< (# do true-=value #);

da ch -» theText.put

#;
theText]]->theTextEditor.contents.conten
textFile close:

More details and examples about the GUIEnv libraries can be found in [MIA 94-27]. More information

17.2 MotifEnv

In this subsection we will show how to use the Motif specific user interface library.
Motif is a very large user interface toolkit, with user interface elements not easily ab-
stracted into a general device independent framework, so the Mjglner system includes
alibrary for making Motif specific applications.

Xt Toolkits

Xt is a C-library top of Xlib, the low-level interface used in programming X Window
System applications. The purpose of Xt is to provide an object-oriented layer that
supports user-interface abstractions (windows, scrollbars, commands buttons, menus)
called widgets. A widget is a reusable, configurable piece of C-code that operates in-
dependently of the application except through prearranged interactions.

Xt contains the basic functionality to support widgets, i.e. an architectural model for Widgets
widgets that allow them to be written and used in an object-oriented fashion. Xt aso
contains a small core set of widgets.

A widget set is a collection of widgets build on top of Xt that provide commonly used
user-interface components tied together with a consistent appearance and user inter-
face. Severa different widget sets from various sources exist. The Athenawidget set is
one example. Others are Motif from Open Software Foundation (OSF) and OPEN
WINDOWS from Sun and AT&T.

The Motif widget set contains many user-interface components, including scroll bars, OSF/Motif
menus, buttons, dialogs, and a wide variety of composite widgets. Motif has conven-

tions about the use of its widgets and gadgets, that |ead to a consistent look among all
applications using Motif. Along with each Motif license comes an OSF/Motif Style

Guide with the documentation. This document contains recommendations for appli-

cation design and layout.

The Mjdner System comes with object-oriented interfaces to these libraries, Xt Env,
AwEnv and Mot i f Env .

Using the MotifEnv Fragment

Thenotifenv filein' ~beta/ Xt/v 1. 10/ MtifEnv' Smply definesthe Mot i f Env pat- MotifEnv
tern for applications using the BETA interface to Motif. For each widget/gadget

wanted in the application, the files in the directory ' ~beta/Xt/v 1. 10/ notif/"' ,

defining the BETA interface to it, must be explicitly included.

An application usingrwt i f env thustypically has the following outline:

ORIA N ' ~beta/ Xt/vl. 10/ MotifEnv';
| NCLUDE ' ~beta/ Xt/v 1.10/notif/rowcol um’
"~beta/ Xt/v 1.10/moti f/pushbutton'
-- PROGRAM descriptor --
Mot i f Env
(# ...
do ...
#)

In this case the program is using the rowcolumn and pushbutton widgets.

The following small program shows how to make the traditional "Hello world" pro- hello.bet
gram using a Motif Label widget:

CRIA@N ' ~beta/ Xt/v 1.10/ noti fenv'
I NCLUDE ' ~beta/ Xt/v 1.10/notif/ | abel"’
-- program descriptor --
Mot i f Env
(# hello: @abel;
do hello.init;

"Hello world -> hello.label String;
#)

Program 17.2: Hello.bet

The border of the window, with grips for resizing the window, and the title bar with
buttons, is added by the window manager, in this case mwm, the Motif Window Man-
ager. The actual Label widget isthe one showing the "Hello world" text.

The following example shows how to use the special purpose Motif Scale widget, Scale.bet
useful for adding, e.g., a potentiometer-like control to a panel of controls.

ORIA N ' ~beta/ Xt/current/notifenv':
| NCLUDE ' ~beta/ Xt/current/notif/scale'
-- program descriptor --

Mot i f Env
(# volune: @cal e
(#init::
(#
do 0 -> mni num
100 -> maxi num
XnVERTI CAL -> orientation;
"Volune' -> titleString;
true -> showval ue;
#);
val ueChangedCal | back: :
(#
do 'New vol urme: ' -> screen. puttext;
dat a. val ue -> screen. putint;
screen. new i ne;
#);
#);
do volune.init;
#)

Program 17.3: Scale.bet

The val ueChangedCal | back is called after the scale has been changed. In this case
the callback is extended and prints out the new value of the Scalex a. val ue).

