
The Mjølner System
BETA Compiler

Reference Manual

Mjølner Informatics Report

MIA 90-02(1.6)

October 1997

Copyright © 1990-97 Mjølner Informatics ApS.
All rights reserved.

No part of this document may be copied or distributed
without the prior written permission of Mjølner Informatics

i

Table of Contents

1 INTRODUCTION 1

2 SIMPLE USE OF THE COMPILER 2

3 THE BETA LIBRARY 3

4 FILES GENERATED BY THE COMPILER 5

5 IMPLEMENTATION DEVIATIONS 6

5.1 The BETA Book 6

5.2 Restrictions 6

5.3 Extensions 11
5.3.1 String Literals as References 11
5.3.2 Special Characters in String Literals 12
5.3.2 Simple If 12
5.3.3 Xor Primitive 12
5.4.4 Short-circuit Boolean Expressions 12
5.4.5 ## for Objects 13

6 THE FRAGMENT SYSTEM 14

6.1 Fragment Language Syntax 14

6.2 Fragment Denotations 18

6.3 Fragment Properties 18

6.4 Modularization of Data Structures 20

6.4 Modularization with INNER 21

6.5 Formal Syntax of Fragment Language 23

6.6 File Name Restrictions 24

7 ERROR HANDLING 25

7.1 Syntax Errors 25

7.2 Static Semantic Errors 25

ii BETA Compiler Reference Manual

7.3 Check for bound SLOTs. 26

7.4 Assembler and Linker Errors 26

7.5 System Errors 27

7.6 Run-time Errors 27

8 COMPILER ARGUMENTS 29

9 MACHINE DEPENDENT CONFIGURATIONS 32

9.1 BUILD Property 33
Syntax: 33
Functionality 34
Example 34
More than one build pr. fragment 34

10 CODE GENERATION FOR MULTIPLE MACHINES 36

10.1 Placement of Object Code 36

10.2 Macro Expansion 36

BIBLIOGRAPHY 39

APPENDIX A. SEMANTIC ERRORS AND WARNINGS 41

A.1 Semantic Errors 41

A.2 Semantic Warnings 44

APPENDIX B. THE BETA GRAMMAR 45

APPENDIX C. NEW FEATURES IN V5.3 49

C.1 New Platforms 49

C2. The BUILD Property 49

INDEX 51

1

1 Introduction

This manual describes version 5.3 of the BETA compiler (corresponding to release 4.1
of the Mjølner System). The compiler implements most parts of the BETA language as
described in [MMN93]. There are, however, some implementation restrictions.

The user should read section 5 for a description of the im-
plementation restrictions and deviations from [MMN93]

See Appendix C for an overview of new features in V5.3 of the compiler. The BETA
compiler is accompanied by a large collection of libraries and application frameworks.
This includes a text concept, and libraries for input/output on keyboard, screen and
files, a user interface package, a library of well-known datastructures, and a meta-
programming system. The Mjølner System is available for The Power Macintosh,
UNIX workstations such as Sun-4 (SPARC running Solaris), HP-9000 series 700,
Silicon Graphics running IRIX, and PC’s running Windows NT, Windows 95 or
Linux.

On Macintosh the user interface system is implemented on top of the Macintosh
Toolbox. For Macintosh there is also a library that interfaces directly to the Toolbox.

On UNIX, the user interface system is implemented on top of the X Window System
(X11R3 or later). A number of UNIX facilities can be accessed via a UNIX library.

On Windows 95 and Windows NT, the user interface system is implemented on top of
WIN32.

A general interface to C and assembly language is part of the libraries/compiler.

The rest of this manual is organized as follows: Section 2 describes the simplest way of
using the compiler. Section 3 describes the organization of the basic BETA libraries.
Section 4 describes the files generated by the compiler. Section 5 describes various
deviations in the implementation of BETA. Section 6 describes the implementation of
the fragment system. Section 7 describes compile- and run-time errors. These sections
contain useful information for all users.

The remaining sections are only for advanced users. In section 8, a number of different
arguments to the compiler are described. In section 9, it is described how to instantiate
machine dependent configurations of a program. In section 10 it is described how code
is generated for multiple machines.

2 BETA Compiler Reference Manual

2 Simple Use of the
Compiler

The following is an example of a very small BETA program.

ORIGIN '~beta/basiclib/v1.6/betaenv'
--- PROGRAM: descriptor ---
(#
do 'Welcome to Mjolner' -> putLine
#)

Only the part between (# ... #) is BETA. The ORIGIN specification:

ORIGIN '~beta/basiclib/v1.6/betaenv'

describes that version 1.61 of the fragment betaenv from the BETA basic library
(basiclib) is used.

The fragment name and category:

--- PROGRAM: descriptor ---

describes that the BETA program is filled into a slot in betaenv called PROGRAM. The
BETA compiler is integrated with the Mjølner fragment system. The above BETA
program is an example of a BETA fragment.

Assume that the above BETA fragment is located in the file foo.bet. The BETA
fragment may then be compiled by issuing the command

beta foo.bet

which will compile and link3 the BETA fragment. The final object code will be in the
file foo, which may be executed.

How to invoke the compiler depends on whether Macintosh, PC or UNIX is used.
Details about the different variants of the BETA compiler may be found in [MIA90-6]
for Macintosh, [MIA94-32] for Windows, and in [MIA90-4] for UNIX.

1 The actual version to be used depends on the current release installed at the

available hardware.
2 On most platforms, binary code is generated directly. In this case, the assembly

phase is omitted.
3 On most platforms, binary code is generated directly. On the HP platform, the

compiler generates assembly code which is assembled before linking.

A BETA program

ORIGIN

Program slot

Compiling

More
information

The BETA Library 3

3 The BETA Library

The BETA library is a collection of patterns and objects that include input/output, a
text concept, the user interface toolkit, the metaprogramming system, a container li-
brary, a system library, etc. The library is organized as fragments.

One part of the library contains the basic patterns and objects which are used by most
programs. This basic BETA library is called basiclib and is described in [MIA90-8],
which also describes the interface to C and assembly language.

The library basiclib contains a number of different fragments groups containing
basic patterns, a text concept, various functions and control patterns, a file concept,
etc. One of these fragment groups is betaenv, which contains the basic patterns, the
text concept, other basic patterns and objects representing the screen and the key-
board. All BETA programs must use betaenv, which has the form:

(# ...
 (* A lot of useful patterns *)
 ...
 <<SLOT LIB: attributes>>
 ...
 program: <<SLOT program: descriptor>>
 theProgram: ^|program;

do ...
 &|program[] -> theProgram[];
 theProgram;
 ...
#)

The LIB slot describes where most libraries are inserted. The program slot describes
where an ordinary user program is inserted (see section 6 for more explanation of
this).

On UNIX, the BETA library is often located in the directory /usr/local/lib/beta.

For Macintosh, the convention is that the BETA library is located in a folder called
beta.

In the rest of this manual, we assume that the basic library is located in
/usr/local/lib/beta. We also use the UNIX convention for denoting directories
with the character / to separate directory and file names.

The Mjølner System contains directories for the various libraries. The basic library
basiclib is e.g. located in the directory:

/usr/local/lib/beta/basiclib

The directory for a library contains directories corresponding to different versions of
the library. Version 1.6 of betaenv is contained in the directory

basiclib

betaenv

Location of
libraries

4 BETA Compiler Reference Manual

/usr/local/lib/beta/basiclib/v1.6

This directory contains the fragment groups constituting basiclib. Instead of refer-
ring to a specific version, it is possible to refer to the current official version by means
of the name current. (This is not possible on Windows and Macintosh).

The Mjølner System accepts the following abbreviation for the BETA library:

~beta denotes /usr/local/lib/beta

The meaning of ~beta can be changed by using the BETALIB environment variable, see
[MIA 90-04].

To sum up, the file containing the current version of betaenv may be referred to by:

~beta/basiclib/current/betaenv

 A user-program using betaenv may then look as follows:

ORIGIN '~beta/basiclib/current/betaenv'
--- PROGRAM: descriptor ---
(#
do 'Welcome to Mjolner' -> PutLine
#)

Please note, that on Windows and Macintosh the separator in ORIGIN specifications is
also /. See section 6.2.

Assume that the above program resides on the file foo.bet. The program may then be
compiled by issuing the command:

beta foo.bet

The file foo will now contain an executable version of foo.bet.

When developing the program, it may be an advantage to invoke the compiler as

beta -r foo.bet

This will run the compiler in repeating mode. After having translated the fragments
specified in the argument list, if in repeating mode, the compiler prompts the user for
the name of another fragment to be translated. Hitting <RETURN> in this case will
recompiler the program last compiled. See section 8 for a survey of the legal command
line options.4

Please consult the BETA tutorial [MIA 94-24] for a quick survey of the BETA lan-
guage and the basic libraries.

4 This is currently not possible on Windows and Macintosh.

~beta

Repeating mode

More
information

Files Generated by the Compiler 5

4 Files Generated by the
Compiler

For each fragment file, a number of other files may be produced by the compiler; let
foo.bet be a BETA fragment. Then

• foo.lst contains information about possible syntactic and static semantic er-
rors. If such errors occur, then the file contains a pretty-print of the fragment
with an indication of the error(s). See section 7 for further information about
error handling. Possible semantic error messages are listed in appendix A.

• foo.ast or foo.astL contains the abstract syntax tree representation of the
compiled source code for big-endian and little-endian architectures, respec-
tively. The AST files are used by many tools in the Mjølner System.

• foo..s contains the generated assembly code for the compiled source code5.
Assembly files are located in subdirectories named according to the machine
type, to which the source code has been compiled. Currently, the directories
sun4s, hpux9pa, nti, linux, sgi, and ppcmac can be created. These directo-
ries are automatically created by the compiler, if not present already. The as-
sembly file is usually deleted by the compiler after assembly.

• foo.o contains the object code generated by the assembler. Like foo..s, this
file is placed in a subdirectory.

• foo. db contains information used by the debugger Valhalla when debugging
the foo fragment. See [MIA 92-12]. Like foo..s, this file is placed in a
subdirectory.

