The Mjglner System
BETA Compiler

Reference Manual

Mj@iner Informatics Report
MIA 90-02(1.6)
October 1997

Copyright © 1990-97 Mjglner Informatics ApS.
All rights reserved.
No part of this document may be copied or distributed
without the prior written permission of Mjginer Informatics

Table of Contents

1 INTRODUCTION

2 SIMPLE USE OF THE COMPILER

3 THE BETA LIBRARY

4 FILES GENERATED BY THE COMPILER

5 IMPLEMENTATION DEVIATIONS

5.1 The BETA Book
5.2 Restrictions
5.3 Extensions
5.3.1 String Literals as References
5.3.2 Specia Charactersin String Literals
5.3.2 SimpleIf
5.3.3 Xor Primitive

5.4.4 Short-circuit Boolean Expressions
5.4.5 ##for Objects

THE FRAGMENT SYSTEM

6.1 Fragment Language Syntax

6.2 Fragment Denotations

6.3 Fragment Properties

6.4 Modularization of Data Structures
6.4 Modularization with INNER

6.5 Formal Syntax of Fragment L anguage

6.6 File Name Restrictions

ERROR HANDLING
7.1 Syntax Errors

7.2 Static Semantic Errors

11
11
12
12
12
12
13

14
14
18
18
20
21
23

24

25
25

25

BETA Compiler Reference Manual

7.3 Check for bound SLOTs.
7.4 Assembler and Linker Errors
7.5 System Errors

7.6 Run-timeErrors

8 COMPILER ARGUMENTS

9 MACHINE DEPENDENT CONFIGURATIONS

9.1 BUILD Property

Syntax:
Functionality

Example
More than one build pr. fragment

10 CODE GENERATION FOR MULTIPLE MACHINES
10.1 Placement of Object Code

10.2 Macro Expansion

BIBLIOGRAPHY

APPENDIX A. SEMANTIC ERRORS AND WARNINGS
A.1 Semantic Errors

A.2 Semantic Warnings

APPENDIX B. THE BETA GRAMMAR

APPENDIX C. NEW FEATURES IN V5.3
C.1 New Platforms

C2. The BUILD Property

INDEX

26
26
27

27

36

39

41

41

45

49
49

49

51

1 Introduction

This manual describes version 5.3 of the BETA compiler (corresponding to release 4.1
of the Mjglner System). The compiler implements most parts of the BETA language as
described in [MMN93]. There are, however, some implementation restrictions.

The user should read section 5 for a description of the im-
plementation restrictions and deviations from [MMN93]

See Appendix C for an overview of new features in V5.3 of the compiler. The BETA
compiler is accompanied by a large collection of libraries and application frameworks.
This includes a text concept, and libraries for input/output on keyboard, screen and
files, a user interface package, a library of well-known datastructures, and a meta-
programming system. The Mjginer System is available for The Power Macintosh,
UNIX workstations such as Sun-4 (SPARC running Solaris), HP-9000 series 700,
Silicon Graphics running IRIX, and PC's running Windows NT, Windows 95 or
Linux.

On Macintosh the user interface system is implemented on top of the Macintosh
Toolbox. For Macintosh thereis also alibrary that interfaces directly to the Toolbox.

On UNIX, the user interface system is implemented on top of the X Window System
(X11R3 or later). A number of UNIX facilities can be accessed viaa UNIX library.

On Windows 95 and Windows NT, the user interface system is implemented on top of
WIN32.

A genera interface to C and assembly language is part of the libraries/compiler.

The rest of this manual is organized as follows: Section 2 describes the simplest way of
using the compiler. Section 3 describes the organization of the basic BETA libraries.
Section 4 describes the files generated by the compiler. Section 5 describes various
deviations in the implementation of BETA. Section 6 describes the implementation of
the fragment system. Section 7 describes compile- and run-time errors. These sections
contain useful information for all users.

The remaining sections are only for advanced users. In section 8, a number of different
arguments to the compiler are described. In section 9, it is described how to instantiate
machine dependent configurations of a program. In section 10 it is described how code
is generated for multiple machines.

BETA Compiler Reference Manual

A BETA program

ORIGIN

Program slot

Compiling

More
information

2 Simple Use of the
Compiler

The following is an example of avery small BETA program.

ORIG N ' ~bet a/ basi cli b/vl. 6/ bet aenv'
--- PROGRAM descriptor ---
(#
do 'Welcone to Molner' -> putlLine
#)
Only the part between (# ... #) iSBETA. The ORIGIN specification:

ORIG N ' ~bet a/ basi cli b/vl. 6/ bet aenv'
describes that version 1.6 of the fragment bet aenv from the BETA basic library
(basi cl i b) is used.
The fragment name and category:
- PROGRAM descriptor ---
describes that the BETA program is filled into a dlot in bet aenv called PROGRAM The

BETA compiler is integrated with the Mjginer fragment system. The above BETA
program is an example of aBETA fragment.

