The Mjglner System
Persistence in BETA

Reference Manual

Mjelner Informatics Report
MIA 91-20(1.4)
October 1997

Copyright © 1990-97 Mjglner Informatics ApS.
All rights reserved.
No part of this document may be copied or distributed
without the prior written permission of Mjglner Informatics

Table of contents

L INTRODUCTION. ..ttt e e 1
2 BASIC DEFINITIONS . e 2
2.1 ODJECIS AN PALLEINS. ... et e e e e e e e e et e et eeea s 2
22 BEIBENV ..t 3
2.3 Fragments and Compiled COOE...........iveunieiiiiei e e e e e aens 3
3 THE PERSISTENTSTORE PATTERN. ..o 5
B I ST S ol @] o 1= - 1o 5
B 28 (= o 1 o = 5
B EKAIMIPIE e e 6
4 ADVANCED FEATURES. ... e 9
4.1 Lazy ODJECE FEICN ...ceve e 9
4.2 References between different persistent StOreS.........vveuu i 10
4.3 Limiting reachability based persiStenCe.cuu i 11
4. A Filesused fOr StOrNG ODJECES.uuiiiieii e e e e e aeas 12
5 KNOWN BUGS AND INCONVENIENCES ... 13
5.1 Garbage collection and PErSIStENCE.cvuuiii i 13
5.2 Persistent store identification and cross store references.........c.vvvvvvevviieiiiiin e, 13
6 INTERFACE DESCRIPTIONuiiii e 15
BIBLIOGRAPHY .. 23

1 Introduction

In the Mjalner System objects generated by a BETA program execution may be saved
on secondary storage and restored in another BETA program execution. Usually this
property of a programming language or system is referred to as object persistence.
Persistence in the Mjglner System is based on a reachability model, meaning that
default behaviour when saving an object on secondary storage is to save everything
reachable from the object in question. A discussion of different persistence issues and
some of the ideas behind persistence in the Mjglner System may be found in [Agesen
89].

Recognizing that saving the full transitive object closure may at times be too coarse
grained, the Mjglner System alows the programmer to control what part of the
reachable object graph is actually saved along. This allows pointers from persistent
objects to non-persistent objects despite the reachability based persistence model.

Finaly, in order to delay object fetch from secondary storage until an object is
actually needed, lazy object fetch is supported. When using lazy fetch, only the
persistence root and a few more objects are initially fetched from secondary storage.
Fetch of other reachable objects is deferred until their state is needed. At that time,
the object is transparently fetched from secondary storage.

Object
persistence

Lazy object fetch

Persistent object

The transitive
closure

Persistent store

Persistent root

betaenv

2 Basic Definitions

A persistent object is an object that is saved on secondary storage during a program
execution and thus survives the program execution in which it was created. A
persistent object may be read by another program execution. Any BETA object can in
principle be persistent. In the current implementation, the execution state (i.e.
component stacks) is not saved. Furthermore, for certain types of objects it may not
be meaningful to make them persistent. This is e.g. the case with user interface
objects generated by libraries such as xt env, bi frost and macenv. Xt env objects
may e.g. have partia state information about windows, widgets, etc., but this
information will not be sufficient to restore the screen.

By default, when an object is made persistent, all objects that can be reached through
references are also made persistent. This includes statically enclosing objects!. The
set of objects that can be reached from an object in this way is called the transitive
closure of the object.

Persistent objects are saved in a persistent store, which is a collection of persistent
objects. A persistent store has a name. In the current implementation, the name of a
persistent store is the name of a file system directory containing the files making up
the persistent store. Several persistent stores may exist and references between objects
in different persistent stores are supported. A persistent store is itself a BETA object
with a number of attributes.

An object may be pointed out to become a persistent root by means of the put
operation on the persistent store. A persistent root must be given alogica namein the
form of atext string. On checkpoint time, all objects reachable from persistent roots
are saved in the persistent store.

2.1 Objects and Patterns

An object generated as an instance of a pattern is only meaningful as an instance of
that pattern. Consider the following example:

P: (# ... #);
R /P,
&[] -> R]; (* Save R *)

The object referenced by R is an instance of P. When this object is later read by a
program, it must be interpreted by that program execution as an instance of P.

It is not enough that the program reading the object has a declaration of a pattern P
which has the same structure as the pattern P which was used to generate the object. It
must be the very same pattern.

In order for this to work, it is necessary to give a new interpretation to the notion of
bet aenv. This new interpretation is described in the next section. Before doing this
we will shortly discuss what it means for objects to be instances of the same pattern.

Consider the following object descriptor:

1 Objects that are instances of a nested pattern P.PP depends on, i.e. have a reference to, some
instance of the enclosing pattern P.

2

Basic Definitions

(# T. (# c: @integer;
A (# b: @nteger do c->b #);
X @A
Y: @A
#);
Vi @T;
W @T
#)

The outermost object has two interna objects v and wwhich are instances of the
pattern T. Each of v and whas internal attributesc, A, X and Y. The attributes of v are
different from the attributes of w This should be obvious for ¢, X and Y, since they
occupy different storage locations in v and wrespectively. The pattern attribute A of v
Is also different from the pattern attribute A of w The reason is that an instance of v. A
isenclosed by v and may therefore refer to attributes of v -- v. Ais said to have origin
in V. The pattern w A is an attribute of wand may refer to attributes of w-- w A has
originin W An instance of v. Aistherefore NOT an instance of W A.

The objects V. X and V. Y are thus instances of the same pattern v. A. Similarly the
objects W X and W Y are instances of the same pattern w A.