The above list of files is generated for each fragment group that is included in a pro-
gram. In addition, the following two files are generated for each program:

• foo containing the executable code for the program.

• foo..job containing directives for assembly and linking. Like foo..s, this file
is placed in a subdirectory. This file is usually deleted by the compiler after
linking.

For some implementations (e.g. Windows NT) other extensions than ..s and .o may
be used.

5 On most platforms, binary machine code is generated directly. In this case, no

assembly file is generated.

List files

Abstract syntax
tree files

Assembler files

Object files

Debug files

Executable

Job file

6 BETA Compiler Reference Manual

5 Implementation
Deviations

5.1 The BETA Book

The BETA language is described thoroughly in [MMN93].

It is prerequisite to be familiar with [MMN93] in order to
use the Mjølner System.

This book is currently the only definition of the BETA language, but a precise
language definition is being worked on.

A short introduction to BETA and the Mjølner System may also be found in the
Mjølner Tutorial [MIA 94-24] and in [KLMM94].

The BETA grammar is given in appendix B.

There are a few of deviations from [MMN93] in the current implementation of BETA.
These deviations are described below.

5.2 Restrictions

1. The integer operations +, -, *, div, mod, =, <>, etc. will work on 32 bits.

2. Assignment between instances of integer, and real is allowed. In assign-
ments of reals to integers the values are truncated.

Assignment between instances of integer and char is allowed. Character
constants have their ASCII char value. Assignment of an arbitrary integer
value to char instances may thus give meaningless results.

Assignment between instances of integer and boolean is allowed, but will
give a warning. In a future release these assignments will not be allowed and
will give an error. The patterns true and false have the values 1 and 0
respectively. Assignment of an arbitrary integer value to boolean instances
may thus give meaningless results.

The following table shows legal combinations of operands and the result type.

The BETA book

Restrictions

Implementation Deviations 7

Entries not shown are illegal. Entries marked with * are illegal. Entries marked
with ! will give a warning, and will become illegal in a future release.

Abbreviations:

int means integer

bool means boolean

iref means item reference

cref means component reference

sref means structure reference

NONE is both an iref, a cref and an sref.

For assignment and binary operators, the rows and columns of the tables show
left and right operands respectively, and the elements of the tables show the
result type.

Assignment: ->

int char real bool iref cref sref
int int char real ! * * *

char int char * * * * *

real int * real * * * *

bool ! * * bool * * *

iref * * * * iref * *

cref * * * * * cref *

sref * * * * * * sref

3. The relational operators =, <>, <, etc. do only work for the basic patterns
integer, real, boolean, and char and for references (only =, <>) I.e. E1 =
E2, where E1 and E2 are instances of some user-defined pattern will not work.

The following tables show legal combinations of operands and the result type.
The notation is explained in item 2 above.

Binary operators: = , <>

int char real bool iref cref sref

int bool bool bool ! * * *

char bool bool bool * * * *

real bool bool bool * * * *

bool ! * * bool * * *

iref * * * * bool * *

cref * * * * * bool *

sref * * * * * * bool

Assignment
Compatibility

Comparison
Operator
Compatibility

8 BETA Compiler Reference Manual

Binary operators: <, <=, >, >=

int char real bool sref

int bool bool bool * *

char bool bool bool * *

real bool bool bool * *

bool * * * bool *

sref * * * * bool

4. Arithmetic/logical operators.

The following tables show legal combinations of operands and the result type.
The notation is explained in item 2 above.

Binary operators: +, -, *, div

int char real

int int int real

char int int *

real real * real

Binary operator: mod

int char

int int int

char int int

Binary operator: /

int char real

int real real real

char real real *

real real * real

char is likely to be eliminated as a legal operand for / in a future version.

Binary operators: and, or, xor

bool

bool bool

Unary operators: + -

int, char, real result type is the same as operand type

Arithmetic/
Logical Operator
Compatibility

Implementation Deviations 9

Unary operator: not

bool result type is bool

5. In if-imperatives

(if E0 // E1 then ... // E2 then ... if)

the exit-lists of E0, E1, E2, ... must consist of exactly one integer, real, char,
boolean or reference.

6. Inserted items, i.e.,

do ...; P; ...

([MMN93], section 5.10.2) are implemented as dynamic items (&P). However,
the user is urged to use dynamic items for recursion in order to ensure
compatability with future releases.

7. Inserted components, i.e.,

do ...; |(# ... #); ...

([MMN93], section 5.10.3) have not been implemented.

8. Virtual superpatterns, i.e.,

A::< (# ... #); (* Where A is some virtual *)
B: A(# ... #)

have not been implemented.

By using a final binding, this problem may often be overcome like this:

A:: (# ... #); (* A is no longer virtual *)
B: A(# ... #)

The situation may also occur in a more indirect way:

 graph:
 (# node:< (# ... #);
 nodeList: @list(# element::< node #);
 ...
 #);

 Here the virtual further binding of element in list is not allowed, since node
is itself virtual.

 The current version of the compiler will allow final binding using a pattern that
is itself virtual. That is, you can do this:

 graph:
 (# node:< (# ... #);
 nodeList: @list(# element:: node #);
 ...
 #);

General virtual prefixes behave much like multiple inheritance and will not be
implemented in the near future.

10 BETA Compiler Reference Manual

9. The labelled compound imperative

A: (L: imp1; imp2; ...; impN :L)

has been eliminated from the language. Instead the following construct may be
used:

A: (# do imp1; imp2; ... ; impN; #)

Inserted items with no declarations and no superpattern will be inlined in the
enclosing code. There will thus be no execution overhead compared to the old
(never implemented) labelled compound imperative statement.

10. Consider the following example:

A: (# X: ^P; (* reference to item qualified by P *)
 B: ^|P (* reference to component qualified by P *)
 do ...
 this(P)[] -> X[]; (* legal use of this(P)[] *)
 this(P)[] -> R[]; (* illegal use of this(P)[] *)
 #)

The illegal use is due to the fact that this(p)[] is considered a reference to an
item object and not a component object.

11. In declarations like:

P: <AD>(# ... #);
X: @<AD>;
Y: ^<AD>;

it is checked that <AD> is a static denotation, where static is defined as follows:

• A name A is always static

• In a remote-name R.A, R must be a static object

• Use of THIS(A).T is static

• Only in Y: ^P.T, can P be a pattern

• Denotations using R[e], and (foo).bar are not static

This means that e.g. descriptors like:

R[e].A(# ... #)
(foo).bar(# ... #)
R.P(# ... #) where 'R' is a dynamic ref.

are only allowed in imperatives.

For Y: ^R.P where R is a dynamic reference, the compiler will currently report
a warning and suggest to use

Y: ^A.P where A is the qualification of R.

Note: that when using --noWarnQua, this warning will not be printed. A future
release may change the warning to an error.

12. There are some deviations with respect to the implementation of concurrency.
Please consult [MIA90-8] before using the concurrency.

13. It is in general not possible to use leave P or restart P where P is a pattern.
P must in general be a label. However, the following has been implemented:

Implementation Deviations 11

P: (#
 do
 ...
 leave P;
 ...
 restart P;
 ...
 #)

Leave/restart from an inserted item, however, is not supported by the current
version of the compiler:

P: (#
 do
 ...
 (#
 do
 ...
 leave P; (* ILLEGAL *)
 ...
 restart P; (* ILLEGAL *)
 ...
 #)
 ...
 #)

14. A pattern where the object descriptor is described as a slot cannot be used as a
super-pattern. I.e. the following is illegal:

A: <<SLOT Pdesc: descriptor>>;
B: P(# ... #); (* illegal *)

Instead the following can often be used:

C: (# do <<SLOT Pdesc: descriptor>> #)
D: P(# ... #); (* legal *)

15. The Program pattern as described in the chapter on exception handling in
[MMN93] has not been implemented.

16. There are some restrictions on the use of fragments as described in section 6
below.

5.3 Extensions

5.3.1 String Literals as References

The pattern Text enters and exits a char-repetition. This means, that a text may be
initialized using constant strings as follows:

 t: @text;
do 'hello' -> t;

Many operations involving texts, however, takes references to texts as enter/exit
parameters. This is mainly for efficiency reasons.

To allow easy invocation of such operations on string literals, the following is also
allowed:

Extensions

12 BETA Compiler Reference Manual

 t: ^text;
do 'hello' -> t[];

The semantics of this is, that a text object is instantiated, initialized by the constant
string, and finally assigned to the text reference.

5.3.2 Special Characters in String Literals

The following special characters are allowed in BETA string literals.

\a alert (bell) character

\b backspace

\f formfeed

\n newline

\r carriage return

\t horizontal tab

\v vertical tab

\\ backslash

\? question mark

\' single quote

\" double quote

\ooo octal number

Notice that you may now use \' as an alternative to '' to include a literal quote in a
string. E.g.: 'Tom\'s Cottage'. This has the consequence, though, that to type the
backslash character, you must do it as: '\\'.

\ooo can also be \o or \oo, provided that the character immediately following it is not
a digit.

5.3.2 Simple If

Often the following If statement is used:

b: @boolean;
do (if b//TRUE
 then ...
 else ...
 if);

The current version of the compiler supports an extension to the BETA language
called Simple If. This extension means, that the case-selector // may be omitted, if the
evaluation on the left hand side exits a boolean. That is, the above may be written

b: @boolean;
do (if b
 then ...
 else ...
 if);

Like in the general if-statement, the else part if optional.

5.3.3 Xor Primitive

An xor primitive is supported as a basic operation on booleans. That is

b1, b2, b3: @boolean
do b1 xor b2 -> b3

is possible.

5.4.4 Short-circuit Boolean Expressions

Boolean expressions are implemented as short-circuit.

The Fragment System 13

That is, in

B1 or B2 B2 is not evaluated if B1 is true

B1 and B2 B2 is not evaluated if B1 is false

5.4.5 ## for Objects

You may use P## as an alternative to P._struc, when P is an object. Previously ##
was only allowed for patterns.