More details and examples about the X 11 libraries can be found in [MIA 91-16]. More information

18 Concurrent Library

Concurrent programming in BETA is supported by the syst enenv library. Thislibrary
contains patterns for describing the BETA concepts of concurrent systems. The basic
ideas are:

1. Components (corouting) can be executed concurrently. Concurrent
coroutines

2. A primitive semaphore pattern is available for synchronization. The operations
on asenmaphor e isexecuted as an indivisible unit.

3. An abstract pattern Monitor Similar to the monitor proposed by Hoare and
Brinch-Hansen.

4. An abstract pattern Syst em is defined. Syst em defines communication between Pattern System
systems by means of synchronized rendezvous. A concurrency imperative conc
and an alternation imperativel t are defined forsyst em.

18.1 Example

The following example of using the systenenv library makes three concurrent
coroutines that each sleeps for a specified number of seconds and then prints out the
seconds elapsed since startup. All three systems inherit from a generic system:
ever yNt hSecond: System everyNthSecond
(* inherit fromSystem can run concurrently *)
(# N < IntegerVal ue;
now. @ nteger;
do cycle
(#
do | NNER ever yN hSecond;
N -> sleep; (* sleep for N seconds *)
nowtN -> now, (* accunmulate tine *)
#)
#)
ever yNt hSecond inherits from system, i.e. it is able to run concurrently. The do-part
consists of a loop that calls | NNER, then sleeps for N seconds, and when activated
again, updates the time, and calls | NNER again. Notice, that N is defined as an I nte-
ger Val ue.

Now we can make a coroutine that inherits fromver yNt hSecond like this:

fourth: @ everyN hSecond
(* a co-routine that inherits fromeveryN hSecond *)

(#N: (#do 4 ->value #); (* sleep for 4 seconds *)

do 'fourth: ' -> puttext; now -> screen.putint; newine

#)
A coroutine is declared using the'| ' symbol. The declaration '@ ' means that we declare Declaring a
fourth to be a static reference to a coroutine. The do-part will be called every 4'th coroutine
second since f ourt h inherits from ever yNt hSecond and extends the I nt eger Val ue N
to be 4.

Finally, we need to start the coroutines concurrently. This is done by starting the
coroutine inside aconc pattern like this:

conc (* execute concurrently: *)
(# do ... fourth[]->start; ... #)

The execution of conc will not terminate until all the systems executed inside it has
terminated.

The complete program with three concurrent systems is shown in Program 18.1. No-
tice, that the program never terminates.

ORIA@ N ' ~bet a/ basiclib/ vl1.6/systenenv'
--- program descriptor ---
systemenv (* inherits fromsystenenv *)
(#
(* everyNthSecond calls INNER every N th second. *)
ever yNt hSecond: System
(* inherit from System can run concurrently *)
(# N < IntegerVal ue;
now. @ nteger;
do cycle
(#
do I NNER ever yNt hSecond
N -> sleep; (* sleep for N seconds *)
now+N -> now, (* accunulate tine *)
#);
#);
every: @ everyN hSecond
(* a co-routine that inherits fromeveryN hSecond *)
(# N:<(#do 1 ->value #); (* sleep for 1 second *)
do 'every: ' -> puttext; now -> screen.putint; newine;
#);
fourth: @ everyN hSecond
(* a co-routine that inherits fromeveryN hSecond *)
(# N:< (# do 4 -> value #); (* sleep for 4 seconds *)
do 'fourth: ' -> puttext; now -> screen.putint; newine;
#);
eighth: @ everyN hSecond
(* a co-routine that inherits fromeveryN hSecond *)
(# N:< (# do 8 -> value #); (* sleep for 8 seconds *)
do 'eighth: ' -> puttext; now -> screen.putint; newine;
#);
do
conc (* execute concurrently: *)
(# do every[]->start; fourth[]->start; eighth[]->start #);
(* ternminates when all systens stops. In this case: never *)
#)

Program 18.1: Seconds.bet

Output of running Program 18.1 for 20 seconds:
ni | % Seconds

every: O
fourth: O
eighth: 0
every: 1
every: 2
every: 3
fourth: 4
every: 4
every: 5
every: 6
every: 7
eighth: 8
fourth: 8
every: 8
every: 9

every: 10

every: 11
fourth: 12
every: 12
every: 13
every: 14
every: 15
eighth: 16
fourth: 16
every: 16
every: 17
every: 18
every: 19
fourth: 20

18.2 Concurrency and User Interface Environments

Graphical user interface environments are usually event-driven in the sense that actions
in the program are executed as a response to user input events. To handle this, a
number of separate implementations of syst emenv exist for the different user interface
libraries, such agvwt i f Env and gui env :

Use ~bet a/ basi cl i b/ v1.6/systemenv asorigin for programs not using event-
driven user-interface libraries.