2.2 Betaenv

Bet aenv is afragment defining a pattern that currently encloses all BETA code being
compiled and executed by the Mjalner System. This means that each program
execution creates anew bet aenv object. Patterns described in different programs will
thus never be identical, since they will aways directly or indirectly be attributes of
the bet aenv instance created by the program execution. Cf. the above discussion.

To overcome this problem, the persistentstore treats all bet aenv instances as if they
were actually the same object, although in practice a new instance is created in each
program execution. For example, consider the following library fragment:

myl i b. bet

ORI G N ' bet aenv'
---LIB:attri butes---
A (# ... #);
B: (# ... #);

If nylib. bet isincluded by two or more different programs, then the pattern A will
logically be the same pattern in both programs, since it is an attribute of the same
bet aenv object in all the corresponding program executions. The same is of course
true for B and any other pattern declared in nyl i b. bet

Patterns used for generating persistent objects should
normally be defined in the 1i b: attributes library slot as
innylib above.

However, by using the support for special objects as described in alater section, it is
possible to obtain the same treatment of other patterns as just described for bet aenv,
I.e. treating instances of the pattern in different program executions as logically the
same object. This also allows patterns used for generating persistent objects to be
declared in attribute slots different from i b: at t ri but es.

2.3 Fragments and Compiled Code

A BETA pattern is declared in some fragment of the BETA fragment system. The
fragment in turn is part of a fragment group, corresponding to a BETA source file.
For a description of the fragment system, see [MIA 90-2]. To identify the pattern
from which a persistent object was created, the object has a reference to the fragment
in which the pattern is declared. The fragment is unique in the sense that it is the
version used for generating the code that instantiated the object. In order to load an
object into the memory of some program execution, the program loading the object
must be compiled from and linked with the same version of the fragment from which

Enclosing object:
origin

Only one betaenv
object

Persistence in BETA

the object was originally created. Note that this does not prevent exchange of objects
between different platforms, since it is the fragments that must correspond, not the
compiled codez.

The current implementation does NOT check if the
fragments used for creating a persistent object has been
changed since the object was created. It is currently the
responsibility of the user to keep track of this.

It should be obvious that changes to a fragment may cause inconsistencies with
previously generated persistent objects. Neither is it alowed to change other
fragments within the same fragment group.

The fragment used for generating a persistent object is currently identified using the
name without path of the fragment group in which the pattern is declared. This means
that a BETA program using persistence cannot contain two source files with the same
name. If this restriction is violated, the program will stop with an error message as
soon as the first persistent store is opened.

Multiple equally named BETA source files are not allowed
when using persistence and distribution libraries.

The above problems related to the unique identification of patterns will be avoided in
future versions of the persistent store.

2 The current version of the persistent store does not support object exchange between little and big

endian machines.

3 The Persistentstore
Pattern

The Mjglner System includes a library defining a persistent store, which keeps track
of adirectory of references to persistent objects. Some of these objects, the persistent
roots, may have a logical name. A BETA program using persistent objects must
include the persistent store library which is contained in the file

~bet a/ persi stentstore/vl. 6/ persistentstore
Thisfileis shown in section 7.

3.1 Basic Operations
The basic operations of the persistent store are as follows:

creat e, openRead, openW it e are used for creating and opening a persistent store
in order to access its contents. The name parameter is interpreted as a pathname
relative to the current working directory of the process. When opening a
persistent store for reading, it is not possible to update the contents of the
persistent store, although the objects fetched may be changed in memory.

put points out an object to become a persistent root. This does not affect the
contents of the persistent store, but registers the object is be saved in future
checkpoi nt operations. At the same time the object is given a textual name to
be used in get operations.

get retrieves an object identified by its textual name from secondary storage. If the
object is aready in memory, a pointer to the in-memory version is returned
without changing the state of the object. Usually the full transitive closure of
the object is read from secondary storage at once. This default, however, may
be changed by using lazy fetch.

checkpoi nt saves the state of persistent objects on secondary storage. The
transitive closures of al persistent roots in process memory are traversed, and
all the objects saved. Checkpoint has no effect on stores opened by openRead.

cl ose closes the persistent store. By default cl ose performs a checkpoi nt
operation before closing the files making up the persistent store. In most uses
of the persistent store, it is therefore not necessary to call checkpoi nt
explicitly.

Other operations on persistent stores are supported. These operations are described in
section 4 on advanced features. In addition to the per si st ent st or e operations, the
del et ePer si st ent St or e pattern is available for deleting a persistent store.

A simple example using the per si st ent st or e patternis shownin section 3.3.

3.2 Restrictions

At most one program at a time should open a given persistent store in order to avoid
problems with concurrent access. A future version will support a limited form of
concurrency control. However, detailed concurrency control is out of the scope of this
persistence library. Instead concurrency control is supported by the distributed, object
oriented database being devel oped.

Persistence in BETA

As already mentioned, application programs exploiting object persistence should not
include multiple source files with the same name.

Component objects, i.e. objects with their own execution stack, are not allowed in the
transitive closure of persistent roots. If components are met during a checkpoint
operation, the program will terminate with an error message.

3.3 Example

The fragment Text HashTabl e. bet defines a pattern Text HashTabl e whose instances
are to be made persistent.