Assume that the above BETA fragment is located in the file f oo. bet . The BETA
fragment may then be compiled by issuing the command
beta fo0o. bet

which will compile and link3 the BETA fragment. The final object code will be in the
filef oo, which may be executed.

How to invoke the compiler depends on whether Macintosh, PC or UNIX is used.
Details about the different variants of the BETA compiler may be found in [MI1A90-6]
for Macintosh, [MIA94-32] for Windows, and in [MIA90-4] for UNIX.

1 The actua version to be used depends on the current release installed at the
available hardware.

2 On most platforms, binary code is generated directly. In this case, the assembly
phase is omitted.

3 On most platforms, binary code is generated directly. On the HP platform, the
compiler generates assembly code which is assembled before linking.

The BETA Library

3 The BETA Library

The BETA library is a collection of patterns and objects that include input/output, a
text concept, the user interface toolkit, the metaprogramming system, a container li-
brary, asystem library, etc. The library is organized as fragments.

One part of the library contains the basic patterns and objects which are used by most
programs. This basic BETA library is called basi cl i b and is described in [MIA90-§],
which also describes the interface to C and assembly language.

The library basi cli b contains a number of different fragments groups containing
basic patterns, a text concept, various functions and control patterns, a file concept,
etc. One of these fragment groups is bet aenv, which contains the basic patterns, the
text concept, other basic patterns and objects representing the screen and the key-
board. All BETA programs must use bet aenv, which has the form:

(# ...
(* Alot of useful patterns *)

<<SLOT LIB: attributes>>

.p.rbgram <<SLOT program descri ptor>>
t heProgram #| program

do ...
& prograni] -> thePrograni];
t hePr ogr am
" .
The LI B dot describes where most libraries are inserted. The pr ogr am dot describes

where an ordinary user program is inserted (see section 6 for more explanation of
this).

On UNIX, the BETA library is often located in the directory / usr /1 ocal /1 i b/ bet a.

For Macintosh, the convention is that the BETA library is located in a folder called
beta.

In the rest of this manual, we assume that the basic library is located in
/usr/1ocal /1ib/beta. We aso use the UNIX convention for denoting directories
with the character / to separate directory and file names.

The Mjglner System contains directories for the various libraries. The basic library
basi cl i b ise.g. located in the directory:
/fusr/local/lib/betal/basiclib

The directory for a library contains directories corresponding to different versions of
the library. Version 1. 6 of bet aenv is contained in the directory

basiclib

betaenv

Location of
libraries

BETA Compiler Reference Manual

~beta

Repeating mode

More
information

/fusr/local/libl/betal/basiclib/vl.6

This directory contains the fragment groups constituting basi cl i b. Instead of refer-
ring to a specific version, it is possible to refer to the current official version by means
of the name current . (Thisis not possible on Windows and Macintosh).

The Mjalner System accepts the following abbreviation for the BETA library:

~bet a denotes /usr/local/lib/beta
The meaning of ~bet a can be changed by using the BETALI B environment variable, see
[MIA 90-04].
To sum up, the file containing the current version of bet aenv may be referred to by:
~bet a/ basi cl i b/ current/ bet aenv

A user-program using bet aenv may then look as follows:

ORI A N ' ~bet a/ basi cli b/ current/ bet aenv'
--- PROGRAM descriptor ---
(#
do 'Wel conme to Mol ner' -> PutLine
#)
Pease note, that on Windows and Macintosh the separator in ORI G N specifications is
aso/. Seesection 6.2.

Assume that the above program resides on the file f oo. bet . The program may then be
compiled by issuing the command:
beta foo. bet
Thefilef oo will now contain an executable version of f oo. bet .
When developing the program, it may be an advantage to invoke the compiler as

beta -r foo. bet

This will run the compiler in repeating mode. After having trandated the fragments
specified in the argument list, if in repeating mode, the compiler prompts the user for
the name of another fragment to be trandated. Hitting <RETURN> in this case will
recompiler the program last compiled. See section 8 for a survey of the legal command
line options.*

Please consult the BETA tutorial [MIA 94-24] for a quick survey of the BETA lan-
guage and the basic libraries.

4 Thisis currently not possible on Windows and Macintosh.

Files Generated by the Compiler

4 Files Generated by the

Compiler

For each fragment file, a number of other files may be produced by the compiler; let
f oo. bet beaBETA fragment. Then

f oo. | st contains information about possible syntactic and static semantic er-
rors. If such errors occur, then the file contains a pretty-print of the fragment
with an indication of the error(s). See section 7 for further information about
error handling. Possible semantic error messages are listed in appendix A.

foo. ast oOr foo. astL contains the abstract syntax tree representation of the
compiled source code for big-endian and little-endian architectures, respec-
tively. The AST files are used by many toolsin the Mjalner System.

f 0oo. . s contains the generated assembly code for the compiled source code®.
Assembly files are located in subdirectories named according to the machine
type, to which the source code has been compiled. Currently, the directories
sun4s, hpux9pa, nti, | i nux, sgi , and ppcrmac can be created. These directo-
ries are automatically created by the compiler, if not present already. The as-
sembly file isusualy deleted by the compiler after assembly.

f 0o. o contains the object code generated by the assembler. Like f oo. . s, this
fileis placed in a subdirectory.

foo. db contains information used by the debugger Vahalla when debugging
the foo fragment. See [MIA 92-12]. Like foo. .s, this file is placed in a
subdirectory.