14 BETA Compiler Reference Manual

6 The Fragment System

The Mjølner System is based on the notion of fragment. The fragment system must be
used for splitting a large program into smaller units (fragments). The fragment system
is used to support modularization, separation of interface and implementation parts,
variant control and separate compilation. It is highly recommended to use the fragment
system, since this may improve the structure of the program.

The principles of the fragment system are described in
[MMN93]. In the following it is assumed that the reader is
familiar with this description.

The description in [MMN93] is slightly more idealized than the actual implementation
in the Mjølner System:

In [MMN93], the syntax of the fragment language is given
in terms of diagrams. The fragment language implemented
by the Mjølner System has a textual syntax.

In the Mjølner System, slots have only been implemented
for the syntactic categories <<DoPart>>, <<object–

Descriptor>> and <<attributes>>.

A fragment form of the category <<attributes>>, may
only contain pattern declarations. It cannot contain any
other kind of declarations, including virtual pattern decla-
rations, virtual pattern bindings, static or dynamic decla-
rations.

The alias descriptor can be used instead of objectDescriptor.

In the rest of this section, details of the Mjølner System implementation of fragments
are given.

In the current system, fragments are organized in groups. A group is stored as a file.
The BETA compiler accepts a BETA program in the form of one or more files. Each
file must contain a group of fragments (i.e. one or more fragments).

6.1 Fragment Language Syntax

In the following some of the examples of fragments from [MMN93] will be given
followed by the syntax used by the Mjølner System. The first example shows the
simplest possible BETA fragment-group:

Implemented
categories

Attributes
restrictions

Fragment group

The Fragment System 15

NAME 'mini1'
ORIGIN 'betaenv'
PROGRAM: descriptor
(#
do 'Hello world!' -> PutLine
#)

The fragment-group is stored in the file mini1.bet, which is also the name of the
fragment-group. The following syntax is is used by the Mjølner System:

ORIGIN '~beta/basiclib/v1.6/betaenv'
-- program: descriptor --
(#
do 'Hello world!'->PutLine
#)

The origin betaenv has been expanded into a complete file name for betaenv.

The next example is an example defining a library fragment:

NAME 'mylib'
ORIGIN 'betaenv'
LIB: attributes
Hello: (# do 'Hello' -> PutText #);
World: (# do 'World' -> PutText #)

This fragment is stored in a file mylib.bet and the corresponding syntax in the
Mjølner System is:

ORIGIN '~beta/basiclib/v1.6/betaenv'
-- LIB: attributes --
Hello: (# do 'Hello' -> PutText #);
World: (# do 'World' -> PutText #)

The following fragments is an example of a fragment including the above defined li-
brary:

NAME 'mini2'
ORIGIN 'betaenv'
INCLUDE 'mylib'

PROGRAM: descriptor
(#
do Hello; World; newLine
#)

This fragment is stored in a file mini2.bet and has the following syntax:

ORIGIN '~beta/basiclib/v1.6/betaenv';
INCLUDE 'mylib';
-- program: descriptor --
(#
do Hello; World; newLine
#)

The following example shows a fragment with a body:

Graphical syntax

Textual syntax

Library

Using the library

16 BETA Compiler Reference Manual

NAME 'textlib'
ORIGIN 'betaenv'
INCLUDE 'mylib'

LIB: attributes
SpreadText:
 {A blank is inserted between all chars in the text 'T'}
 (# T: @text
 enter T
 <<SLOT SpreadText:DoPart>>
 exit T
 #);
BreakIntoLines:
 {'T' refers to a text which is to be split into lines.}
 {'w' is the width of the lines.}
 (# T: ^ Text; w: @ Integer
 enter(T[],w)
 <<SLOT BreakIntoLines: DoPart>>
 #)

It is stored in a file textlib.bet and has the following syntax:

ORIGIN '~beta/basiclib/v1.6/betaenv';
BODY 'textlibbody';
---LIB: attributes---
SpreadText:
 (* A blank is inserted between all chars in the text 'T' *)
 (# T: @text
 enter T
 <<SLOT SpreadText: DoPart>>
 exit T
 #);
BreakIntoLines:
 (* 'T' refers to the text to be split into lines. *)
 (* 'w' is the width of the lines. *)
 (# T: ^ Text; w: @ Integer
 enter(T[],w)
 <<SLOT BreakIntoLines: DoPart>>
 #)

The body of textlib is shown in the next example:

NAME 'textlibbody'
ORIGIN 'textlib'
SpreadText: DoPart
do (# L: @integer
 do (for i: (T.length->L)-1 repeat
 (' ',L-i+1) -> T.InsertCh
 for)
 #)
BreakIntoLines: DoPart
do T.scan
 (# sepInx,i,l: @integer;
 do i+1->i; l+1->l;
 (if (ch<=' ') then i->sepInx if);
 (if l=w then
 (nl,sepInx)->T.InxPut;
 i-sepInx->l
 if);
 #);
 T.newline;

This fragment is stored in a file textlibbody.bet. The corresponding syntax is:

Body

The Fragment System 17

ORIGIN 'textlib'
-- Spreadtext: DoPart --
do (# L: @Integer
 do ...
 #)
--BreakIntoLines: DoPart --
do ...

Notice, that when local variables are needed in a DoPart slot, it may be necessary to
make an inserted item in the DoPart. Alternatively a Private descriptor slot may be
declared in the interface, and the L attribute moved to the Private fragment, which
should then be placed in textlibbody.bet too.

Finally a general outline of a fragment group with several include, body and fragments
is shown in the next example:

NAME F
ORIGIN G
INCLUDE A1
INCLUDE A2
...
INCLUDE Am
BODY B1
BODY B2
...
BODY Bk
F1: S1
ff1
F2: S2
ff2
...
Fn: Sn
ffn

This fragment group is stored in a file F.bet and the syntax is:

ORIGIN 'G';
INCLUDE 'A1' 'A2'... 'Am;
BODY 'B1' 'B2' ... 'Bk';
Prop1; Prop2; ... Propl
-- F1: S1 --
ff1
-- F2: S2 --
ff2
...
-- Fn: Sn --
ffn

Prop1, Prop2, ..., Propl are properties that may be defined for a fragment. Formally
the ORIGIN, INCLUDE, and BODY parts are also properties. In section 6.3 a list of
possible properties is given.

General
fragment file
structure

18 BETA Compiler Reference Manual

6.2 Fragment Denotations

In the examples above, terms like

INCLUDE '~beta/basiclib/v1.6/betaenv'

were used. Below we will use the term FragmentDenotation for the “fragment path”
given in, e.g., the INCLUDE property. The other properties, that accept FragmentDeno-
tations as arguments are explained in section 6.3.

Notice that a FragmentDenotation is not the same as a file name, although it re-
sembles a UNIX file path, and although it normally corresponds directly to a (set of)
file(s):

1. The separator in the FragmentDenotation is always the ‘/’ character, e.g.,
also for BETA programs on the Macintosh, where ‘:’ is used for file paths.

2. As explained in section 3, the notation ‘~beta’ is legal in FragmentDenota-
tions on all platforms, and simply means “the place BETA is installed”. As
mentioned, the meaning of ‘~beta’ can be controlled by using the BETALIB
environment variable, please consult [MIA 90-04], [MIA 94-34], and [MIA 90-
06] for details.

3. The notation ‘.’ means ‘current directory/folder’ on all platforms, and the no-
tation ‘..’ means ‘father directory/folder’, i.e. the directory containing a given
directory.

4. It is not allowed to specify an extension (e.g. ‘.bet’ or ‘.ast’) in a Fragment-
Denotation.

There are some restrictions in the legal fragment file names, which also apply to the
FragmentDenotations, please see section 6.6.

6.3 Fragment Properties

The fragment system allows arbitrary properties to be associated with fragments. The
BETA compiler recognizes the following properties: For most users, only ORIGIN,
INCLUDE, and BODY are relevant.

ORIGIN <TextConst>

The origin of a fragment is a fragment which is used when binding fragment-
forms to slots.

INCLUDE <StringList>

Specifies one or more fragments that are always included when using this
fragment.

BODY <StringList>

Specifies one or more fragments that fills the slots in this fragment file, but are
not visible.

MDBODY <MachineSpecificationList>

Fragment
denotation

‘/ ‘ separator

~beta

The Fragment System 19

Specifies one or more machine dependent fragments that fills the slots in this
fragment file dependent on the machine type. See section 9 for further descrip-
tion.

BUILD <MachineSpecificationList>

The BUILD property is used to specify rules for keeping external (i.e. non-
BETA) sources up to date, and to include the external files in the link directive.
The BUILD property unifies the OBJFILE and MAKE properties. See also
section 9.

OBJFILE <MachineSpecificationList>

The object file is included in the linker-directive. This is typically an External
library which is interfaced to via the External interface described in [MIA90-8].
See also BUILD and section 9.

BETARUN <MachineSpecificationList>

The standard BETA run-time system is replaced with the one in the object-file.
See also section 9.

MAKE <MachineSpecificationList>

Specifies one or more makefiles to be executed before linking. See also section
9. The Makefile is executed relative to the directory, where the file containing
the MAKE property is placed. See also BUILD

RESOURCE <MachineSpecificationList>

Specifies one or more resource files to be included in the application. Only used
on Macintosh and Windows NT platforms. See also section 9.

LIBFILE <MachineSpecificationList>

Is similar to OBJFILE, but specifies inclusion of a library. See also section 9.

LINKOPT <MachineSpecificationList>

Machine dependent options to append to link directive for programs using the
fragment. Only used on UNIX platforms. See also section 9.

ON n1 n2 ... nk

The compiler switches n1 n2 ... nk (positive numbers) are set. See also section
8.

OFF n1 n2 ... nk

The compiler switches n1 n2 ... nk (positive numbers) are cleared. See also
section 8.

The terms <MachineSpecificationList>, <StringList>, and <TextConst> are
syntactically explained in section 6.5.