Program 1: TextHashTable.bet

ORIA N ' ~bet a/ basi clib/vl. 6/ bet aenv'
---lib:attributes---
Text HashTabl e: hashTabl e
(# elenment::< Text;
hashfunction:: <
(# do e.scanAll (# do ch*26+value -> value #)#);
#)]

The fragment f oopr od. bet describes a program that creates a new persistent store
and saves some persistent objects:

Program 2: fooprod.bet

ORI G N ' ~bet a/ basiclib/vl. 6/ betaenv';
I NCLUDE ' ~bet a/ persi stentstore/vl. 6/ persistentstore’;
| NCLUDE ' Text HashTabl e’ ;

---program descriptor---

(# PS: @ersistentstore;
H: ~Text HashTabl e;

do (* Create the persistent store *)
"myStore' -> PS. create;

(* Create a table of objects. *)
&Text HashTabl e[] -> H;

Hinit;

"first' -> Hinsert;

"second' -> H.insert;

"third" -> Hinsert;

(* Make the table a persistent root. *)
(H1, TextTable') -> PS. put;

(* Checkpoint and close the store. *)
PS. cl ose
#)

The fragment f oocons. bet describes a program that makes use of some persistent
objects:

The Persistentstore Pattern

Program 3: foocons.bet

ORIG N ' ~bet a/ basi clib/vl. 6/ betaenv';
| NCLUDE ' ~bet a/ persi stentstore/vl. 6/ persistentstore';
| NCLUDE ' Text HashTabl e';

---program descriptor---
(# PS: @ersistentstore;
H: "Text HashTabl e;
T. "Text;
do 'nyStore' ->PS. openWite;
(' Text Tabl e', TextHashTabl e##) -> PS.get -> H];
"fourth' -> H.insert;
H scan (# do current[] -> putLine #);
PS. cl ose
#)

Other example usages of the persistent store may be found in the directory
BETALI B/ deno/ persi stentstore. These demo programs, part of the Mjaglner
Systemrelease 4.1, are listed below:

showr egi st er. bet is an example of how to save a simple register in a persistent
store. The register is built in a simple interaction with the user and finally
saved. Later runs of show egi ster may read the saved register and perform
simple queries. Finally the persistent store containing the register may be
deleted.

hashdeno. bet builds a smple hashtable of text strings. For each run of the
program, an extra element is inserted into the table. If the persistent store does
not already exist, it is created, and a new hashtable instance is made a
persistent root. If the store aready exists, the table is read, an extra element
inserted, and the table scanned before the persistentstore is closed, implicitly
implying a checkpoint operation.

structdeno. bet IS Similar to hashdeno. bet, but illustrates the possibility of
saving pattern variables in a persistent store. Pattern variables cannot become
persistent roots, but as demonstrated by st r uct denv. bet , they are alowed in
the transitive closure of a persistent root.

| argeWite. bet and | ar geRead. bet illustrate the use of lazy fetch, i.e. the ability
to delay object fetch from secondary storage until the objects are actually
needed. | ar geW i t e saves alarge hashtable in a persistent store. | ar geRead in
turn retrieves the hashtable from the store and then scans the table, enforcing
all objects to be fetched lazily.

speci al . bet is an example of how to limit the part of the transitive closure of
persistents roots saved along during checkpoint operations. By registering the
progr am pattern as a special object, even objects with origin3 in the pr ogr am
object can be made persistent roots. Furthermore, by registering the
I nt eger Obj ect pattern as a runtime type, references to all instances of
I nt eger Obj ect are saved as NONE references. Runtime types and special
objects are described in detail in the next section.

crossstore. bet illustrates the handling of references between objects in different
persistent stores. The same element is put into two different hashtables that in
turn are saved in two different persistent stores. When one table is then fetched
from its persistent store, it becomes necessary to open the persistentstore
containing the shared element. The example shows how this must be taken care
of by the programmer using the persistent store. The shared element is
modified through the second table. On second run of the crossstore executable
this modification is made visible through a scan of the first table. Details on

3

Instances of patterns nested in the pr ogr ampattern.

Demo programs

Persistence in BETA

references between different persistent stores are described in the following
section.

4 Advanced Features

4.1 Lazy object fetch

When fetching an object from a persistent store using the get operation, the default is
to eagerly fetch all objects in the transitive closure of the persistent root specified.
However, since this may involve a huge number of objects not really needed by the
current program execution, the persistent store offers the possibility to fetch the
transitive closure lazily as the program goes along following references from the
persistent root.

By further binding the persi st ent store. al | owLazyFet ch virtual to truej ect,
the default fetch strategy is changed to lazy fetch. Alternatively the fetch strategy may
be set on a per get basis by further binding the get . al | owLazyFet ch virtual to
trueoj ect.

In short, lazy fetch works as follows. Using the persistent store get operation, the
object graph reachable from the persistent root is always fetched in a breadth-first
manner, whether or not lazy fetch is applied. In the case of lazy fetch, instead of
fetching the full object graph, only a limited number of objects are fetched from
secondary storage and instantiated in the current process. The objects fetched are the
per si st ent st or e. maxFet chOnDangl er Hi t first objects met during the breadth-first
traversal. The default number of objects fetched may be changed by further binding
the maxFet chOnDangl er Hi t virtual.

So, what about the objects not fetched? Since these objects are not instantiated, it is
impossible to setup usual in-memory references. Instead socalled dangling references
are used. Simply stated, a dangling reference is a negative number uniquely
identifying a persistent object to the current process. If a dangling reference is ever
followed4, the same mechanism that checks for NONE references will trap to the
persistent store kernel in order to transparently fetch the object needed from
secondary storage. Also in this case the objects fetched are the
maxFet chOnDangl er Hi t first objects met during a breadth-first traversal of the object
graph rooted in the object needed. All dangling references in the process referencing
newly fetched objects are replaced by genuine in-memory references. A more detailed
description of the implementation of lazy object fetch may be found in [Brandt 94].