Use ~bet a/ Xt/ v1. 10/ xsyst enenv as origin for programs using the Motif user
interface library.

Use -~beta/gui env/ v1.6/guienvsystemenv as origin for programs using
GUIEnv interface library.

Please note, that programs should only use one of the syst emenv , xsyst emenv , and
gui envsyst emenv fragments.

Suppose that we like to extend the texteditor above with a clock that should be up- A simple clock
dated every second. A clock can easily be made using the basigst emenv :

ORIAN '~beta/basiclib/ vl.6/systenenv';
| NCLUDE ' ~bet a/sysutils/ v1.6/tine'
-- program descriptor --
syst enenv
(#
updat ed ock: @ System
(#
do cycle
(#
do 1 -> sleep;
systentime -> formattime -> putline
#)
#)
do updat ed ock[] -> fork
#)

Program 18.2: Clock.bet

Here we simply print out the current system time on the screen. Notice, that we have ti me library
included a new library caled time in '~beta/sysutils/ v1.6/tinme' . This library
contains facilities for getting the date and time, time usage, and for formatting times
for nice printing. Running the program shown above gives the following result:
Tue Aug 23 11:48:35 1994
Tue Aug 23 11:48:36 1994
Tue Aug 23 11:48:37 1994

Tue Aug 23 11:48:38 1994
Tue Aug 23 11:48:39 1994

Tue Aug 23 11:48:40 1994
Tue Aug 23 11:48:41 1994
Tue Aug 23 11:48:42 1994
Tue Aug 23 11:48:43 1994
Tue Aug 23 11:48:44 1994
Tue Aug 23 11:48:45 1994
Tue Aug 23 11:48:46 1994
Tue Aug 23 11:48:47 1994
Tue Aug 23 11:48:48 1994
Tue Aug 23 11:48:49 1994

Now we want to integrate this clock in our GUIEnv texteditor program, so we can al-
ways see the time in the low left corner of the window. We need to use the
'~bet a/ gui env/ v1. 6/ gui envsyst enenv "

ORIA@N
I NCLUDE

~bet a/ gui env/ v1. 6/ gui envsyst enenv';
~bet a/ gui env/ v1.6/fields'
~bet a/ gui env/ v1.6/stddial ogs'
~beta/basiclib/ vi.6/file'
~bet a/ sysutils/ vl1.6/tinme
-- program descriptor --
syst enenv
(#
set Wndowenv:: (* tell systemenv that nyguienv is the
* the graphical user interface
*

(# do nyguienv[] -> theWndowEnv[] #);

updat ed ock: @ System
(#
do cycle
(#
do 1 -> sleep;
systentime -> formattinme -> ... ;
(* put tine into the clock *)
#);
#);

nygui env: @ui env (* inherit fromguienv *)
(# (* guienv code as bhefore *)

#)

do (* fork updated ock as a separate system *)
updat ed ock[] -> fork;
#)

We need to specify to syst enenv what graphical user interface system we are using.
Thisis done by extending the virtualet W ndowenv like the following:

set WndowEnv: : (# do nygui env[] -> theWndoweEnv[] #); setWindowEnv

In order to do that, we have changed the gui env into a static object called nygui env .
nygui env will automatically be started bgyst enenv .