20 BETA Compiler Reference Manual

6.4 Modularization of Data Structures

This section gives some advices that can be used when modularizing data structures.
Consider the following program library (stack.bet):

ORIGIN '~beta/basiclib/v1.6/betaenv'
--- Lib: attributes ---
stack:
 (# element:< object;
 A: [100] ^element;
 top: @integer;
 push:
 (# e: ^element;
 enter e[]
 do top+1->top;
 e[] -> A[top][];
 #);
 pop:
 (# e: ^element;
 do A[top][] -> e[];
 top-1->top;
 exit e[]
 #);
 top:
 (# e: ^element;
 do A[top][]->e[];
 exit e[]
 #);
 #)

If we want to separate the interface and the implementation, this can be modularized in
the following way:

Introduce the following SLOTs:

ORIGIN '~beta/basiclib/v1.6/betaenv';
BODY 'stackImpl'
--- Lib: attributes ---
stack:
 (# element:< object;
 private: @<<SLOT private: descriptor>>;
 push:
 (# e: ^element;
 enter e[]
 <<SLOT pushBody: DoPart>>
 #);
 pop:
 (# e: ^element;
 <<SLOT popBody: DoPart>>
 exit e[]
 #);
 top:
 (# e: ^element;
 <<SLOT topBody: DoPart>>
 exit e[]
 #);
 #)

Separating the
interface

The Fragment System 21

Create a new fragment file stackImpl.bet:

ORIGIN 'stack';
-- private: descriptor --
(# A: [100] ^element;
 top: @integer;
#)
-- pushBody: DoPart --
do private.top+1->private.top;
 e[] -> private.A[private.top][];
-- popBody: DoPart --
do private.A[private.top][] -> e[];
 private.top-1->private.top;
-- topBody: DoPart --
do private.A[private.top][]->e[]

The reason why the data representation (A and Top) is put into a descriptor slot in-
stead of an attributes slot is that attributes slots may only contain patterns, no
static items (objects) or object references. This is due to the implementation of sepa-
rate compilation. Therefore it is necessary to put static items into an attribute (in this
case private) that is declared by means of a descriptor slot. Because of this all ac-
cesses to the representation must be done via the private variable (see pushBody,
popBody and topBody). Notice that the parameters are visible in the interface. If the
operations had local variables they should not be shown in the interface.

6.4 Modularization with INNER

Programs fragments with do-parts that contain an INNER imperative e.g.:

ORIGIN '~beta/basiclib/v1.6/betaenv';
--- lib: attributes ---
A: (# do imp1; imp2; INNER; imp3 #)

can be modularized in the following two ways depending on whether the INNER im-
perative should be visible in the interface or not.

If the INNER is preferred visible in the interface, the interface fragment could look like
(fooLib1.bet):

ORIGIN '~beta/basiclib/v1.6/betaenv';
BODY 'fooImpl1'
-- lib: attributes --
A: (#
 do <<SLOT imp12slot: descriptor>>;
 INNER;
 <<SLOT imp3slot: descriptor>>
 #)

and the implementation fragment (fooImpl1.bet):

ORIGIN 'fooLib1'
-- imp12slot: descriptor --
(# do imp1; imp2 #)
-- imp3slot: descriptor --
(# do imp3 #)

In this case a DoPart slot might be used instead (fooLib2.bet):

Interface

Implementation

22 BETA Compiler Reference Manual

ORIGIN '~beta/basiclib/v1.6/betaenv';
BODY 'fooImpl2'
-- lib: attributes --
A: (# <<SLOT imp12slot: DoPart>> #)

with the implementation fragment (fooImpl2.bet):

ORIGIN 'fooLib2'
-- imp12slot: DoPart --
do imp1; imp2; INNER; imp3

Using do-parts like this, then although the INNER is not visible in the interface, the A
pattern may still be specialized and behave as if the INNER was in the interface. Notice,
that when specializing a pattern with no INNER in the do-part, the compiler will
normally complain about this. But when the pattern being specialized contains a
SLOT, the compiler will assume, that the SLOT contains an INNER. Thus it is possible
to specialize the A pattern in foolib2.

But if the INNER imperative is placed “inside” some structure e.g.:

A: (#
 do (if E1
 // E2 then INNER
 // E3 then imp
 if)
 #)

you might not want to show the if imperative in the interface. In this case a variant of
the INNER construct may be used, in which case the interface fragment could be
(fooLib3.bet):

ORIGIN '~beta/basiclib/v1.6/betaenv';
BODY 'fooImpl3'
--- lib: attributes ---
A: (# do <<SLOT Abody: descriptor>> #);

and the implementation fragment (fooImpl3.bet):

ORIGIN 'fooLib3'
--- Abody: descriptor ---
(#
do (if E1
 // E2 then INNER A
 // E3 then imp
 if)
#)

If a “normal” INNER had been used instead of INNER A, it would mean that specializa-
tions of the pattern containing the INNER in the do-part combine the actions at this
point. But the pattern containing the INNER in the do-part, in this case would be the
anonymous pattern in the ABody descriptor fragment. By using INNER A, it is ensured,
that the control flow descents to the specialization of A although the INNER is inside
the ABody descriptor.

A DoPart slot could also be used here, as in the previous example.

Using DoPart
slot

The Fragment System 23

6.5 Formal Syntax of Fragment
Language

The formal syntax of the BETA fragment-system is:

<TranslationUnit> ::= <Properties> <FormPart>
<FormPart> ::* <FormDef>
<FormDef> ::= -- <FormDefinition>
<FormDefinition> ::| <DescriptorForm> | <AttributesForm> | <dopart_form>
<DescriptorForm> ::= <NameDcl> : descriptor -- <ObjectDescriptor>
<AttributesForm> ::= <NameDcl> : attributes -- <Attributes>
<DopartForm> ::= <NameDcl> : dopart -- <DoPart>

<Properties> ::= <PropertyList>
<PropertyList> ::+ <PropertyOpt> ';'
<PropertyOpt> ::? <Property>
<Property> ::| <ORIGIN>
 | <INCLUDE>
 | <BODY>
 | <MDBODY>
 | <BUILD>
 | <OBJFILE>
 | <LIBFILE>
 | <LINKOPT>
 | <BETARUN>
 | <MAKE>
 | <RESOURCE>
 | <ON>
 | <OFF>
 | <Other>
<ORIGIN> ::= 'ORIGIN' <TextConst>
<INCLUDE> ::= 'INCLUDE' <StringList>
<BODY> ::= 'BODY' <StringList>
<MDBODY> ::= 'MDBODY' <MachineSpecificationList>
<BUILD> ::= 'BUILD' <MachineSpecificationList>
<OBJFILE> ::= 'OBJFILE' <MachineSpecificationList>
<LIBFILE> ::= 'LIBFILE' <MachineSpecificationList>
<LINKOPT> ::= 'LINKOPT' <MachineSpecificationList>
<BETARUN> ::= 'BETARUN' <MachineSpecificationList>
<MAKE> ::= 'MAKE' <MachineSpecificationList>
<RESOURCE> ::= 'RESOURCE' <MachineSpecificationList>
<ON> ::= 'ON' <IntegerList>
<OFF> ::= 'OFF' <IntegerList>
<StringList>::+ <TextConst>
<IntegerList>::+ <IntegerConst>
<MachineSpecificationList>::+ <MachineSpecification>
<MachineSpecification> ::= <Machine> <StringList>
<Machine> ::| <NameApl> | <Default>
<Default> ::= 'default'
<Other> ::= <NameDcl> <PropertyValueList>
<PropertyValueList> ::* <PropertyValue>
<PropertyValue> ::= <Value>
<Value> ::| <NameDcl> | <IntegerConst> | <TextConst>
<NameDcl> ::= <NameDecl>
<NameApl> ::= <NameAppl>
<TextConst> ::= <String>
<IntegerConst> ::= <Const>

Fragment
Grammar

Property
Grammar

24 BETA Compiler Reference Manual

Note that the symbol -- may consist of two or more dashes (-), and that the old style
INCLUDE and fragment syntax (--INCLUDE fragment) are not described by this
grammar. This old-style INCLUDE syntax is no longer supported..

6.6 File Name Restrictions

Because of implementations details, the current version of the fragment system im-
poses the following restrictions on file names used for BETA programs.

1. It is not allowed for a program to use two files with the same name, say
foo.bet (ignoring case), which both contains fragments of category At-
tributes.

2. It is not allowed for a program to use a file named, say, foo.bet, if foo.bet
contains a fragment of category Attributes, and if there is a SLOT of cate-
gory ObjectDescriptor/Descriptor or DoPart named foo in any of the files
involved in the program. Again case is irrelevant.

3. It is not allowed to use the ‘-’ (dash) character in fragment file names.

4. Because the FragmentDenotation separator character is ‘/’ it is not allowed
to use the ‘/’ in fragment file names, not even on platforms where the file
system would allow it.

5. In general, it is advisable to restrict the characters used in the fragment file
names to be: a-z, A-Z, 0-9, and ‘_’. If other characters are used in the
fragment file names, there is a danger, that the supporting tools (such as
linkers) will complain.

The symptom on breaking rule 1 or 2 is typically a “Multiple defined symbol
M1FOO” and the like, in the linking phase, the symptom for breaking rule 3 is that the
compiler / Valhalla [MIA 92-12] / Sif [MIA 90-11] may become confused. Finally the
symptom on breaking rule 5 may be a complaint from the assembler about illegal
characters.

Except for rule 3, these restrictions only apply to the file names. The directories /
Folders containing the files, may be freely named.

‘-’ is illegal in
file names

Symptoms

Error Handling 25

7 Error Handling

BETA programs containing errors will cause error messages during compilation. Error
messages may appear during syntax analysis, static semantic analysis, code generation
and assembly/linking. In addition various forms of system errors may occur.

7.1 Syntax Errors

A syntax error is given when there are errors in the context free syntax of the BETA
program. These includes missing semicolons, non-matching brackets, etc. Such errors
are printed on the screen and may look as follows:

Parse errors
1 ORIGIN '~beta/basiclib/v1.6/betaenv'
2 --PROGRAM: descriptor--
3 (# T: (# #);
4 X: [100) @integer;
************* ^
Expected symbols: >= mod < <= = % <> > -> *] div + /
 xor or and
 File "syntaxerror.bet"; Line 4
3 (# T: (# #);
4 X: [100) @integer;
5 do (for i: X.range repeat
6 3->X[i];
7 if)
******* ^
Expected symbols: _NAME_ _KONST_ _STRING_ none not @@
 restart leave ; (# % & (this + inner for tos suspend
 File "syntaxerror.bet"; Line 7

The error message shows that there are syntax errors in lines 4 and 7. In line 4 the ar-
row(^) points at the place where an illegal symbol is met. The compiler gives a list of
acceptable symbols. In this case) should have been a]. In line 7, the if should have
been a for.