Note that the - - noCheckNone (or -s 14 0) compiler
switch suppressing the generation of runtime checks for
NONE references cannot be used in programs using lazy
obj ect fetch!

In addition to maxFet chOnDangl er Hi t and all owLazyFet ch, the
persi stent st ore. OnDangl erHi t and persi stentstore. AfterDangl erHi t
virtuals are used in conjunction with lazy object fetch. OnDangl er Hi t iscalled when
a dangling reference has been hit, but before the object is actually fetched from
secondary storage. AfterDangl erHit is caled when the object has been fetched,
giving the object as parameter. When AfterDangl erH t returns, the program
continues whatever it was doing when the dangling reference was hit. The purpose of
these virtuals is to offer informative callbacks that may be used for example in

4 Followed here means "accessing the state of the object referred”. Usual reference assignment on
dangling references are not different from ordinary reference assignments.

9

allowLazyFetch

10

Persistence in BETA

Checkpointing

interactive programs where lazy object fetch may otherwise result in inexplicable
delays.

It should be noted that there are no semantic differences whatsoever between lazy and
eager object fetch. The practical difference lies in different efficiency/memory usage
trade-offs.

The demo programs| argeW i t e. bet and| ar geRead. bet together illustrates the use
of lazy fetch.

4.2 References between different persistent stores

References between objects saved in different persistent stores are allowed, but
beware that the support for such references is still somewhat experimental and
requires special carein order to avoid problems. This section describes how to exploit
cross store references. The crossst ore. bet demo program is an example usage of
cross store references. The drawing below illustrates references between objects
saved in different persistent stores. In memory, there is no difference between cross
store references and other object references. However, on secondary storage these
references cross boundaries between persistent object stores.

Secondary Storage
|Process Memory |

Persistent Store 1

Root 1

Persistent pstore 1
Store Kernel pstore 2

4.2.1 Where are objects saved?

When performing a checkpoint on a persistent store, either explicitly by calling the
checkpoi nt operation or implicitly by closing the store, the object graphs rooted in
the persistent roots of the store are traversed and the objects met saved to the
persistent store. However, if an object is met that has already been saved in another
persistent store, only the identification of that object is saved, and the graph traversal
is not continued in that particular direction. Thus, a checkpoint operation on a
persistent store only saves objects aready belonging to that store, or objects that do
not yet belong to any persistent store at al. The result is that a persistent object is
saved in the store that first sees the object during a checkpoint operation.

The description above of course demands that we are able to recognize objects that
“belong to” other persistent stores. However, when a persistent store is closed, objects
that belonged to the store before the cl ose operation will, after the cl ose operation,
semantically turn into copies of the objects belonging to the store. Thus, in order to
maintain references between objects in different persistent stores, it is necessary to
make explicit checkpoint operations and avoid the implicit checkpoint done by the
cl ose. Thelatter is done by further binding the doCheckpoi nt virtual:

Advanced Features

11

PS. cl ose (# doCheckpoint:: (# do false -> value #)#);

When exploiting cross store references, avoid the implicit
checkpoint operation by furtherbinding the doCheckpoi nt
virtual on cl ose operations. Instead explicit checkpoint
operations should be executed on all stores before closing
any store.

4.2.2 Following references between persistent stores

If apersistent root is fetched whose transitive closure contains references to objectsin
other persistent stores, these persistent stores must be open in order to fetch the
objects referenced. However, if the store referred is not aready open, the persistent
store containing the reference is not able to open the store automatically since it has
no idea whether it should be opened for reading or writing. Instead it calls the
per si st ent st or e. openpst or e virtual with the full pathname of the store needed,
and expects the further binding to open and return the store.

4.3 Limiting reachability based persistence
4.3.1 Special objects

For the primary intended usage, a special object is an object that is thought of as a
single logical object that is always present in program executions using some
persistent store. Support for specia objects may thus be thought of as generic support
for pointing out patterns that to some extend have only a single instance shared
between all program executions using the pattern.

The state of special objects is never saved persistently. However, references to these
objects should be saved so that they may be setup correctly when saved objects
referencing a special object are re-instantiated in another process. Typical examples
or specia objects are application framework objects that are known to be present in
the program executions exchanging persistent objects, but should not be saved
themselves. Examples of application framework objects are instances of Xt Env,
systenmenv and shel | env. These application framework objects, of which there
should be at most one in each program execution, are not to be saved persistently, but
instances of patterns nested inside the application frameworks should be alowed to
persist. As already mentioned, bet aenv is aways treated as a special object.

Specia objects are registered once in the lifetime of a persistent store by supplying
name and type of the object to the persi stentstore. registerSpeci al bj ect
method. The type is saved in the persistent store in order to be used for type checking
when registering special object instances as described below.

In addition to the initial registration, an instance of the special object must be
supplied by each process using the persistent store by caling the
persi st ent store. registerSpecial | nstance method when the persistent store
has been opened, but before any get operations are made. The instance given to the
regi st er Speci al I nst ance method must be a subtype® of the type given to the
regi st er Speci al Cbj ect operation.