Finally, we need to create a user interface element that can show the time. We use a
staticText , that we position below theText Edi t or field:

clock: @taticText staticText
(# open::
(# w, h: @nteger;
do systentime -> formattine -> | abel ;
t heW ndow. si ze -> (w, h);
(5,h-16) -> position; (50,15) -> size;
True -> BindBottom False -> BindTop;
#);
#);

The complete program is:

OR A N ' ~bet a/ gui env/ v1.6/gui envsyst enenv' ;
| NCLUDE ' ~bet a/ gui env/ v1.6/fields'
' ~bet a/ gui env/ vl.6/stddial ogs'
"~beta/basiclib/ vi.6/file
'~betal/sysutils/ vl.6/tinme';
-- program Descriptor --
syst enEnv
(#
set WndowEnv: : < (# do nyguienv[]->t heWndowenv[] #);
updat ed ock: @ System
(#
do
cycle
(# theText: @tyl edText;
do 1->sl eep;
systentime->f ornatti me-> nygui env. t heW ndow. cl ock. | abel ;
#);
#);
nygui env: @ui env (* inherit fromguienv *)
(# theWndow @n ndow (* make a w ndow *)
(# menubar Type:: (* extend the nenubar *)
(# fileMenu: @renu (* make a file nenu *)
(# textFile: @ile;
openltem @renuitem (* make an open item *)
(# eventHandl er: :
(* extend the virtual that is called *)
(# onSel ect ::
(* this nenu itemis selected *)
(# theText: @tyledText;
do theWndow]->
fileSel ectionD al og->
textFil e. name;
text Fi | e. openRead;
textFile.scan
(# while::(#do true->val ue#);
do ch->t heText. put
#);
theText[]->
theText Edi tor. contents.
contents;
textFile.close;
#)#)
open:: (# do 'Qpen'->nane #);
#);
saveltem @enuitem (* make a save item*)
(# eventHandl er: :
(* extend the virtual that is called *)
(# onSel ect ::
(* this nenu itemis selected *)
(# theText: @ext;
do
textFile. openWite;
theText Edi tor. contents.
cont ent s->
textFile. puttext;
textFile.close;
#)
#);
open:: (# do 'Save'->nane #);
#);
quititem @enuitem (* make a quit item*)
(# eventHandl er: :
(# onSelect:: (# do Termnate #) #);
open:: (# do 'Qit'->name #);
#);

Complete code

open: :
(* extend the open virtual of filemenu
* to open the itens *)
(#
do 'File' ->nang;
openl t em open;
openl teni]->append;
savel t em open;
savel teni] - >append;
qui t It em open;
qui tlteni]->append;
#)
#);
open: :
(* extend the open virtual of the menubar
* to open the filenenu *)
(# do fil eMenu. open; fileMenu[]->append #);

#);
thetextEditor: @extEditor (* our text editor *)
(# open::
(* extend the open virtual to set the size
* and the placenent *)
(# w, h: @nteger;
do t heW ndow. si ze->(w, h);
(w, h-20)->Si ze;
Tr ue- >bi ndBot t om
Tr ue->bi ndR ght
#);
#);
clock: @taticText
(# open::
(# w, h: @nteger;
do systentime->fornmatti me->l abel ;
t heW ndow. si ze->(w, h) ;
(5, h-16) ->posi ti on;
(300, 15) - >si ze;
Tr ue- >Bi ndBot t om
Fal se- >Bi ndTop;
#);
#);
open: :

(* extend the w ndow open virtual
* to open the textEditor *)
(# do thetextEditor.open; clock.open; #);
#);
do t heW ndow. open;
(* open the wi ndow when the application start up *)
#)
do updat ed ock[] - >f or k;
#)

Program 18.3: ClockTextEditor.bet

The following figure shows a snapshot of the program running on Motif:

18.3

1 -ri Cuz B ZTo4dinc 19=4

Changes from the Original Design

The abstractions defined here are based on the ones described in chapter 12 of the
BETA book. The implementation is identical to the design in the BETA book, except
for the following changes:

1.

The syntax off ork is
S[]->fork andnots. f ork.
The syntax ofconc is

conc(# do Si[]->start; S2[]->start; S3[]->start #)
andnot conc(# do Sl.start; S2.start; S3.start #).
The syntax ofal t is

alt (# do S1[]->start; S2[]->start; S3[]->start #)
andnotalt(# do Sl.start; S2.start; S3.start #).

This implementation of syst emenv includes some new facilities, not described in the New facilities

BETA book:

4. semaphore had an additional attributet ryP, which is anon-blocking call of.

5. In addition to s[]->fork, s[]->ki || ispossble and in addition to pause, 100
-> sl eep ispossible.

6. system has anew virtual attribute, onki | | ed, that is invoked before the system
terminates

7. systemenv has a new virtua attribute, deadl ocked , that is invoked if al pro-
cesses are deadlocked.