7.2 Static Semantic Errors

Static semantic errors appear in situations where a name is used without being de-
clared, where a pattern name is used as an object, etc. Each error found is printed on
the screen with a small indication of the context. After the checking, a pretty print of

26 BETA Compiler Reference Manual

the fragment including a precise indication of the error is generated on the lst-file (see
section 4)6

In appendix A, the semantic error messages that may be reported by the compiler are
listed.

7.3 Check for bound SLOTs.

In general the compiler will only attempt to link, if a PROGRAM slot has been found
in the dependency graph.

If SLOTs of category DoPart or Descriptor in the dependency graph are not bound,
and linking would otherwise have happened, the compiler issues a warning, and does
not attempt to link.

Likewise, if two or more fragments tries to bind the same SLOT, the compiler will
give a warning.

7.4 Assembler and Linker Errors

Errors may also appear during assembling and linking. The following type of errors
may appear:

• The assembler/linker complains about a corrupt ..s or .o file. This may
happen if the compilation/assembly has been interrupted for some reason
leaving an incomplete file. This can usually be handled by forcing a
recompilation of the corresponding BETA file. (Delete the ..s and .o files in
question)

• The linker may report errors such as "Undefined Reference" or "Multiply
Defined Symbol". This may be due to violations of the restrictions mentioned in
section 6.

• The disk may run full during assembling or linking. Restart compilation after
having obtained more disk space.

See also section 6.6.

6 Some semantic errors may cause the compiler to fail without generating a pretty

print. There should however always be an error indication on the screen. In case
the compiler fails during checking and it is not obvious for what reason, it is
possible to trace the checking of declarations and imperatives using the option --
traceCheck (see section 8). However, this may generate a large amount of output
on the screen. The compiler may also fail during code generation. These errors may
be traced using option --traceCode. However, tracing errors in this way should
rarely be needed.

Error Handling 27

7.5 System Errors

Two kinds of system errors may appear: (1) Errors in the compiler, and (2) error sit-
uations in the operating systems. Most times a meaningful error message is given in
these situations, but due to the nature of these errors this is not always the case.

Compiler errors should be reported to Mjølner Informatics
ApS. This can be done in one of three ways:

1. Via electronic mail using the Internet address
support@mjolner.dk

2. By sending a fax to Mjølner Informatics ApS at
+45 86 20 12 22

3. By issuing an ordinary mail to the address
Mjølner Informatics
Science Park Aarhus,
Gustav Wieds Vej 10
DK-8000 Århus C
Denmark

Operating system errors are often due to local problems. Examples of such errors may
be: insufficient access to files, no more disc space, file server inaccessible, etc.

7.6 Run-time Errors

Run-time errors are errors in the program detected during its execution. In this case an
error message is given and a dump of the call stack of objects is generated on the file
foo.dump if the program is named foo.

Consider the following fragments (note that the name of the fragments are complete
UNIX file paths)

/usr/smith/mylib.bet:

ORIGIN '~beta/basiclib/v1.6/betaenv'
--LIB: attributes--
lib1: (# do INNER #);
lib2: lib1
 (# T: (# x: @integer #);
 R: ^T
 do (* &T[]->R[] *)
 111->R.x; (* R[] is NONE *)
 INNER
 #);
lib3: lib2(# do 'hello'->putLine #)

/usr/smith/runtimeerr.bet:

28 BETA Compiler Reference Manual

ORIGIN '~beta/basiclib/v1.6/betaenv';
INCLUDE 'mylib'
--PROGRAM: descriptor--
(# foo1: (# do foo2 #);
 foo2: (# do foo.foo3 #);
 foo: @(# foo3: (# do lib3 #)#)
do foo1
#)

Execution of this program on a sun4 machine will result in the following run-
timeerr.dump file:

Beta execution aborted: Reference is none.

Call chain: (sun4)

 item lib3#<lib2#>lib1# in /usr/smith/mylib
 -- BETAENV-~ in ~beta/basiclib/v1.6/betaenv
 item <foo3#> in /usr/smith/runtimeerr
 -- foo# in /usr/smith/runtimeerr
 item <foo2#> in /usr/smith/runtimeerr
 -- PROGRAM-~ in /usr/smith/runtimeerr
 item <foo1#> in /usr/smith/runtimeerr
 -- PROGRAM-~ in /usr/smith/runtimeerr
 comp <PROGRAM-~> in /usr/smith/runtimeerr

 basic component in ~beta/basiclib/v1.6/betaenv

The information in runtimeerr.dump has the following meaning:

• The activation stack of invoked objects is shown. Each element of the stack is
shown as two lines. The object and its statically enclosing object.

• For each object, the name of the file where it is defined is also shown.

• From the above file it can be seen that the error occurred in an instance of
lib3. The description lib3#<lib2#>lib1 shows the superpattern chain of
lib3. The braces (<,>) indicates that the error occurred in the do-part of lib2.

• The symbol immediately after the name of an object shows its kind. The differ-
ent possibilities are:

The descriptor belongs to a pattern, e.g. P: (#...#)

~ Singular named descriptor, e.g. X: @(# ... #)

* Singular unnamed descriptor, e.g. ...; (# ... #);...

- Descriptor SLOT.

Notice that, e.g. the PROGRAM SLOT is marked with both - and ~ since a de-
scriptor SLOT gives rise to a singular named descriptor.

• It can be seen that lib3 was called from foo3, which was called from foo2,
which was called from foo1, etc. The bottom most objects are defined in be-
taenv

• For each active object its enclosing object is shown, on a line starting with “--”
The encloser of e.g. foo3 is foo. The rest of the objects have enclosers, which
are slots.

• For each object, the corresponding fragment file is shown. The pattern lib3 is
defined in the file

 /usr/smith/mylib

.dump file

Compiler Arguments 29

8 Compiler Arguments

When activating the BETA compiler, the following command line arguments are valid.

Most options have both a "--<name>" and a "--no<name>" form: Activate the option
using "--<name>"; deactivate the option using "--no<name>". In the listing below, the
activating form is shown first (and explained), if both exist for an option.

For most options, there is a short (one-character) option for the non-default form.
One-character options allow multiple option characters after the "-" (e.g. "-qwd").

Long option names are case insensitive, whereas one-character options are case
sensitive.

A star (*) in the listings below indicates the default option.

--help -h Show a brief overview of the legal command line options

--repeat -r Run compiler in repeating mode. After having translated
the fragments specified in the argument list, if in repeating
mode, the compiler prompts the user for the name of
another fragment to be translated:

 Type Fragment File Name:

This interaction is continued until the compiler is explicitly
killed, e.g. by sending a control-C or the end-of-stream
character to the compiler process.
The compiler may also be given additional options at the
prompt, e.g. you may type --nolink foo.bet to translate
foo.bet, but avoid linking of it.
If no new fragments are specified at the prompt, the
compiler will retranslate the last fragment it has translated
when <RETURN> it typed.
By using repeating mode, the compiler saves time when
analyzing dependencies between fragments, since fragments
are saved in memory between compilations.

--noRepeat *

--link * Link program
--noLink -x

--static Use static linking
--dynamic * Use dynamic linking

--list * Generate .lst file, if semantic errors
--noList -l

Shortcuts

Case
sensitiveness

30 BETA Compiler Reference Manual

--debug * Generate debug info to enable debugging. This is used by
the BETA debugger—Valhalla. On the other hand, using -
-noDebug forces the linker to strip the application , which
reduces the size of the executable files by 30-50%, and also
speeds up linking time. The actual machinelevel code
generated for the BETA program is identical with or
without debug info.

--noDebug -d

--code * Generate code
--noCode -c

--checkQua * Generate runtime checks for QUA errors
--noCheckQua -Q

--checkNone * Generate runtime checks for NONE references
--noCheckNone -N

--checkIndex * Generate runtime checks for repetition index out of range
--noCheckIndex -I

--warn * Generate warnings
--noWarn -w

--warnQua * Generate warnings about runtime QUA checks
--noWarnQua -q

--verbose Verbose compiler info output
--quiet * Only compiler info on parse, check, etc.
--mute No compiler info output

--traceCheck Trace the compiler during semantic checking
--noTraceCheck

--traceCode Trace the compiler during code generation
--noTraceCode

--out -o Specify name to use for resulting executable image

--preserve -p Preserve generated .job and assembly files
--noPreserve *

--job * Execute the ..job file
--noJob -j

--switch -s Set/unset one or more compiler switches. The -s option
makes it possible to define one or more so-called compiler
switches. Switches are specified as integers on the
command line after --switch or -s, possibly terminated by
a 0 (zero). Switches are used for a number of purposes:
parameterization of the compiler, debugging, testing etc.
The most interesting switches with respect to

Compiler Arguments 31

parameterization are listed below; notice that some of them
may also be set as ordinary options.

• 5: Suppress code generation. I.e. only semantic
checking is performed. This switch will also set switch
33. Same as -c.

• 6: Suppress linking. Same as -x.

• 14: Do not generate run-time checks for NONE-
references. Same as -N

• 15: Do not generate run-time checks for index-errors.
Same as -I.

• 18: Preserve assembly- and job-files. Same as -p.

• 19: Suppress notification of insertion of run-time
checks for qualification errors in reference assignment.
Same as -q.

• 21: Continue translation after semantic errors.

• 23: Preserve job-files.

• 32: Do not produce .lst file in case of semantic errors.
Same as -l.

• 33: Do not execute .job file. Same as -j.

• 37: Do not generate debugging information. Same as -
d.

• 42: Do not generate run-time checks for qualification
errors in reference assignment. Same as -Q.

• 191: Print each descriptor just before it is checked.