The demo program speci al . bet contains an example usage of special objects.
4.3.2 Runtime types

Runtime types are patterns whose instances are used at runtime, but should not persist
across program executions. As mentioned in section 2, an example of thisisinterface
objects such as windows. Another example is objects used for caching purposes at
runtime and referenced from persistent objects although the cache objects themselves
should not be saved across program executions. By registering the pattern p as a
runtime type, instances of p are not saved during checkpoint operations even though

5 The subtype relation isreflexive, i.e. any pattern is a subtype of itself.

12

Persistence in BETA

they are found in the transitive closure of a persistent root. Instead references to these
objects are saved as NONE references.

Runtime types are registered by caling persi st ent store. regi st er Runti meType.
As runtime types registered using r egi st er Runti meType are not saved persistently
in the store, regi st er Runti meType must be called for each runtime type in each
session using the persistent store in question. If needed, it is of course possible to save
atable of runtime types in a persistent store. The demo program st r uct deno. bet IS
an example of how atable of pattern variables may be saved in a persistent store.

The demo program speci al . bet contains an example usage of runtime types.
4.3.3 Combining runtime types and special objects

Since references to special object instances are treated differently than references to
instances of runtime types, it is a contradiction to register the same pattern as a
specia object and as a runtime type in the same persistent store. Doing so will result
in aruntime error.

Furthermore, since it is not alowed to save an object without the knowledge that all
its origins will be available when the object is to be reinstantiated, instances of
runtime types should not be origins of objects saved. If an instance of a runtime type
is needed as origin for some other object to be saved, the runtime type instance is
saved anyway, disregarding the fact that it is an instance of aruntime type.

Different persistent stores used in the same program execution may have different
sets of special objects and runtime types registered.

4.4 Files used for storing objects

The name parameter to the create, openRead and openWite operations in the
per si st ent st ore pattern is interpreted as a directory name relative to the current
directory of the process. When creating a new persistent store, this directory is
created along with the files | ocg, oi nx and dat a. Thus, for a persistent store created

by:
"nyStore' -> PS. open
the directory ny St or e and the files

.myStore/locg, nyStore/oinx, nyStore/data

are created. For deleting the files making up a persistent store, the
del et ePer si st ent St or e pattern isavailable.

5 Known Bugs and
Inconveniences

5.1 Garbage collection and persistence

With respect to garbage collection and persistence, there are two separate issues to
consider, namely the usual in-memory garbage collection and garbage collection of
the persistent store on secondary storage. These are considered in turn below.

5.1.1 In-memory garbage collection

The persistent store kernel keeps track of persistent objects loaded into the current
process by maintaining a table of references to these objects. This table is shared by
all persistent stores in a program execution. As long as a persistent store is open, no
objects from that store can thus become garbage, since they are at least referenced
from the internal object table. Currently the only way to delete objects from the
internal table is to close the store. Thus, to alow in-memory garbage collection of
persistent objects, the persistent store in which these objects are saved must be closed.

A side-effect of deleting objects from the object table is is course that the persistence
kernel no longer knows that these objects are persistent, and thus semantically these
objects turn into in-memory copies of the real persistent objects, now only available
on secondary storage.

5.1.2 Secondary storage garbage collection

Currently there is no built-in support for garbage collection of persistent stores. Thus,
once saved in a store, an object stays there until the store is deleted, even though the
object may no longer be reachable from any persistent root.

However, for small persistent stores whose objects fit into virtual memory of the
computer at once, and that are not referenced from other persistent stores, it is
possible to perform a simple garbage collection using the basic operations of the
persi stentstore pattern. This is illustrated by the Persistent GC. bet demo
fragment. Per si st ent GC sSimply reads the transitive closures of all persistence roots
into memory, deletes the store, and then saves the persistence roots in a new store
with the same name as the old store.

Note, however, that the fragments used to generate the objects saved in the store must
be linked with the executable performing the collection.

The demo program gc. bet illustrates how to first delete a number of elements from
the persistent table generated by | argewite. bet, and then perform a garbage
collection on the store, using Per si st ent GC.

5.2 Persistent store identification and cross store references

The persistent store identifies objects using a two-part object id, each part being a 32
bit integer. The first part identifies the persistent store in which the object is saved,
and the second part is a unique identification of the object within that store. Currently
the persistent store id is simply the system time (in seconds) when the store was
created. A persistent store containing references to other persistent store thus
maintains a mapping from these creation times to the full pathname of the persistent
stores, in order to be able to call the openpst or e virtual with the correct pathname.

13

Object ID

14

Persistence in BETA

Unfortunately this identification is not entirely unique. The persistent store kernel
ensures that no two stores created by the same process gets the same creationtime, but
there is currently no way to ensure that different processes do not create persistent
stores with the same creation time. A process simultaneously opening two persistent
stores with the same creation time will therefore in the best case receive wrong
al r eadyQpen exceptions, and in the worst case wrong in-memory object graphs may
be created.

In future versions of the persistent store, this problem will be solved by using an
alternative identification scheme.

6 Interface Description

ORIA N ' ~bet a/ basi clib/vl. 6/ bet aenv'

*
(*
* COPYRI GHT
* Copyright Molner Informatics, 1992-97
* Al'l rights reserved.
*
)

BODY ' pri vat e/ persi stent st oreBody' ;
---- lib: attributes ----

persi stentstore:
(# <<SLOT persistentstoreLib: attributes>>;

openRead:
(* Opens THI S(persistentstore) for reading, i.e. it is not
* allowed to wite objects to the store. Checkpoint
operations will be ignored.