The above list of files is generated for each fragment group that is included in a pro-
gram. In addition, the following two files are generated for each program:

f oo containing the executable code for the program.

f 0o. . j ob containing directives for assembly and linking. Like f oo. . s, thisfile
is placed in a subdirectory. This file is usualy deleted by the compiler after
linking.

For some implementations (e.g. Windows NT) other extensions than . . s and . o may
be used.

5

On most platforms, binary machine code is generated directly. In this case, no
assembly file is generated.

List files

Abstract syntax
tree files

Assembler files

Object files

Debug files

Executable

Job file

BETA Compiler Reference Manual

The BETA book

Restrictions

5 Implementation
Deviations

5.1 The BETA Book

The BETA language is described thoroughly in [MMN93].

It is prerequisite to be familiar with [MMN93] in order to
usethe Mjglner System.

This book is currently the only definition of the BETA language, but a precise
language definition is being worked on.

A short introduction to BETA and the Mjglner System may also be found in the
Mj@iner Tutoria [MIA 94-24] and in [KLMM94].

The BETA grammar is given in appendix B.

There are afew of deviations from [MMN93] in the current implementation of BETA.
These deviations are described below.

5.2 Restrictions

Thei nt eger operations +, -, *, di v, nod, =, <>, etc. will work on 32 hits.

Assignment between instances of i nteger, and real is alowed. In assign-
ments of reals to integers the values are truncated.

Assignment between instances of i nteger and char is alowed. Character
constants have their ASCII char value. Assignment of an arbitrary i nt eger
valueto char instances may thus give meaningless results.

Assignment between instances of i nt eger and bool ean is alowed, but will
give a warning. In a future release these assignments will not be allowed and
will give an error. The patterns true and fal se have the values 1 and 0
respectively. Assignment of an arbitrary i nt eger value to boolean instances
may thus give meaningless results.

The following table shows legal combinations of operands and the result type.

Implementation Deviations

Entries not shown are illegal. Entries marked with * areillegal. Entries marked
with ! will give awarning, and will becomeillegal in afuture release.

Abbreviations:
int means integer
bool means boolean
iref means item reference
cref means component reference
sef means structurereference
NONE isboth aniref, acref and an sref.

Assignment
For assignment and binary operators, the rows and columns of the tables show Compatibility
left and right operands respectively, and the elements of the tables show the

result type.
Assignment: ->
) I | bool o : :

int int char real ! * * *
char int char * * * * *
real int * real * * * *
bool ! * * bool * * *
iref * * * * iref * *
Cref * * * * * Cref *
g-ef * * * * * * g-ef

3. The relational operators =, <>, <, etc. do only work for the basic patterns
i nt eger, real, bool ean, and char and for references (only =, <>) l.e. E1 =
E2, where E1 and E2 are instances of some user-defined pattern will not work.

The following tables show legal combinations of operands and the result type. 8‘;2}2?;?"”
The notation is explained in item 2 above. Compatibility
Binary operators. =, <>
int char real bool iref cref sef

int bool bool bool ! * * *

char bool bool bool * * * *

real bool bool bool * * * *

bool ! * * bool * * *

iref * * * * bool * *

cref * * * * * bool *

sef * * * * * * bool

BETA Compiler Reference Manual

Binary operators. <, <=, >, >=

int char real bool sef
int bool bool bool * *
char bool bool bool * *
real bool bool bool * *
bool * * * bool *
sef * * * * bool

4. Arithmetic/logical operators.

féié?cn;feg;/erator The following tables show legal combinations of operands and the result type.
Compatibility The notation is explained in item 2 above.
Binary operators. +, -, *, div
int char real
int int int real
char int int *
real real * real

Binary operator: mod

int char
int int int
char int int

Binary operator: /

int char real
int real real real
char real real *
real real * real

char islikely to be eliminated as alegal operand for / in a future version.

Binary operators. and, or, xor

bool

bool bool

Unary operators. + -
int, char, real result type is the same as operand type

Implementation Deviations

Unary operator: not
bool result typeis bool

5. Inif-imperatives
(if EO // E1 then ... // E2 then ... if)

the exit-lists of EO, E1, E2, ... must consist of exactly onei nt eger, real , char,
bool ean or reference.

6. Inserteditems,i.e.,
do ...; P;

([IMMNB93], section 5.10.2) are implemented as dynamic items (&P). However,
the user is urged to use dynamic items for recursion in order to ensure
compatability with future releases.