• 192: Print each declaration just before it is checked.

• 193: Print each imperative just before it is checked.

• 308: Print each declaration just before code is generat-
ed for it.

• 311: Print each imperative just before code is genera-
ted for it.

--linkOpts Specify text string to be appended to the link directive

fragment1 … fragmentN
Arguments other than the above mentioned options are
treated as the names of fragments to be translated by the
compiler. It should be noted that for an option to take
effect in the translation of a fragment whose name is passed
as argument to the compiler, the option must appear before
the fragment name in the argument list.

32 BETA Compiler Reference Manual

9 Machine Dependent
Configurations

In this section, the terminology of the fragment system is used freely without further
explanation. The fragment system has been extended to support generic software de-
scriptions. The same generic software description may be used to instantiate configu-
rations for different machines. The term “machine” covers a CPU and an operating
system running on that CPU.

The concept of generic software descriptions is implemented by means of special
“generic properties”. Normally, a property has exactly one associated set of values. A
generic property has a number of such value-sets. The idea is that the programmer can
specify a value-set for each machine. These value-sets are the ones termed
<MachineSpecificationList> in the formal specification of properties in section 6.3
and 6.5. As an example:

 OBJFILE sun4s 'xlib.o'
 linux 'zlib.o'
 default 'wlib.o'

OBJFILE is the name of a generic property. The OBJFILE property is used for inclu-
sion in the linkage phase of external object files, e.g. produced by a C compiler. A
generic property specification should be seen as a kind of “switch/case” statement. The
semantics of the above OBJFILE property is that when instantiating a configuration
for the machine sun4s, the value xlib.o is chosen. This means that the object file
xlib.o is included when linking a configuration for a sun4s machine. Similarly for
linux machines. The default literal indicates that when instantiating configurations
for machines other than sun4s or linux , the object file wlib.o should be included.

Besides OBJFILE, there are the following generic properties: MAKE, BETARUN,
LIBFILE, LINKOPT, RESOURCE, and MDBODY. For all of these properties, the
relation between machine symbols and value-sets are specified in the same manner as
described above. To be precise, the following algorithm is used when instantiating a
configuration for a specific machine type, say A.

1. If A matches any of the machine symbols of the generic property, the value-set
associated with that particular machine symbol is chosen. If no match is possi-
ble, proceed with step 2.

2. If the symbol default is specified as machine symbol, the associated value-set
is chosen. If not, a warning is issued.

The only distinction between the different generic properties is in the interpretation of
the elements of the chosen value-set. For OBJFILE, the value-set is interpreted as
external object files. MAKE is meant to point out a number of so-called makefiles.
These are executed just prior to the linkage phase. A makefile is often used to keep the
included object files up to date with respect to the source files from which they
originate. For BETARUN, the value-sets must contain exactly one element, and this

Generic
properties

Configurations

Machine Dependent Configurations 33

element denotes the runtime system to be used in the resulting configuration. With re-
spect to LIBFILE, the elements of the value-sets are interpreted as external libraries,
e.g. the X11 library, to be included in the linkage phase. The chosen value-set in an
MDBODY property denotes ordinary BETA fragments to be treated as if they had
been specified by means of a normal BODY property. The MDBODY property may
thus be used to specify that a fragment appears in a number of machine dependent
variants. Finally, the LINKOPT property denotes arguments to append to the link-di-
rective in the linking phase of compilations. Finally, the RESOURCE property is used
(only on PC and Macintosh) to specify a set of resource files to add to the application.

Configurations are instantiated by the compiler, by default for the machine on which
the compilation takes place. It is possible to instantiate a configuration for a machine
other than the one, on which the compilation is performed (“cross-compilation”). This
requires extensions to the Mjølner System; please contact Mjølner Informatics if this is
needed.

9.1 BUILD Property

The BUILD property unifies the OBJFILE and MAKE properties. The BUILD
property is used to specify rules for keeping external (i.e. non-BETA) sources up to
date, and to include the external files in the link directive.

Syntax:
BUILD <machine> '<objectfile>'
 '<dep1>' '<dep2>' ... '<depN>'
 '<command>';

where

<machine> is the target machine specification (see MDBODY description)

<objectfile> is the external objectfile to include and possibly maintain. A $$
in this specification is expanded to the machine type. This is
unlike other properties, like MDBODY, where a single $ is
expanded to the machine type. If a backslash (\) or a newline
must be included literally in the specification, it must be quoted
with backslash.

<dep1>

<dep2>

...

<depN> Are source files, that the <objectfile> depends on.

<command> is a command (sequence) that is executed by the compiler as it
is, except for the following substitutions:

$$ is expanded to the machine type, as explained above.

$0 is expanded to <objectfile>

$1 is expanded to <dep1>

Cross-compila-
tion

34 BETA Compiler Reference Manual

$2 is expanded to <dep2>

...

$N is expanded to <depN>

If a backslash (\) or a newline must be included literally in the
commands, it must be quoted with backslash.

Functionality

The <objectfile> is included in the link directive. The compiler will execute
<commands> if and only if

a. <objectfile> does not exist

or

b. any of the files <dep1>, <dep2>, ... <depN> are newer than an existing
<objectfile>

The compiler will execute <commands> from the directory in which the file containing
the BUILD property resides.

Example

If the object file foo.o (foo.obj) is to be generated from the foo.c file in the external
directory, but also depends on the foo.h file in the external directory, you could specify
this as:

BUILD nti '$$/foo.obj' 'external/foo.c' 'external/foo.h'
 'cl -c $1 -Fo$0 -nologo -w -O2 -Zd -Zp4'
 ppcmac ':$$:foo.obj' ':external:foo.c' ':external:foo.h'
 'MrC -D MAC -o $0 $1'
 default '$$/foo.o' 'external/foo.c' 'external/foo.h'
 '$CC -o $1 $2';

Notice, that regular environment variables may be used in the <commands>
specification, e.g. in the default (UNIX) specification, the variable CC are used (on
UNIX, this is always set to an appropriate value in the job-file).

More than one build pr. fragment

In general, more than one build pr. fragment will not work. The reason is that the
meta-programming system combines all build directives into one directive (property).
This means that:

BUILD sun4s 'cc1' default 'cc2';
BUILD sun4s 'cc3' default 'cc4'

means the same as:
BUILD sun4s 'cc1' default 'cc2' sun4s 'cc3' default 'cc4'

BUILD 'executes' all entries for a given plaform. This means that the 2 sun4s entries
will be executed for sun4s. The 2 default entries will be executed for all other
platforms.

If the following two build entries are used:
BUILD sun4s 'cc1' default 'cc2';
BUILD sgi 'cc3' default 'cc4'

ONLY cc1 will be executed for sun4s and ONLY cc3 for sgi, and the 2 default entries
for all other platforms. This is probably not what is intedended: For sun4s you would
expect cc1 and cc4 to be executed and sgi, cc2 and cc3.

Machine Dependent Configurations 35

36 BETA Compiler Reference Manual

10 Code Generation for Mul-
tiple Machines

When instantiating a configuration for some machine, a number of object files are
produced by the compiler - one for each fragment contributing to the configuration.
On most architectures, the compiler actually generates symbolic assembly code, and
this code is turned into object files by means of the native assembler. The native linker
is used to produce an executable image for the machine in question on basis of these
object files.

10.1Placement of Object Code

Different machines normally use different formats for object files. The files containing
object code and symbolic assembly code are always placed in a sub-directory relative
to the directory containing the common source code. A sub-directory is created for
each special object file format. Currently the following subdirectories are used:

 sun4s SUN-4 (SPARC) running Solaris
 hpux9pa HP 9000/700 running HP-UX
 sgi Silicon Graphics (MIPS) running IRIX
 linux PC running Linux
 nti PC running Windows NT or Windows 95
 ppcmac PowerMacintosh

For executable images to be activated “directly”, without prefixing their name with the
name of a sub-directory, executable images are placed in the same directory as the
common source files. It is however possible to control the naming of the executable
images. This is done by means of the -o option to the compiler.

10.2Macro Expansion

Consider this use of the MDBODY property:
 MDBODY default './$/betaenvbody_$'

The symbol $ is expanded by the compiler. It is expanded to the name of the subdirec-
tory into which the generated code will be placed. That is, if code is generated for a
ppcmac (Macintosh) machine, the above expands to ./ppcmac/betaenvbody_mac.

Code Generation for Multiple Machines 37

This may be a convenient short-hand, but may also make is possible to instantiate
configurations for new machines without changing the original source code.

39

Bibliography

[KLMM 94] J. L. Knudsen, M. Löfgren, O. L. Madsen, B. Magnusson
(eds.): Object-Oriented Environments – The Mjølner Ap-
proach, Prentice Hall, 1994, ISBN 0-13-009291-6.

[MMN93] O. L. Madsen, B. Møller-Pedersen, K. Nygaard: Object-
Oriented Programming in the BETA Programming Lan-
guage, Addison-Wesley, 1993, ISBN 0-201-62430-3

[MIA 90-4] Mjølner Informatics: The Mjølner System: Using BETA on
UNIX Systems, Mjølner Informatics Report MIA 90-4.

[MIA 90-6] Mjølner Informatics: The Mjølner System: Using BETA on
the Macintosh, Mjølner Informatics Report MIA 90-6.

[MIA 90-8] Mjølner Informatics: The Mjølner System: Basic Libraries,
Reference Manual, Mjølner Informatics Report MIA 90-8

[MIA 90-11] Mjølner Informatics: Sif – A Hyper Structure Editor, Tu-
torial and Reference Manual Mjølner Informatics Report
MIA 90-11.

[MIA 92-12] Mjølner Informatics: The Mjølner System – The BETA
Source-level Debugger – Users’s Guide, Mjølner
Informatics Report MIA 92-12

[MIA 94-24] Mjølner Informatics: The Mjølner System – The Mjølner
System Tutorial Mjølner port MIA 94-24.

[MIA 94-34] Mjølner Informatics: The Mjølner System – Using on
Windows 95 or Windows NT Mjølner port
MIA 94-34.