*
*
* The nane paraneter is the name of the directory containing
* the store and is interpreted as a path relative to the
* current directory of the process.
*
(# al readyOpen: < PSexception

(#

do ' persistentstore. openRead:
-> msg. put Text; full Nane[] -> nsg. put Text;
al ready open' -> nsg. put Text;

| NNER
#) ;
not Found: < PSexception
(#

do ' persistentstore. openRead:
-> msg. put Text; full Nane[] -> nsg. put Text;
"" not found' -> nsg.putText;

I NNER
#)
accessError: < PSexception
(#

do 'persistentstore.openRead: No access to
-> meg. put Text; full Nane[] -> nsg. put Text;
""" -> nsg. put Text;
| NNER
#)]
name: "Text;
ent er nane[]

do ...;
#)
openWite:

(* Opens THI S(persistentstore) for witing, i.e. it is allowed
* to update the objects saved in the store.

*

* The nane paraneter is the name of the directory containing
* the store and is interpreted as a path relative to the

*

current directory of the process.
15

Persistence in BETA

*

(# al readyOpen: < PSexception

(#

do 'persistentstore.openWite:
-> nsg. put Text; fullNane[] -> nsg. put Text;
al ready open' -> nsg. put Text;

I NNER
#)
not Found: < PSexcepti on
(#

do 'persistentstore.openWite:
-> meg. put Text; fullNane[] -> nsg. put Text;
not found' -> nsg. put Text;

I NNER
#);
accessError: < PSexception
(#

do 'persistentstore.openWite: No access to
-> meg. put Text; full Name[] -> nBg. put Text;
"' -> meg. put Text;
| NNER
#);
name: “Text;
enter nang[]
do ...;
#);

create:
(* Creates a new persistentstore. The name entered is
* interpreted as a path relative to the current directory of
* the process. The new store is opened with wite perm ssion
*
(# al readyOpen: < PSexception
(#
do 'persistentstore.create:
-> meg. put Text; fullNane[] -> nsg. put Text;
al ready open' -> nsg. put Text;
I NNER
#);
exi sts: < PSexception
(* The old store is deleted if exists returns.
*)
(#
do 'persistentstore.create:
-> msg. put Text; fullNane[] -> nsg. put Text;
al ready exists' -> nsg. put Text;

I NNER
#);
creati onError: < PSexception
(#

do 'persistentstore.create: Failed creating
-> msg. put Text; full Nane[] -> nsg. put Text;
""" -> nmBg. put Text;
I NNER
#);
name: “Text;
enter name[]
do ...
#);

checkpoi nt :
(* Saves the state of all objects in the transitive closure of
* objects made persistent roots or fetched fromthis
* persistentStore since open. Checkpoint has no effect if the
* store was opened by openRead.

*)

Interface Description

17

(# ... #);

(* Performs a checkpoint, unless the doCheckpoint virtua
returns false, and then cl oses
THI S(persi stentStore). bjects fetched from
THI S(persistentStore) will now turn into copies of the
obj ects saved in the store. This neans that the fact that
the objects originally came fromthis store, is forgotten

*
*
*
*
*
* |f allowLazyFetch is TRUE, dangling references nmay exist to
* objects not yet fetched fromthis persistentstore. If this

* is the case, the danglersExists virtual is called. Default

* action is to kill the process, but other possibilities are

* to either fetch the nissing objects before closing, or

* simply ignore the warning and cl ose the store anyway. In the
* latter case, usage of the objects nfetched could be fata

* when trying to access an object that was newer fetched from
* the store. Ignoring should thus only be done if you are not
* going to access the object (copies) fetched during the

* "transaction" about to end.

*
#

dangl er sExi st s: <
(# todo : @nteger;
kill: (# exit 0 #);
(* Kill the process. Default action. *)
fetch: (# exit 1 #);
(* Fetch the m ssing objects. *)
ignore: (# exit 2 #);
(* lgnore the dangling references. *)
do kill -> todo ; INNER
exit todo #);
doCheckpoi nt : < Bool eanVal ue
(# do true -> value; INNER #);
do ...
#);

get:

(* Reads the persistent root naned "nane" into nenory and
* returns a reference. If the object is already in nmenory, a
* reference to the in-menory object is returned. In that case,
* the state of the object is |eft untouched.
*
(# quaError: < Exception

(#

do 'persistentstore.get: Qua error getting "

-> msg. put Text; name[] -> nsg. put Text;
"' -> meg. put Text;

I NNER
#)
not Found: < Excepti on
(#

do 'persistentstore.get:
nane[] -> nsg. put Text;
"" not found' -> nsg.putText;
I NNER
#) |
al | omLazyFet ch: < Bool eanVal ue
(#
do THI S(persistentstore). all owazyFetch
-> val ue;
I NNER
#)]
nane: ~Text; type: ##bject;
t heObj ect: "nject;
enter (nane[],type##)

-> nBeg. put Text;

18

Persistence in BETA

do ...;
exit theQbject[]
#);

put :

(* Turns obj into a persistent root with textual nane

* "name". The state of obj is not saved until a checkpoint
* operation is perfornmed.

*

(# obj: ~Object; name: "text;

enter (obj[],nane[])

do ...

#);

scanRoot Nanes:
(* lterates over the names of the persistent roots in this
* persistent store.
*
(# current: "Text;
do ...
#);

These attributes are used to limt the part of the
obj ect graph saved during the checkpoint operation
On the interface |l evel of a persistentstore, there
is currently two ways of limting the object graph

[N

Speci al obj ects.

Speci al objects are objects whose state is
NEVER saved persistently. However, references
to these objects should be saved so that they
may be setup correctly when saved objects

ref erenci ng special objects are reinstantiated
i n another process. Typical exanples or specia
objects are application framework objects that
are known to be present in the program
executions exchangi ng persistent objects, but
shoul d not be saved thensel ves. Exanpl es of
application franework objects are instances of
U env, systenEnv and shell Env. (betaEnv is

al ways treated as a special object.)