8. Findly, systenmenv defines three new attributes to cope with event driven user

interfaces. wi ndoweEnvType , t heW ndowenv , and set W ndowenv . See further de-
tails on cooperation with user interface environments below.

In order to implement real concurrency, an interrupt mechanism must be implemented. The Concurrency

This is currently not done. A component/system will thus keep the control until i

t is Simulated

makes an explicit or implicit SUSPEND. An implicit SUSPEND is made when a component
must wait for asenaphor e , or executes thepause andsl eep patterns.

Thesyst emenv libraries are thoroughly described in the manual [MIA 94-25] More information

19 The Fragment System

Every BETA program uses the Fragment System. A fragment can be viewed as a piece
of aBETA program — a module. Fragments are organized in files. A file may consist of
one or more fragments.

The basic BETA environment, called bet aenv , supplies basic BETA patterns, such as
integer, char, boolean, and text. In order to use these basic patterns, the program must
specify that the bet aenv environment is to be used. The following example illustrates
how:

ORIA N ' ~beta/basiclib/ vl.6/betaenv'
---program descriptor---

(#

do "Hello Wrld!'"->putline;

#)

Program 19.1: HelloWorld.bet

The example consists of two parts, the specification of ORI G N and the descri pt or 4
calledpr ogr am.

The specification of RGN tells that the program uses the fragment file ORIGIN
~bet a/ basi cl i b/ v1.6/betaenv. The descriptor program tells that following the
line
---program descriptor--- program slot

comes a BETA descriptor, i.e. (# ... #) , that will be named pr ogr am. The name is
used to identify the descri ptor for the purpose of binding it to an unbound hole in
the bet aenv environment. A smple bet aenv environment could have the following
outline:

(* The basic BETA environnent betaenv *) betaenv
(# ...

put: (# c: @har; enter ¢ do ... #);

puttext: (# t: ~text; enter t[] do ... #);

putline: (# t: ~text; enter t[] do t[]->puttext; newine #);

newine: (# do ... #);

text: (# ... #);

<<SLOT LIB: Attributes>>

do (* initialize for execution *)
<<SLOT program descri ptor>>
(* term nate execution *)

#)

The bet aenv environment consists of a single descriptor with two holes—slots. One program and LIB
named pr ogr am of typedescri pt or and one namedLI B of typeAttri but es . slots

4 descriptor isanaliasforChject Descriptor ,i.e.
-- progr am Qoj ect Descriptor-- isasolegal.

The program dot is empty and can be filled (or bound) by a BETA program by defin-
ing andescri ptor like:

---program descriptor---
(# ... #)

as illustrated above. Every BETA program must have exactly one such construct in
order to fill the empty slot in betaenv.

Filling a dot can be compared to a textual replacement®. The Hel | o Wr| d example Filling slots
program above, thus replaces the pr ogr am dot in bet aenv, resulting in the following
expanded BETA program:

(* The basi c BETA environnent betaenv *)

(# ...
put: (# c: @har; enter ¢ do ... #);
puttext: (# t: ~text; enter t[] do ... #);
putline: (# t: ~text; enter t[] do t[]->puttext; newine #);
newine: (# do ... #);
text: (# ... #);
do .(;*.initialize for execution *)
(#
do ‘Hello World!"->putline;
#)

(* term nate execution *)
#)

Program 19.2: HelloWorld with filled program slot

The LI B dot can be used to define libraries that may used in other BETA programs. If
we want to add an operation called put Boxed to the basic environment, we can fill the
LI B dlot:

CRIA N ' ~betal/ basiclib/ vl.6/betaenv' Defining a library
---LIB: Attributes---
put Boxed:
(* print the text with a box surroundi ng:
* '"text'->putBoxed results in '[text]'
*
(# t: "Text;
enter t[]
do '['->put; t[]-> puttext; ']'->put;
#);

Program 19.3: putBoxed.bet

TheHel | owor1 d program can then use this library by including it:

CRIA N ' ~beta/ basiclib/ vl1.6/betaenv'; Using a library
I NCLUDE ' put Boxed'

---program descriptor---

(#

do ‘Hello Wrl d!’ ->put Boxed;

#)

Program 19.4: HelloWorld.bet

Resulting in the following output:
[Hello World!]