41

Appendix A. Semantic Errors
and Warnings

A.1 Semantic Errors

The following is a list of semantic error messages that may be reported by the com-
piler. See also section 7.2.

1. Name is declared more than once

2. Name is not declared

3. Attribute is not declared

4. A pattern is expected here

5. An item is expected here

6. A repetition is expected here

7. A simple evaluation cannot be assigned

8. The lists have different lengths

9. The lists have different lengths

10. In "leave P" or " restart P", "P" must be an enclosing label

or enclosing pattern

11. Illegal assignment/comparison of value, reference or repetition

12. Only a single name is allowed here

13. Attempt to bind V which is not virtual (V ::< T)

14. In V ::< T, T does not have a correct qualification

15. An object is expected here

16. A basic pattern cannot be used as a super-pattern

17. A virtual pattern or a pattern defined as a descriptor slot cannot

be used as super-pattern

18. A string of length 1 is a char - NOT a text

19. Illegal recursion in the definition of a pattern.

One of the following type of errors have occurred:

(1) There may be a circle in the super-pattern chain:

A: C(# ... #); B: A(# ... #); C: B(# ... #)

(2) The pattern may direct or indirectly contain a static instance

of itself:

42 BETA Compiler Reference Manual

P: (# ...; X: @P; ... do ... #)

(3) The pattern may directly or indirectly contain an inserted

instance of itself:

P: (# ... do ...; P(# ... #); ... #) or

A: (# ... P: (# R: ^A; ... do ...; R.P(# ... #); ... #) ... #)

20. Incompatible qualifications in assignment/comparison

21. Only simple values or references may be compared

22. Only simple values may appear in unary expressions

23. Fatal error: virtual binding not found

27. The descriptor is both used as item and component

28. Static size of descriptor is larger than 32760 bytes

29. Illegal recursion in object-description

30. Illegal assignment to constant value/reference or repetition

31. Only pattern-declarations may appear in a fragment of category 'attributes'

32. A virtual qualification must be a pattern name or a descriptor

33. A virtual pattern or descriptor-slot cannot be used as a component

34. An enter/exit parameter of an "external" must be one of:

integer,char,real,integer-repetitions,char-repetition,

subpattern of cstruct,variable-subpattern of external

35. An "external" can only have one exit parameter

36. A sub-pattern of "external" cannot be used as super-pattern

37. The DO-part of an "external" should be empty

38. A repetition/for-imp range must be an integer, char or boolean evaluation

39. A simple pattern cannot be used here

40. Unknown inline primitive

41. The superpattern of this descriptor has no INNER

42. Attempt to bind a virtual in a descriptor with no superpattern

43. The qualification of a variable pattern must be a pattern

44. A pattern-, virtual-, variable-pattern, or reference is expected here

45. A repetition name is expected here

46. In "this(P)" or "inner P", P must be the name of an enclosing pattern

47. An unexpanded nonterminal must be a SLOT

48. A super-pattern must be a simple pattern or a simple

pattern attribute of a static object

49. A simple pattern or virtual pattern cannot be assigned

a structure reference

50. A structure reference can only be assigned to/compared

with another structure reference

51. Only integer,char,boolean, real objects and references can be

compared in an if-imperative

52. Rename declaration has NOT been implemented

53. Syntax error in number

54. Name not declared. There is no corresponding virtual declaration

55. A pattern with a do-part slot cannot be used as a super-pattern

Semantic Errors and Warnings 43

56. The QUA construct has not been implemented

57. A basic pattern like integer, real, char, boolean, false, and true

cannot be used as a super-pattern

58. In a list being assigned to and being assigned from as in

...->(E1,E2,...En)-> ...

the elements may not be patterns

59. The enter-parameters of an external call must be supplied

60. The left-side of the assignment/comparison has no (exit-)list

or the right-side has no (enter-)list

61. An element of the left-side/right-side of the assignment/comparison

has no (exit-)list or (enter-)list

62. The Left-side of the assignment/comparison has no (exit-)list

63. An element of the left-side of the assignment/comparison has no (exit-)list

64. The right-side of the assignment/comparison has no (enter-)list

65. An element of the right-side of the assignment/comparison has no (enter-)list

66. A simple value (integer,boolean,char,real) cannot be assigned/compared

to/with a list

67. An object with no exit-list is being assigned/compared to a reference.

The left-side may be missing a "[]" or the right-side may have a superfluous "[]"

68. An element with no exit-list in the left-side list is being

assigned/compared to a reference on the right-side

The left-side may be missing a "[]" or the right-side may have a superfluous "[]"

69. A reference is being assigned/compared to an object with no enter-list

The right-side may be missing a "[]" or the left-side may have a superfluous "[]"

70. A reference is being assigned/compared to an element on the right-side with no enter-list

The right-side may be missing a "[]" or the left-side may have a superfluous "[]"

80. "inner P" is only legal in the do-part of the pattern "P"

81. In a computed-remote, "(EV).X","EV" cannot be an evaluation-list

82. In a computed-remote, "(EV).X", "EV" must have one exit-element,

which must be a reference

83. In a computed-remote, "(EV).X", "EV" is not a legal evaluation

84. "Extend" and "new" must have an enter-parameter

85. "leave P" or "restart P", where "P" is a pattern,

is only legal in the do-part of "P"

87. A repetition index must be an integer-evaluation

88. The base of this number is too large

89. A subpattern of "data" may only have declarations of the forms:

"X: ^T" where "T" is subpattern of "data", or

"X: @T" where "T" is integer,shortint,char,boolean,real

or subpattern of "data"

90. A subpattern of "data" may not have a do-part

91. A boolean evaluation is expected here

92. Primitive operation appears in wrong context

93. It is not possible to obtain a structure reference for a basic pattern

like integer, real, char, boolean, false, and true or instances of these

94. A virtual pattern cannot be bound to a basic pattern like

44 BETA Compiler Reference Manual

integer, real, char, boolean, false, and true

96. In "X: ^<AD>.P", "Y: @<AD>.P", "<AD>" cannot be:

a repetition element as in "R[e].P"

a computed remote as in"(R).P"

It must be a static object

98. A sub-pattern of "external" must be defined as a pattern

100. In "V ::< T", "T" must be a non-virtual pattern

101. In "V :: T", "T" must be a pattern

102. A cycle has been detected in the super-chain of the virtual/final binding

103. Incompatible types of binary operator

104. Incompatible left- and right-side of assignment

105. Illegal assignment to constant, literal or expression

107. A virtual cannot be bound to a slot

108. Illegal use of the "&"-operator

110. Illegal recursion in exit list:

a pattern is referred directly or indirectly in its own exit list

111. Illegal recursion in enter list:

a pattern is referred directly or indirectly in its own enter list

112. External entry point has a blank- or control character

113. There is a circle in the super-pattern chain

114. Illegal operator "!"'

A.2 Semantic Warnings

24. A run-time qualification check will be generated here

25. Repetition of static components is not implemented

26. Repetition of non simple patterns is not implemented

86. "leave P" and "restart P", where "P" is a pattern,

are currently not allowed in internal descriptors of "P"

95. In "X: ^R.P", "Y: @R.P", or "Z: @R.P(#...#),

"R" should NOT be a dynamic reference!

For "X: ^R.P", consider using "X: ^T.P",

where "T" is the pattern qualifying "R" ("R: ^T").

A future release may consider this to be a semantic error.

97. An "inner" in a singular object will never be executed

99. Final binding to a virtual pattern is a new facility

in this version of the compiler.

Please report any problems to support@mjolner.dk

106. Assignment/comparison between boolean and integer

109. Text has a null-char. All chars after the null-char are ignored

115. Use of "@@" in combination with object executions in external calls is insecure'

45

Appendix B. The BETA
Grammar

This appendix contains a listing of a grammar describing the BETA language accepted
by the compiler. The grammar formalism used in the Mjølner System is a variant of
context free grammars. A structured context free grammar is a context free grammar
(CFG) where the rules (productions) satisfy a certain structure. See [MIA90-8] for a
description of structured context free grammars.

<BetaForm> ::| <DescriptorForm>
 | <AttributesForm>
<DescriptorForm> ::= <ObjectDescriptor>
<AttributesForm> ::= <Attributes>
<ObjectDescriptor> ::= <PrefixOpt> <MainPart>
<MainPart> ::= '(#' <Attributes> <ActionPart> '#)'
<Attributes> ::+ <AttributeDeclOpt> ';'
<PrefixOpt> ::? <Prefix>
<Prefix> ::= <AttributeDenotation>
<AttributeDeclOpt> ::? <AttributeDecl>
<AttributeDecl> ::| <PatternDecl>
 | <SimpleDecl>
 | <RepetitionDecl>
 | <VirtualDecl>
 | <BindingDecl>
 | <FinalDecl>
<PatternDecl> ::= <Names> ':' <ObjectDescriptor>
<SimpleDecl> ::= <Names> ':' <referenceSpecification>
<RepetitionDecl> ::= <Names> ':' '[' <index> ']' <referenceSpecification>
<VirtualDecl> ::= <Names> ':' '<' <ObjectSpecification>
<BindingDecl> ::= <Names> ':' ':' '<' <ObjectSpecification>
<FinalDecl> ::= <Names> ':' ':' <ObjectSpecification>
<VariablePattern> ::= '##' <AttributeDenotation>
<referenceSpecification> ::| <StaticItem>
 | <DynamicItem>
 | <StaticComponent>
 | <DynamicComponent>
 | <VariablePattern>
<StaticItem> ::= '@' <ObjectSpecification>
<DynamicItem> ::= '^' <AttributeDenotation>
<StaticComponent> ::= '@' '|' <ObjectSpecification>
<DynamicComponent> ::= '^' '|' <AttributeDenotation>
<ObjectSpecification> ::| <ObjectDescriptor>
 | <AttributeDenotation>
<Index> ::| <SimpleIndex>
 | <NamedIndex>
<NamedIndex> ::= <NameDcl> ':' <Evaluation>
<ActionPart> ::= <EnterPartOpt> <DoPartOpt> <ExitPartOpt>
<EnterPartOpt> ::? <EnterPart>
<DoPartOpt> ::? <DoPart>
<ExitPartOpt> ::? <ExitPart>
<EnterPart> ::= 'enter' <Evaluation>
<DoPart> ::= 'do' <Imperatives>