7. Inserted components, i.e.,
do ...; |(# ... #);
([MMNB93], section 5.10.3) have not been implemented.
8. Virtua superpatterns, i.e.,

A< (# ... #),; (* Were Ais sone virtual *)
B: A(# ... #)

have not been implemented.
By using afinal binding, this problem may often be overcome like this:

A: (# ... #); (* Ais no longer virtual *)
B: A(# ... #)

The situation may also occur in amore indirect way:

gr aph:
(# node:< (# ... #);
nodeList: @ist(# elenent::< node #);

oo

Here the virtual further binding of el ement inli st isnot allowed, since node
isitsalf virtud.

The current version of the compiler will allow fina binding using a pattern that
isitself virtual. That is, you can do this:

gr aph:
(# node:< (# ... #);
nodeList: @ist(# elenent:: node #);

oo

General virtua prefixes behave much like multiple inheritance and will not be
implemented in the near future.

10

BETA Compiler Reference Manual

10.

11.

12.

13.

The labelled compound imperative

A (L: inpl; inmp2; ...; inmpN:L)
has been eliminated from the language. Instead the following construct may be
used:

A (# do inmpl; inp2; ... ; inpN #)

Inserted items with no declarations and no superpattern will be inlined in the
enclosing code. There will thus be no execution overhead compared to the old
(never implemented) labelled compound imperative statement.

Consider the following example:

A (# X ~P;, (* reference to itemqualified by P *)
B: AP (* reference to conponent qualified by P *)
do ...
this(P)[] -> X]; (* legal use of this(P)[] *)
this(P)[] -> R1; (* illegal use of this(P)[] *)
#)

Theillegal useisduetothefact that t hi s(p)[] isconsidered areference to an
item object and not a component object.

In declarations like;

P. <AD>(# ... #);
X @&AD>;
Y: ~<AD>;
it is checked that <AD> is a static denotation, where static is defined as follows:
. A name A is aways static
. In aremote-name R A, R must be a static object
. Useof TH S(A) . Tisstatic
. Onlyiny: ~P. T, can P be apattern
. Denotationsusing R e] , and (f 0o) . bar are not static

This means that e.g. descriptors like:

Rel.A(# ... #)

(foo).bar(# ... #)

RP(# ... #) where 'R is a dynanmic ref.
are only alowed in imperatives.
For Y: ~R P whereR isadynamic reference, the compiler will currently report
awarning and suggest to use

Y: “"A. P whereAisthequdification of R.

Note: that when using - - nowar nQua, this warning will not be printed. A future
release may change the warning to an error.

There are some deviations with respect to the implementation of concurrency.
Please consult [MIA90-8] before using the concurrency.

It isin general not possibleto usel eave P orrestart P whereP isapattern.
P must in general be alabel. However, the following has been implemented:

Implementation Deviations

11

P. (#
do

iééve P;

.ré.st art Pb;

#)
Leavelrestart from an inserted item, however, is not supported by the current
version of the compiler:

P (#

do

...(#
do

| eave P; (* |LLEGAL *)

restart P, (* ILLEGAL *)
o

#)

14. A pattern where the object descriptor is described as a slot cannot be used as a
super-pattern. |.e. the following isillegal:

A: <<SLOT Pdesc: descri ptor>>;
B: P(# ... #),; (* illegal *)
Instead the following can often be used:
C. (# do <<SLOT Pdesc: descriptor>> #)
Do P(# ... #); (* legal *)
15. The Program pattern as described in the chapter on exception handling in
[MMNB93] has not been implemented.

16. There are some restrictions on the use of fragments as described in section 6
below.

5.3 Extensions

5.3.1 String Literals as References

The pattern Text enters and exits a char-repetition. This means, that atext may be

initialized using constant strings as follows:

t: @ext;
do 'hello" ->t;

Many operations involving texts, however, takes references to texts as enter/exit
parameters. Thisis mainly for efficiency reasons.

To alow easy invocation of such operations on string literals, the following is also
allowed:

12

BETA Compiler Reference Manual

t: "text;
do "hello" ->t[];

The semantics of this is, that a text object is instantiated, initialized by the constant
string, and finally assigned to the text reference.

5.3.2 Special Characters in String Literals
The following special characters are alowed in BETA string literals.

\a alert (bell) character \v vertical tab

\b backspace \\ backdash

\ f formfeed \? question mark
\n newline \ single quote
\r carriage return \ " double quote
\t horizontal tab \ooo octa number

Notice that you may now use\' asan aternativeto'' to include aliteral quotein a
string. E.g.: ' Tom's Cottage'. This has the consequence, though, that to type the
backslash character, you must doitas: ' \\" .

\ 0oo can also be\ o or\ oo, provided that the character immediately following it is not
adigit.

5.3.2 Simple If
Often the following If statement is used:

b: @ool ean;
do (if b//TRUE
then ...
el se ...
if);
The current version of the compiler supports an extension to the BETA language
caled Simple If. This extension means, that the case-selector / / may be omitted, if the
evaluation on the left hand side exits aboolean. That is, the above may be written

b: @ool ean;

do (if b
then ...
el se ...
if);

Likein the general i f -statement, the el se part if optional.

5.3.3 Xor Primitive
Anxor primitive is supported as a basic operation on booleans. That is

bl, b2, b3: @ool ean
do bl xor b2 -> b3

ispossible.