Speci al objects are registered once in the
lifetime of a persistent store by supplying
nane and type of the object to the

"regi sterSpecial hject" nethod. The type is
saved in this persistentstore to be used for
type checki ng when registering special object
i nstances as described bel ow.

In addition to the initial registration, an

i nstance of the special object nust be supplied
by each process using the persistent store by
calling the "registerSpeciallnstance" nethod
when the persistentstore has been opened, but
bef ore any get operations are made. The instance
given to the registerSpeciallnstance nmethod nust
be a subtype of the type given to the

regi st er Speci al Obj ect operati on.

™

Runti ne types.

b T I N R T N N SN B R ST B T T N N R N N N . N N R

Interface Description 19

E S T R I S R R N

Runtine types types of objects that are used at
runtime, but should not persist across program
executions. An exanple of this is user interface
obj ects such as wi ndows. Registering a

runti meType neans that instances of subtypes
are not saved, and the correspondi ng references
saved as NONE references. As runtine types

regi stered using regi sterRunti mneType are not
saved persistently in the store,

"regi sterRunti meType' nust be called for each
runtime type in each session. It is of course
possible to save a table of runtine types in a
persistent store if needed.

It is a selfcontradiction to register the type of
a special object as a runtine type or vice versa.
Doing so results in a runtime error

Furthernmore it is necessary to ensure that

i nstances of runtinme types are not origins of
other objects saved. This is because it is not
possi ble to save an object wi thout the know edge
that all its origins will be avail able when the
object is to be reinstantiated.

Al t hough it probably makes no sense, different
i nstances of persistentstore may have different
sets of special Objects and runti meTypes regi stered.

)

regi st er Speci al Obj ect :

(* Special objects are registered once in the lifetime of a

* persistent store by supplying name and type of the object to
* this method. The type is saved in this persistentstore to be
* used for type checking when registering special object

* instances as described above.
(

)
al readyThere: < Exception
(#
do 'registerSpecial Obj ect: Special object
-> msg. put Text; name[] -> nsg. put Text;

"" already exists: ' -> nsg. put Text;
| NNER;
false -> continue

#)]
nane: ~Text; type: ##bject;
enter (nane[],type##)
do ...
#);

regi st er Speci al I nst ance:

(* I'n addition to the initial registration, an instance of the
* special object must be supplied by each process using the
* persistent store by calling this nmethod when the
* persistentstore has been opened, but before any 'get
* operations are made. The instance given to this nethod nust
* be a subtype of the type given to the
* 'registerSpecial Object' operation
*
(# quaError: < Exception
(#
do 'registerSpeciallnstance: Qua error on
-> msg. put Text; name[] -> nsg. put Text;
i nstance' -> msg. put Text;
I NNER;
fal se -> continue

Persistence in BETA

#);
not Found: < Excepti on
(#
do 'registerSpecial l nstance: Special object
-> nsgQ. put Text; name[] -> neg. put Text;
not registered.' -> nsg.put Text;
| NNER;
fal se -> continue;
#)
o: "Object; name: "Text;
enter (o[],name[])
do ...
#);

regi st er Runti neType:

(* Runtime types types of objects that are used at runtine,
but shoul d not persist across program
executions. Registering a runtineType neans that instances
of subtypes are not saved, and the correspondi ng references
saved as NONE references. As runtine types registered using
regi sterRunti meType are not saved persistently in the store,
‘regi sterRunti meType' nust be called for each runtine type
in each session.

E R S

(# type: ##bject
enter type##

do ...

#),

(* LAZY OPTI ONS

*

Attributes in this section are concerned with the
| azy fetch of persistent objects. If used, object
fetch from secondary storage may be del ayed unti
the objects are actually needed. By using a trap
nmechani sm fetching takes place transparently

wi t hout applications being aware of it. *)

* %k X X F X %

al | owLazyFet ch: <

(* If not further specified, all objects in the transitive
cl osure of an object requested in a get operation are al ways
fetched at once. This default may be changed by
furtherbinding "all owLazyFetch" and setting "value" to
“"true". Default nmay be overridden "per get" by using the
al owLazyFetch virtual of get.

* % X X F
~—

Bool eanVal ue;

maxCount OnDangl er Hi t : < I nt eger Val ue

(* When a reference to an object not yet fetched from

* secondary storage is encountered, sone nunber of objects
reachable fromthe object referred are fetched too. The
objects fetched are the 'value' first unfetched objects
encountered during a breadth-first traversal of the object
graph, using the object referred by the original dangling
reference as a root.

nj ect fetch continues until

1: No nore unfetched objects are reachable fromthe root
object. or 2: maxCount OnDangl erHit objects have been
f et ched.