46 BETA Compiler Reference Manual

<ExitPart> ::= 'exit' <Evaluation>
<Imperatives> ::+ <ImpOpt> ';'
<ImpOpt> ::? <Imp>
<Imp> ::| <LabelledImp>
 | <ForImp>
 | <SimpleIfImp>
 | <GeneralIfImp>
 | <LeaveImp>
 | <RestartImp>
 | <InnerImp>
 | <SuspendImp>
 | <Evaluation>
<LabelledImp> ::= <NameDcl> ':' <Imp>
<ForImp> ::=
 '(' 'for' <Index> 'repeat' <Imperatives> 'for' ')'
<GeneralIfImp> ::=
 '(' 'if' <Evaluation> <Alternatives> <ElsePartOpt> 'if' ')'
<SimpleIfImp> ::=
 '(' 'if' <Evaluation> 'then' <Imperatives> <ElsePartOpt> 'if' ')'
<LeaveImp> ::= 'leave' <NameApl>
<RestartImp> ::= 'restart' <NameApl>
<InnerImp> ::= 'inner' <NameAplOpt>
<NameAplOpt> ::? <NameApl>
<SuspendImp> ::= 'suspend'
<Alternatives> ::+ <Alternative>
<Alternative> ::= <Selections> 'then' <Imperatives>
<Selections> ::+ <Selection>
<Selection> ::| <CaseSelection>
<CaseSelection> ::= '//' <evaluation>
<ElsePartOpt> ::? <ElsePart>
<ElsePart> ::= 'else' <Imperatives>
<Evaluations> ::+ <Evaluation> ','
<Evaluation> ::| <Expression>
 | <AssignmentEvaluation>
<AssignmentEvaluation> ::= <Evaluation> '->' <Transaction>
<Transaction> ::| <ObjectEvaluation>
 | <ObjectReference>
 | <EvalList>
 | <StructureReference>
<ObjectEvaluation> ::| <InsertedItem>
 | <reference>
<Reference> ::| <ObjectDenotation>
 | <DynamicObjectGeneration>
<DynamicObjectGeneration> ::| <DynamicItemGeneration>
 | <DynamicComponentGeneration>
<InsertedItem> ::= <ObjectDescriptor>
<ObjectDenotation> ::= <AttributeDenotation>
<ObjectReference> ::= <Reference> '[]'
<StructureReference> ::= <AttributeDenotation> '##'
<EvalList> ::= '(' <Evaluations> ')'
<DynamicItemGeneration> ::= '&' <ObjectSpecification>
<DynamicComponentGeneration> ::= '&' '|' <ObjectSpecification>

<AttributeDenotation> ::| <NameApl>
 | <Remote>
 | <ComputedRemote>
 | <Indexed>
 | <ThisObject>
<Remote> ::= <AttributeDenotation> '.' <NameApl>
<ComputedRemote> ::= '(' <Evaluations> ')' '.' <NameApl>
<Indexed> ::= <AttributeDenotation> '[' <Evaluation> ']'
<ThisObject> ::= 'this' '(' <NameApl> ')'
<Expression> ::| <RelationalExp> | <SimpleExp>
<RelationalExp> ::| <EqExp> | <LtExp> | <LeExp>
 | <GtExp> | <GeExp> | <NeExp>
<SimpleExp> ::| <AddExp> | <SignedTerm> | <Term>
<AddExp> ::| <PlusExp> | <MinusExp> | <OrExp> | <XorExp>

The BETA Grammar 47

<SignedTerm> ::| <unaryPlusExp> | <unaryMinusexp>
<Term> ::| <MulExp> | <Factor>
<MulExp> ::| <TimesExp> | <RealDivExp> | <IntDivExp>
 | <ModExp> | <AndExp>
<EqExp> ::= <Operand1:SimpleExp> '=' <Operand2:SimpleExp>
<LtExp> ::= <Operand1:SimpleExp> '<' <Operand2:SimpleExp>
<LeExp> ::= <Operand1:SimpleExp> '<=' <Operand2:SimpleExp>
<GtExp> ::= <Operand1:SimpleExp> '>' <Operand2:SimpleExp>
<GeExp> ::= <Operand1:SimpleExp> '>=' <Operand2:SimpleExp>
<NeExp> ::= <Operand1:SimpleExp> '<>' <Operand2:SimpleExp>
<PlusExp> ::= <SimpleExp> '+' <Term>
<MinusExp> ::= <SimpleExp> '-' <Term>
<OrExp> ::= <SimpleExp> 'or' <Term>
<XorExp> ::= <SimpleExp> 'xor' <Term>
<unaryPlusExp> ::= '+' <Term>
<unaryMinusExp> ::= '-' <Term>
<TimesExp> ::= <Term> '*' <Factor>
<RealDivExp> ::= <Term> '/' <Factor>
<IntDivExp> ::= <Term> 'div' <Factor>
<ModExp> ::= <Term> 'mod' <Factor>
<AndExp> ::= <Term> 'and' <Factor>
<Factor> ::| <TextConst>
 | <IntegerConst>
 | <NotExp>
 | <NoneExp>
 | <RepetitionSlice>
 | <Transaction>
<RepetitionSlice> ::= <AttributeDenotation>
 '[' <Low:Evaluation> ':' <High:Evaluation> ']'
<notExp> ::= 'not' <factor>
<noneExp> ::= 'none'
<Names> ::+ <NameDcl> ','
<NameDcl> ::= <NameDecl>
<NameApl> ::= <NameAppl>
<SimpleEntry> ::? <TextConst>
<TextConst> ::= <String>
<IntegerConst> ::= <Const>
<SimpleIndex> ::= <Evaluation>

49

Appendix C. New Features in
v5.3

The following new features have been implemented in version 5.3 of the compiler,
compared to version 5.1.

C.1 New Platforms

The following new platforms area available:

• The compilers for Windows NT and Windows 95 now generates binary code
directly.

• A version for the PowerPC based Macintosh generating binary code is now
available.

C2. The BUILD Property

See section 9.1

51

Index

-, 6

*

*, 6

+

+, 6

.

..db, 5

..job, 5

..s, 5

.ast, 5

.astL, 5

.lst, 5

.o, 5

<

<>, 6

=

=, 6

A

abstract syntax tree, 5
activation stack, 27
and .i.real, 6
ASCII, 6
assembling, 25
assembly code, 5; 34
assembly language, 3
attributes, 13
attributes, 20

B

backslash, 12; 45
backspace, 12; 45
basiclib, 3
BETA language, 6
BETALIB, 4
BETALIB, 17
BETARUN, 22; 31
BETARUN, 18
big-endian, 5
BODY, 22
BODY, 16; 17; 32

C

C, 3
C compiler, 31
call stack, 26
carriage return, 12; 45
, 45
command line arguments, 28
Compatibility, 7; 8
compiler info output, 29
compiler switches, 29
concurrency, 10
Configurations, 31
context free grammars, 41
context free syntax, 24
cross-compilation, 32

D

data structures, 19
debug info, 29
, 29
descriptor, 13; 20; 25; 45
Deviations, 6
deviations, 1
disk space, 25
div, 6
DoPart, 13
DoPart, 25; 45
DoPart slot, 20
double quote, 12; 45
dynamic item, 9
dynamic linking, 28

52 BETA Compiler Reference Manual

E

extension, 17
External library, 18

F

false, 6
file name, 17
File Name Restrictions, 23
Files Generated by the Compiler, 5
final binding, 9
formal syntax of the BETA fragment-system, 22
formfeed, 12; 45
fragment, 13
Fragment Denotations, 17
fragment system, 2
fragments, 30

G

grammar, 41

H

horizontal tab, 12; 45

I

If, 12
implementation, 19
INCLUDE, 16; 22
INCLUDE, 17
incomplete file, 25
INNER, 20
INNER A, 21
Inserted components,, 9
inserted item, 10
Inserted items, 9
integer, 6
interface, 13; 19
, 45

L

label, 10
labelled compound imperative, 9
leave, 10
LIBFILE, 18; 22; 31
library, 3
linker-directive, 18
linking, 25
LINKOPT, 18; 22; 31
LINKOPT, 32
little-endian, 5
lst-file, 25

M

MachineSpecificationList, 17; 18; 22; 31
Macro Expansion, 34
MAKE, 22; 31
MAKE, 18; 31
MDBODY, 22; 31
MDBODY, 17; 31; 32
mod, 6
modularization, 13
Modularization of Data Structures, 19
Multiply Defined Symbol, 25; 45

N

newline, 12; 45
NONE references, 29

O

object code, 5
object file, 18
object files, 34
objectDescriptor, 13
OBJFILE, 22; 31
OBJFILE, 18
octal number, 12; 45
OFF, 22
OFF, 18
ON, 22
ON, 18
ORIGIN, 16; 22
ORIGIN, 17

P

PowerPC, 45
Private, 16
properties, 16

Q

QUA checks, 29
question mark, 12; 45

R

real, 6
recursion, 9
repeating mode, 4; 28
RESOURCE, 22; 32
RESOURCE, 18
restart, 10
restrictions, 1; 23
result type, 6; 7; 8
runtime checks for QUA errors, 29
Run-time errors, 26
run-time system, 18

Index 53

S

semantic error messages, 25; 37
Semantic Errors, 37
separate compilation, 13
Short-circuit Boolean Expressions, 12
, 45
Simple If, 12
single quote, 12; 45
SLOT, 25; 45
slot, 2
special characters, 11; 45
static linking, 28
Static Semantic Errors, 24
statically enclosing object, 27
string literal, 11
string literals, 11; 45
struc, 12; 45
structured context free grammar, 41
Syntax Errors, 24
system errors, 26

T

this, 10
trace, 25; 29
true, 6

U

Undefined Reference, 25; 45

V

Valhalla, 5; 29
variant control, 13
vertical tab, 12; 45
Virtual superpatterns, 9

W

warnings, 29

X

xor, 12

~

~beta, 4