5 Textual replacement is not exactly correct due to the scope rules. Please see the BETA book

chapter 17 for a description of these rules.

The Hel | ovor | d example program using the putBoxed library, results in the following
expanded BETA program:

(* The basi c BETA environnent betaenv *)

(# ...
put: (# c. @har; enter ¢ do ... #);
puttext: (# t: ~text; enter t[] do ... #);
putline: (# t: ~text; enter t[] do t[]->puttext; newine #);
newine: (# do ... #);
text: (# ... #);
put Boxed:
(* print the text with a box surroundi ng:
* 'text'->putBoxed results in '[text]'
*
(# t: "Text;
enter t[]
do '['->put; t[]-> puttext; ']'->put;
#);
do (* initialize for execution *)
(#
do ‘Hello Wrld!'"->putline;
#)

(* term nate execution *)
#)

Program 19.5: Hel | oWor | dwith filled pr ogr amand LI Bslot

The program can be made even more simpler by having OR G N in the put Boxed. bet
file:

ORI A N ' put Boxed'

---program descriptor---

(#

do ‘Hello Worl d!’ ->put Boxed;

#)
This works because the put Boxed. bet has ORI A N in the bet aenv environment, so
theHel | ovor | d program will also have access to théet aenv environment.

The---LIB: Attributes--- may bemultiply specified in the same file or in different
files. The way to make librariesin BETA is thus to define the pattern declarations in a
fragment called LI B. The file containing the ---LIB: Attributes--- fragment can
then be included in your program and the declarations can be used.

19.1 Interfaceand Implementation

The fragment system can be used to separate interface from implementation. In the
put Boxed example above we included the implementation of the operation in the in-
terface. We can move the implementation of put Boxed to another file using a dopart
slot. Thisis specified as follows:
put Boxed: Interface

(* print the text with a box surroundi ng:

* 'text'->putBoxed results in '[text]'
*

(# t: "Text;

enter t[]

<<SLOT put Boxed: dopart>>
#);

Here we have described only the interface of put Boxed , i.e. it can be seen that the op-
eration takes a text as a argument (and the comment states that the operation will print

the text with a surrounding box). The implementation is hidden. The implementation
can be described in a dopart fragment:

- -- put Boxed: dopart--- Implementation
do '['->put; t[]-> puttext; ']'->put;

In order to make things work we must specify where the implementation can be found.
Thisis done using aBCDY specification in theput Boxed. bet file:

ORIA@ N ' ~beta/basiclib/ vl.6/betaenv';
BQODY ' put BoxedBody'
---LIB Attributes---
put Boxed:
(* print the text with a box surroundi ng:
* 'text'->putBoxed results in '[text]'

*

(# t: "Text;
enter t[]
<<SLOT put Boxed: dopart>>
#) |
Program 19.6: putBoxed.bet
The file with the - - - put Boxed: dopart--- fragment must specify where the dopart

fragment isto befilled. Thisis done using therl G N:

ORI A N ' put Boxed'
- -- put Boxed: dopart---
do '['->put; t[]-> puttext; ']'->put;

Program 19.7: putBoxedBody.bet

Another major advantage of separating the implementation from the interface is sepa- Separate
rate compilation. The put Boxed. bet and the put BoxedBody. bet file can be sepa- CoMPpilation
rately compiled, and the put BoxedBody. bet file can be changed and recompiled

without recompiling the interface file put Boxed. bet or any of the programs that are

using the libraryput Boxed .

TheHel | oWorl d program using the putBoxed library has not changed:

ORIA N ' ~beta/basiclib/ vl1.6/betaenv';
I NCLUDE ' put Boxed'

---program descriptor---

(#

do ‘Hello Wrld!"->put Boxed,;

#)

Program 19.8: HelloWorld.bet

And the expanded BETA program, using the files. betaenv, Hel | oWor | d, put Boxed,
and put BoxedBody is (exactly as above):

(* The basi c BETA environnent betaenv *)

(# ...
put: (# c. @har; enter ¢ do ... #);
puttext: (# t: ~text; enter t[] do ... #);
putline: (# t: ~text; enter t[] do t[]->puttext; newine #);
newine: (# do ... #);
text: (# ... #);
put Boxed:

(* print the text with a box surroundi ng:
* 'text'->putBoxed results in '[text]'

*

(# t: "Text;

enter t[]
do '['->put; t[]-> puttext; ']'->put;

#)]
do .(;*.initialize for execution *)
(#
do ‘Hello Wrld!'"->putline;
#)

(* term nate execution *)
#)

Program 19.9: Hel | oWor | dwith filled pr ogr amand LI Bslot

The fragment system is described in abstract terms in the BETA book [Madsen 93]. More information
That description aso suggests many ideas of how to use the fragment system. The

current implementation of the fragment system is described in the compiler manual
[MIA 90-2].

References
[Knudsen 94]
[Madsen 93]

[MIA 90-2]
[MIA 90-4]
[MIA 90-6]
[MIA 90-8]
[MIA 91-16]
[MIA 91-20]

[MIA 92-22]

[MIA 94-25]

[MIA 94-26]

[MIA 94-27]

J. L. Knudsen, M. Lofgren, O. L. Madsen, B. Magnusson
(eds.): Object-Oriented Environments — The Mjglner Ap-
proach Prentice Hall, 1994, ISBN 0-13-009291-6.

O. L. Madsen, B. Mdller-Pedersen, K. Nygaard: Object-
Oriented Programming in the BETA Programming Lan-
guage Addison-Wesley, 1993, ISBN 0-201-62430-3

Mjelner Informatics. The Mjglner System: BETA Compiler
Reference Manual Mjglner Infomatics Report MIA 90-2.

Mjelner Informatics: The Mjglner System: Using BETA on
UNIX Systems Mjalner Informatics Report MI1A 90-4.

Mjelner Informatics: The Mjglner System: Using BETA on
the Macintosh Mjglner Informatics Report MIA 90-6.

Mjelner Informatics: The Mjglner System: Basic Libraries,
Reference Manual, Mjglner Infomatics Report MIA 90-8

Mjelner Informatics:. The Mjginer System—X Window
System Libraries Mjalner port MIA 91-16.

Mjainer Informatics. The Mjglner System — Persistent
Store, Mjalner

Mjainer Informatics. The Mjaglner System — Container
Libraries, Reference Manual, Mjalner
Report MI1A 92-22.

Mjainer Informatics. The Mjglner System — Distribution
Mjglner

Mjelner Informaticss The Mjglner System — BETA
Language Introduction Mjglner
94-26.

Mjelner Informatics. The Mjglner System — GUIEnv
Librarues Mjglner

Index

at 68

CharaCters.........eevveieeiierie e
CharODbject........cocevvniriieie s
Command-line arguments......................
Comparing texts........ccoceeevvreenenn.
Complex evaluations............ccocveierieeeiieninesnens

CONCUITENCY....eeeeeeieeiree et
CONCUITENL ...eeieeeeeeeeeeeeeeeeeeeere e
Concurrent COrOULINES..........uvvveeeeeeeeeeeeiisinvnneees
(00015 = 10| £ TSN ;
(o0 g1 v= 1] 1<
Control Characters
COrOULINE.....ceveeeeeeeiciinnns
Create and execute
Create and return areference
CSUING oot

CSIIUCT. ...iiiiiei e

D

Declarations.........cccovereeieenieniiese e
Declaring a coroutine
Defining alibrary............

DESCIIPLON ...t
DireCtory......ccovveveineeiienie e

Directory attributes..........ccceevieieiirenincieenee
Dynamic reference to static object..................... 24
Dynamic references........ccocvvevee s 23

E

ENCapsulation...........ccoceeieeeiiisiese e 22
EVAIUALION.......cco i 6
Evaluations..........cevvieeiiiiiiiiiiiiieeieeeeee e 16
EXCEPLION......coiiiiiiieeiiese e 46
external Patterncccooveeeeeniene e 49
externalRecOrd........cccoeeeiiiiiiciiiiiieeeeeee e 49

E

FIlE e s 31
File attributes.cooveieerieeeeeseeeeeeee e 31
File EXCEPLION....ccciiiieieeie e 32
File menu
Filling SIOtS....coivieiienieieeseeee e 71
for9

fOr IMPErative.......ocveveiiierec e 9
fork and Not SFOrK.........ccovvveriiiiiiiieieeeee 68
Formatted Input and Output...........cccvveriverinenne. 40
Formatted OULPUL...........ccovereeiieniiiiesee e 12
fragment SyStem.........cocevvereeiienie s 22,70
FUNCLiON reSUIS......cccvviieeiieceee e 15
G