*
*
*
*
*
*
*
*
*
*
*
*
#

(# do 100 -> val ue; I NNER #);

Interface Description 21

OnDangl erHi t: <
(* OnDanglerHit is called when a dangling reference is hit.
*

bj ect ;
AfterDanglerHt: <
(* When the object referred has been fetched, AfterDanglerHt
* is called with the newy fetched object as paraneter.
(# thebject: ~(bject;
enter theQbject[]
do | NNER
#)

openpstore: <
(* If this persistentstore contains references to objects in
* other persistent stores, it may be necessary to open the
* stores to be able to follow these references. Wen this
* happens, the openpstore virtual is called. If the persistent
* store naned is not opened and returned in ps, the program
* wWill termnate.
*
(# psnane: ~Text;
ps: “persistentstore;
enter psnang[]
do | NNER
exit ps[]
#)]

psprivate:...;
pspriv: @sprivate;
do | NNER;
#)

del et ePersi stent Store
(* Deletes an existing persistentstore. It is not possible to
* delete a persistentstore that is open in this program
* execution. If tried anyway, the "alreadyOpen" exception is
* raised. In case the process does not have sufficient access
* priviliges to delete the store, the "accessError" exception is
* raised.
*
(# al readyOpen: < PSexception
(#
do 'persistentstore. del ete:
full Nane[] -> nsg. put Text;
"" is currently open' -> nsg.putText;

-> nmsg. put Text;

I NNER;
#)]
accessError: < PSexception
(#

do 'persistetstore.delete: Unable to delete -> msg. put Text ;
full Nane[] -> nsg.putText; '"' -> meg. put Text;

| NNER;
#) ;
not Found: < PSexception
(#

do 'persistetstore.delete:
full Nane[] -> nsg. put Text;
I NNER;
#);
name: “Text;
enter nane|]
do ...
#);

-> mBeg. put Text;
"" not found' -> nmsg.putText;

PSexception: exception

22

Persistence in BETA

(* PSexception is used in several

exceptional situations where the

* files maki ng up an persistent store are not accessable. The

* full Name paraneter is the full
* be a persistent store.

*

(# full Name: ~Text;

enter full Nange[]

do | NNER

#)

path of the directory expected to

Bibliography

[Agesen 89]

[Madsen 93]

[Brandt 94]

[MIA 90-2]

Ole Agesen, Svend Fraglund, Michael Hoffmann Olsen:
Persistent and Shared Objectsin BETA, Computer Science
Department, Aarhus University, DAIMI IR-89, April
1989.

O. L. Madsen, B. Mgdller-Pedersen, K. Nygaard: Object-
Oriented Programming in the BETA Programming
Language, Addison-Wesley, 1993, ISBN 0-201-62430-3

Saren Brandt: Implementing Persistent and Shared Object
in BETA. Progress report. Technical Report, Computer
Science Department, Aarhus University, May 1994.

Mjglner Informatics: The Mjglner System: BETA Compiler
Reference Manual Mjglner Informatics Report MIA 90-2.

23

Index

The entries in the index with italic pagenumbers are the identifiers defined in
the public interface of the libraries:

The minor level entries refer to identifiers defined local to the identifier of the
major level entry. For those index entries referring to patterns with super- or
subpatterns within the library, these patterns are specified in special sections of
the minor level index for that identifier.

Entries with plain pagenumbers refer to the text of this manual.

A

accesskError, 21
AfterDanglerHit, 21
AfterDanglerHit, 9
alowLazyFetch, 20
alreadyOpen, 21

application framework objects, 11

B

betaenv, 2

C

checkpoint, 16
checkpoint, 10
checkpoint, 2, 5

close, 17

closg, 5

Component objects, 6
component stacks, 2
concurrency control, 5
create, 16

create, 5

creationtime, 14

cross store references, 10

D

dangling references, 9
deletePersistentStore, 21
accesskrror, 21
super pattern:
PSexception, 22
alreadyOpen, 21
super pattern:
PSexception, 22
name, 21
notFound, 21
superpattern:

25

PSexception, 22
PSexception
subpatterns:
accesskError, 21
alreadyOpen, 21
notFound, 21
deletePersistentStore, 5

E

exception
subpatterns:
PSexception, 21

=

fragment, 3
fragment group, 3
fullName, 22

G

Garbage collection, 13
get, 17
get, 5

H

hashdemo.bet, 7

L

largeRead.bet, 7
largeWrite.bet, 7
Lazy object fetch, 9
lazy object fetch, 1

26

Persistence in BETA

M

maxCountOnDanglerHit, 20

N

name, 21
notFound, 21

O

object id, 13

object persistence, 1
OnDanglerHit, 21
OnDanglerHit, 9
openpstore, 21
openpstore, 11
openRead, 15
openRead, 5
openWrite, 15
openWrite, 5

P

pattern, 3
persistent object, 2
persistent root, 2
persistent store, 2
PersistentGC.bet, 13
persistentstore, 15
AfterDanglerHit, 21
alowL azyFetch, 20
checkpoint, 16
close, 17
create, 16
get, 17
IntegerValue
subpatterns:

maxCountOnDanglerHit, 20
maxCountOnDanglerHit, 20

super pattern:
IntegerValue, 22

OnDanglerHit, 21
openpstore, 21
openRead, 15
openWrite, 15
pspriv, 21
psprivate, 21
put, 18

put, 18
put, 5

R

reachability model, 1
registerRuntimeType, 20
registerRuntimeType, 12
registerSpecialInstance, 19
registerSpeciallnstance, 11
registerSpecial Object, 19
registerSpecial Object, 11
runtime type,, 7

Runtime types, 11

S

scanRootNames, 18
showregister.bet, 7
specia objects, 7, 11
special.bet, 7
structdemao.bet, 7

T

transitive closure, 2

registerRuntimeType, 12, 20
registerSpecial Instance, 11, 19
registerSpecia Object, 11, 19
scanRootNames, 18
persistentstore
AfterDanglerHit, 9
alowLazyFetch, 9
maxFetchOnDanglerHit, 9
OnDanglerHit, 9
openpstore, 11
PSexception, 21
fullName, 22
super pattern:
exception, 21
pspriv, 21
psprivate, 21