544 Short-circuit Boolean Expressions
Boolean expressions are implemented as short-circuit.

The Fragment System

13

Thatis, in
Bl or B2 B2 isnot evaluated if B1 istrue
Bl and B2 B2 isnot evaluated if B1 isfase

545 ## for Objects

You may use P## as an aternative to P. _struc, when P is an object. Previously ##
was only allowed for patterns.

14

BETA Compiler Reference Manual

Implemented
categories

Attributes
restrictions

Fragment group

6 The Fragment System

The Mjginer System is based on the notion of fragment. The fragment system must be
used for splitting a large program into smaller units (fragments). The fragment system
is used to support modularization, separation of interface and implementation parts,
variant control and separate compilation. It is highly recommended to use the fragment
system, since this may improve the structure of the program.

The principles of the fragment system are described in
[MMNB93]. In the following it is assumed that the reader is
familiar with this description.

The description in [MMN93] is dightly more idealized than the actua implementation
in the Mjglner System:

In [MMN93], the syntax of the fragment language is given
in terms of diagrams. The fragment language implemented
by the Mjglner System has a textual syntax.

In the Mjglner System, dots have only been implemented
for the syntactic categories <<DoPart>>, <<object—
Descri ptor >> and <<at t ri but es>>.

A fragment form of the category <<attributes>>, may
only contain pattern declarations. It cannot contain any
other kind of declarations, including virtual pattern decla-
rations, virtual pattern bindings, static or dynamic decla-
rations.

Thediasdescri pt or can be used instead of obj ect Descri pt or.

In the rest of this section, details of the Mjaglner System implementation of fragments
are given.

In the current system, fragments are organized in groups. A group is stored as afile.
The BETA compiler accepts a BETA program in the form of one or more files. Each
file must contain a group of fragments (i.e. one or more fragments).

6.1 Fragment Language Syntax

In the following some of the examples of fragments from [MMN93] will be given
followed by the syntax used by the Mjaglner System. The first example shows the
simplest possible BETA fragment-group:

The Fragment System 15

NAMVE ''mni 1' Graphical syntax
ORI A N ' bet aenv'

PROGRAM descri pt or

(#

do "Hello world!" -> PutlLine
#)

The fragment-group is stored in the file ni ni 1. bet, which is aso the name of the
fragment-group. The following syntax isis used by the Mjglner System:

ORIA@ N ' ~bet a/ basi cli b/vl. 6/ bet aenv' Textual syntax
-- program descriptor --

(#

do '"Hello world!"'->PutLine

#)

The origin bet aenv has been expanded into a complete file name for bet aenv.

The next example is an example defining a library fragment:
NAME ' nyl i b’ Library
ORIG N ' bet aenv'
LIB: attributes

Hello: (# do "Hello' -> PutText #);
Wrld: (# do "World -> PutText #)

This fragment is stored in a file nylib. bet and the corresponding syntax in the
Mjdner Systemis:

ORIG N ' ~bet a/ basi cli b/ vl. 6/ bet aenv'

-- LIB: attributes --

Hello: (# do 'Hello' -> PutText #);
Wrld: (# do "World -> PutText #)

The following fragments is an example of a fragment including the above defined li-
brary:

NAMVE ''m ni 2' Using the library
ORI A N ' bet aenv'

I NCLUDE ' nylib'

PROGRAM descri pt or

(#

do Hello; World; newLine
#)

Thisfragment is stored in afile ni ni 2. bet and has the following syntax:

ORIG@ N ' ~bet a/ basiclib/vl. 6/ betaenv';
| NCLUDE ' nylib';

-- program descriptor --

(#

do Hello; World; newLine

#)

The following example shows a fragment with a body:

16

BETA Compiler Reference Manual

Body

NAME "textlib'

ORIA N ' bet aenv'

I NCLUDE ' nyli b’

LIB: attributes

Spr eadText :
{A blank is inserted between all chars in the text
(# T: @ext
enter T
<<SLOT SpreadText: DoPart >>
exit T
#);
Br eakl nt oLi nes:

T

{'T refers to a text which is to be split into lines.}

{*W is the width of the lines.}
(# T: ~ Text; w @I nteger
enter (T[], w

<<SLOT Breakl ntoLi nes: DoPart >>
#)

Itisstoredin afiletext!ib. bet and has the following syntax:

ORI A N ' ~bet a/ basi cli b/v1l. 6/ bet aenv' ;
BODY 'textlibbody';
---LIB: attributes---
Spr eadText :
(* Ablank is inserted between all chars in the text
(# T: @ext
enter T
<<SLOT SpreadText: DoPart>>
exit T
#)
Br eakl nt oLi nes:
(* '"T refers to the text to be split into lines. *)
(* 'wW is the width of the lines. *)
(# T: ~ Text; w @I nteger
enter (T[], w
<<SLOT Breakl ntoLi nes: DoPart>>
#)

The body of t ext | i b isshown in the next example:

ITI

*)

NAME 'textli bbody’

ORIGAN "textlib'

SpreadText: DoPart

do (# L. @nteger
do (for i: (T.length->L)-1 repeat
(" '",L-i+1) -> T.InsertCh
for)
#)

Br eakl nt oLi nes: DoPart

do T.scan
(# seplnx,i,l: @nteger;
do i+1->i; |+1->;
(if (ch<=" ') then i->seplnx if);
(if I'=wthen
(nl, sepl nx)->T. I nxPut ;
i -sepl nx->l
if);
#);
T. new i ne;

Thisfragment is stored in afilet ext | i bbody. bet . The corresponding syntax is:

The Fragment System

ORIGN "textlib'
-- Spreadtext: DoPart --
do (# L: @nteger

do ...