Graphical User Interface..........ccoocvveeiienicinns 54
GUIENV.....ciiiiiiii e 54
H
hashtable.........ccooeriiiiii 43
I

if 11

I IMPEratiVe.......veeiieicece e 9
Implementation 72
INCLUDE.................. .71
INCLUDE.......eooiiiininitciteieinee e 4
INNENTANCE.oiiieiiiie e 20

INEEITACE. . .eeiiii e 72
L

labeled imperative.........coceveeieenieneciceenes 14
(I] ST o] £ 70
[S 42
Local fuNCtioN........cccovcveeeiiriee e 22
LOCal StALE.......coeeeiiiieeeee e 17
M

LY=o 11 (0 1= 54
Making alibrary.........ccoooiniiiiiiiiee 52
Math Library........cccoceeieniinienimese e 6

1Y/ 011 (o] 62

MOETENV......ooi i 59; 60

Multidimensional Repetitions...........cccccovveverenene 29
S
N SCreen OULPUL........cevveeeiieee e 24
SEMAPNONE......eeeiiieeciee e 62; 69
NEW OPEIELON.........eeeiveeeieeeesree e 24 Separate compilation..........cccceveeiienieienieennenn 73
NOEFICALTON....c.veeiieiieieeeeeee e 46 SIMPIELYPES...ooiieiieiie e 3
NUMDENTO. ...ttt 4 Standard file OpeNooveviiriiie e 56
SEAEEMENES ... 1
Static and dynamic references..........ccoveereennene 23
O Static Semantic Errors.......c.ccocvveeveeniinieneee 4
Static variable declarations..........cccooeeveenienieenns 21
Object reference repetitions........cccccvevveveerieenne. 27 3:;'0 aJ\I/arr;ZgS """""""""""""""""""""""""""" 2L81
ODjECt-AESCIIPLON ...t 20 Sto CAY NESLELL v 37
ODjECt-OrENtEd CONCERLS. .oovrroerroeerroeerr 20 | s
OBJFILE 50 Structural equivalence..........cccocveieeiienenieenens 21
Operations on a persistent Store..................... 52 Str;(;trlrj]red data. ..o g;
OPErationS 0N LiSt.....ccveeriirieeiieniie e 42 Syst v """""""""""""""""""""""""""""""""" 62
OPErator PriOrity........eereereerieesieesieesiree e sree e 6 SYSIOMENV. s
ORIGIN ...t 70
ORIGIN ...eeiiiieie e 4
OSFIMORf ..o 59 T
TOXE e 38
P TOXE et 6
TEXt OPEratioNS....cccvvveivie e e eieee e seee e 40
Parameter it oo 10 L= = [(o SR 55
PAIEMN cvvoeveoeee e eeee e seeeee e eeseeeen 8 tTypeé' o '4_1;
pattern declaration..........cccoceveenieneenineneeneens 21 yp P Yoorsssrrmmmnsss ’
PEISISIENCE ... 52
Primitive TYPES......ccviveviirieie e 26
Procedure........ccovveveieeeeiiiee e 8; 17 U
Procedure arguments...........cocvvveereeneesmeesnennes 11
Program SIOt........ccveeiiiiii e 70 UsiNg alibrary......cccoccveecieeiieesee e 71
Q \%
QUICK SO .. 27 VaUCHEN ..o i
R W
ReaAlODJECL.......eeeiiieeeeee e 26 WHhIl€ 100P......e et 14
REAIS......ii i 6 WIAGELS ...t 59
FECUNSION ...t seee st e siee et 28 WINAOW.....ceeiieiieieeceee e 55
Reference Operator..........ccocvevieieiieeineeeesneee 23 WINAOWS.....c.veiiieiieiteesieesee e 54
FEPELITIONS. ...ttt 27
FESEAIT. ..eeeeeeeee e 14
X
X Window SYStem........cccevvvrieneeniese e 54

XE TOOIKIES....evvvvieeeieeeee et 59