#)
--Breakl ntoLi nes: DoPart --
do ...

Notice, that when local variables are needed in a DoPart dlot, it may be necessary to

make an inserted item in the DoPar t . Alternatively a Pri vat e descriptor ot may be

declared in the interface, and the L attribute moved to the Pri vat e fragment, which

should then be placed int ext | i bbody. bet too.

Finally a generd outline of a fragment group with several include, body and fragments fﬁjgﬂ:ﬁ,t file
is shown in the next example: structure

NAME F

ORIGN G
I NCLUDE Al
I NCLUDE A2

TNCLUDE Am
BODY BL
BODY B2

BODY BK
F1. ol
1

F2: S2
ff2

Fn: Sn
ffn

This fragment group is stored in afile F. bet and the syntax is:

ORIGAN'G;

I NCLUDE ' A1' "A2' ... 'Am
BODY 'Bl1" 'B2' ... 'BK';
Propl; Prop2; ... Propl
-- F1: s1 --

ffl

-- F2: 82 --

ff2

- Fn: Sn --

ffn
Propl, Prop2, ..., Propl are properties that may be defined for a fragment. Formally
the ORI G N, | NCLUDE, and BODY parts are also properties. In section 6.3 a list of
possible properties is given.

18

BETA Compiler Reference Manual

Fragment
denotation

‘/ ' separator

~beta

6.2 Fragment Denotations

In the examples above, terms like

| NCLUDE ' ~bet a/ basi cli b/ v1. 6/ bet aenv'

were used. Below we will use the term Fr agnent Denot at i on for the “fragment path”
givenin, e.g., the | NCLUDE property. The other properties, that accept Fr agnent Deno-
tati ons as arguments are explained in section 6.3.

Notice that a Fragnent Denot ati on iS not the same as a file name, athough it re-
sembles a UNIX file path, and athough it normally corresponds directly to a (set of)

file(s):
1. The separator in the Fragment Denot ati on is aways the ‘/’ character, e.g.,
also for BETA programs on the Macintosh, where ‘: ’ is used for file paths.

2. Asexplained in section 3, the notation ‘~bet a’ is legd in Fragment Denot a-
tions on al platforms, and smply means “the place BETA is ingaled”. As
mentioned, the meaning of ‘~beta’ can be controlled by using the BETALI B
environment variable, please consult [MIA 90-04], [MIA 94-34], and [MIA 90-
06] for details.

3. Thenotation ‘.’ means ‘current directory/folder’ on al platforms, and the no-
tation ‘. .’ means ‘father directory/folder’, i.e. the directory containing a given
directory.

4. Itisnot alowed to specify an extension (e.g. *. bet’ or ‘. ast’) in aFr agnent -
Denot ati on.

There are some restrictions in the legal fragment file names, which also apply to the
Fr agnent Denot at i ons, please see section 6.6.

6.3 Fragment Properties

The fragment system allows arbitrary properties to be associated with fragments. The
BETA compiler recognizes the following properties. For most users, only ORI G N,
| NCLUDE, and BODY are relevant.

ORI G N <Text Const >
The origin of a fragment is a fragment which is used when binding fragment-
formsto slots.

I NCLUDE <Stri ngLi st >
Specifies one or more fragments that are always included when using this
fragment.

BODY <Stri ngLi st >
Specifies one or more fragments that fills the dots in this fragment file, but are
not visible.

MDBODY <Machi neSpeci fi cati onLi st >

The Fragment System

19

Specifies one or more machine dependent fragments that fills the dots in this
fragment file dependent on the machine type. See section 9 for further descrip-
tion.

BU LD <Machi neSpeci fi cati onLi st >
The BUILD property is used to specify rules for keeping external (i.e. non-
BETA) sources up to date, and to include the external filesin the link directive.

The BUILD property unifies the OBJFILE and MAKE properties. See also
section 9.

OBJFI LE <Machi neSpeci fi cati onLi st >

The object file is included in the linker-directive. This is typically an External
library which is interfaced to via the External interface described in [MIA90-8].
See also BUILD and section 9.

BETARUN <Machi neSpeci fi cati onLi st >

The standard BETA run-time system is replaced with the one in the object-file.
See also section 9.

MAKE <Machi neSpeci fi cati onLi st >

Specifies one or more makefiles to be executed before linking. See also section
9. The Makefile is executed relative to the directory, where the file containing
the MAKE property is placed. See dso BUILD

RESOQURCE <Machi neSpeci fi cati onLi st >

Specifies one or more resource files to be included in the application. Only used
on Macintosh and Windows NT platforms. See also section 9.

LI BFI LE <Machi neSpeci fi cati onLi st >
Is similar to OBJFI LE, but specifiesinclusion of alibrary. See also section 9.
LI NKOPT <Machi neSpeci fi cati onLi st >

Machine dependent options to append to link directive for programs using the
fragment. Only used on UNIX platforms. See also section 9.

ONnl n2 ... nk
The compiler switches n1 n2 ... nk (positive numbers) are set. See also section
8.

OFF n1 n2 ... nk

The compiler switches n1 n2 ... nk (positive numbers) are cleared. See aso
section 8.

The terms <Machi neSpeci fi cati onLi st>, <StringList>, and <Text Const> are
syntactically explained in section 6.5.

20

BETA Compiler Reference Manual

Separating the
interface

6.4 Modularization of Data Structures

This section gives some advices that can be used when modularizing data structures.
Consider the following program library (st ack. bet):

ORIG N ' ~bet a/ basi cli b/vl. 6/ bet aenv'
--- Lib: attributes ---
st ack:
(# el enent: < object;
A: [100] ~el enent;
top: @nteger;
push:
(# e: "elenent;
enter e[]
do top+l->top;
e[] -> Altop][];
#)
pop:
(# e: "elenent;
do Altop][] -> e[];
t op- 1- >t op;
exit e[]
#);
t op:
(# e: "elenent;
do Altop][]->e[];
exit e[]
#)
#)

If we want to separate the interface and the implementation, this can be modularized in
the following way:

Introduce the following S.OTs:

ORIG N ' ~bet a/ basi cl i b/ v1. 6/ bet aenv';
BODY ' st ackl npl"'
--- Lib: attributes ---
st ack:
(# elenent: < object;
private: @<SLOT private: descriptor>>;

push:

(# e: "elenent;

enter e[]

<<SLOT pushBody: DoPart >>
#)

pop:

(# e: "elenent;
<<SLOT popBody: DoPart>>
exit e[]
#);
t op:
(# e: "elenent;
<<SLOT topBody: DoPart >>
exit e[]
#);
#)

The Fragment System

21

Create a new fragment file st ackl npl . bet :

ORIG N "stack';
-- private: descriptor --
(# A: [100] "el enent;
top: @nteger;
#)
-- pushBody: DoPart --
do private.top+l->private.top;
e[] -> private. Alprivate.top][];
-- popBody: DoPart --
do private. Al private.top][] -> e[];
private.top-1->private.top;
-- topBody: DoPart --
do private. Alprivate.top][]->¢€[]

The reason why the data representation (A and Top) is put into adescri ptor dot in-
stead of an attributes dotisthat attributes sots may only contain patterns, no
static items (objects) or object references. This is due to the implementation of sepa-
rate compilation. Therefore it is necessary to put static items into an attribute (in this
case pri vat e) that is declared by means of adescri pt or sot. Because of this all ac-
cesses to the representation must be done via the pri vat e variable (see pushBody,
popBody and t opBody). Notice that the parameters are visible in the interface. If the
operations had local variables they should not be shown in the interface.

6.4 Modularization with INNER

Programs fragments with do-parts that contain an | NNER imperative e.g.:

ORIG N ' ~bet a/ basi cl i b/ v1. 6/ bet aenv';

--- lib: attributes ---

A: (# do inpl; inp2; INNER inp3 #)
can be modularized in the following two ways depending on whether the | NNER im-
perative should be visible in the interface or not.

If the I NNER is preferred visible in the interface, the interface fragment could look like
(f ooLi b1. bet):
ORI A N ' ~bet a/ basi cli b/v1l. 6/ bet aenv'; Interface

BODY ' f ool npl 1
-- lib: attributes --

A (#
do <<SLOT inmpl2slot: descriptor>>;
| NNER;
<<SLOT i nmp3sl ot: descriptor>>
#)

and the implementation fragment (f ool npl 1. bet):

ORIG N ' fooli b1’ Implementation
-- inpl2slot: descriptor --

(# do inpl; inp2 #)

-- inp3slot: descriptor --

(# do inp3 #)

In this case aDoPart slot might be used instead (f ooLi b2. bet):

22

BETA Compiler Reference Manual

Using DoPart
slot

ORIA@ N ' ~bet a/ basi clib/vl. 6/ betaenv';
BODY ' f ool npl 2

-- lib: attributes --

A: (# <<SLOT inpl2slot: DoPart>> #)

with the implementation fragment (f ool npl 2. bet):

ORI G N ' fooLi b2'

-- inmpl2slot: DoPart --

do inpl; inmp2; INNER, inp3
Using do-parts like this, then although the | NNER is not visible in the interface, the A
pattern may still be specialized and behave as if the | NNER was in the interface. Notice,
that when specializing a pattern with no I NNER in the do-part, the compiler will
normally complain about this. But when the pattern being specialized contains a
SLOT, the compiler will assume, that the SLOT contains an | NNER. Thus it is possible
to specialize the A patternin f ool i b2.

But if the | NNER imperative is placed “inside” some structure e.g.:
A (#
do (if E1
/1 E2 then | NNER
/1 E3 then inp
if)
#)
you might not want to show thei f imperative in the interface. In this case a variant of
the I NNER construct may be used, in which case the interface fragment could be
(f ooLi b3. bet):
ORIG N ' ~bet a/ basi cli b/ v1. 6/ bet aenv';
BODY ' f ool npl 3'

--- lib: attributes ---
A: (# do <<SLOT Abody: descriptor>> #);

and the implementation fragment (f ool npl 3. bet):

ORIG N ' fooLi b3
--- Abody: descriptor ---
(#
do (if E1
/1 E2 then INNER A
/1 E3 then inp
if)
#)
If a“normal” | NNER had been used instead of | NNER A, it would mean that specializa-
tions of the pattern containing the | NNER in the do-part combine the actions at this
point. But the pattern containing the | NNER in the do-part, in this case would be the
anonymous pattern in the ABody descriptor fragment. By using | NNER A, it IS ensured,
that the control flow descents to the specialization of A although the | NNER is inside
the ABody descriptor.

A DoPart dot could also be used here, asin the previous example.

The Fragment System 23

6.5 Formal Syntax of Fragment
Language

The formal syntax of the BETA fragment-system is:

<Transl ationUnit> ::= <Properties> <FornPart > Fragment
<FornPart> ::* <FornDef> Grammar
<FornDef> ::= -- <FornmDefinition>
<FormDefinition> ::| <DescriptorFornr | <AttributesForne | <dopart_forne
<DescriptorForne ::= <NanmeDcl > : descriptor -- <ObjectDescriptor>
<AttributesForne ::= <NameDcl > : attributes -- <Attributes>
<Dopart Forne ::= <NameDcl > : dopart -- <DoPart>
<Properties> ::= <Propertylist> Property
<PropertylList> ::+ <PropertyQpt> ';' Grammar
<PropertyQpt> ::? <Property>
<Property> ::| <ORIG N>
| <I NCLUDE>
| <BODY>
| <NMDBODY>
| <BUI LD>
| <OBJFILE>
| <LIBFILE>
| <LI NKOPT>
| <BETARUN>
| <MAKE>
| <RESOURCE>
| <ON>
| <OFF>
| <O her>
<ORIA N> ::="ORIA N <Text Const >
<I NCLUDE> ::= 'INCLUDE <StringList>
<BODY> ::= 'BODY' <StringList>
<MDBODY> ::= ' MDBCODY' <Machi neSpecificationList>
<BUI LD> ::= 'BU LD <Machi neSpecificationList>
<OBJFI LE> ::= ' OBJFILE <Machi neSpecificationList>
<LIBFILE> ::= 'LIBFILE <Machi neSpecificationList>
<LI NKOPT> ::= 'LI NKOPT" <Machi neSpecificationList>
<BETARUN> ::= ' BETARUN <Machi neSpecificati onLi st>
<MAKE> ::= 'MAKE <Machi neSpecificati onList>
<RESOURCE> ::= 'RESOURCE <Machi neSpecificationList>
<ON> ::= '"ON <IntegerlList>
<CFF> ::= 'OFF <lIntegerlist>

<StringLi st>::+ <Text Const >
<l nt eger Li st > : + <I nt eger Const >
<Machi neSpeci fi cati onLi st >::+ <Machi neSpeci fi cati on>

<Machi neSpeci fi cation> ::= <Machi ne> <Stri ngLi st >
<Machi ne> ::| <NaneApl> | <Default>

<Default> ::= 'default'

<Ot her> ::= <NaneDcl > <PropertyVal uelLi st >
<PropertyVal ueLi st> ::* <PropertyVal ue>

<PropertyVal ue> ::= <Val ue>

<Val ue> ::| <NaneDcl > | <IntegerConst> | <TextConst>
<NaneDcl > ::= <NaneDecl >

<NaneApl > :: = <NanmeAppl >

<Text Const> ::= <String>

<I nteger Const> ::= <Const>

24

BETA Compiler Reference Manual

‘" is illegal in
file names

Symptoms

Note that the symbol - - may consist of two or more dashes (-), and that the old style
INCLUDE and fragment syntax (--1NCLUDE fragment) are not described by this
grammar. This old-style INCLUDE syntax is no longer supported..

6.6 File Name Restrictions

Because of implementations details, the current version of the fragment system im-
poses the following restrictions on file names used for BETA programs.

1. It is not alowed for a program to use two files with the same name, say
f 0oo. bet (ignoring case), which both contains fragments of category At -
tributes.

2. Itisnot alowed for a program to use a file named, say, f oo. bet , if f 0o. bet
contains a fragment of category Attri butes, and if there is a SLOT of cate-
gory Qbj ect Descri pt or /Descri pt or or DoPart named f oo in any of the files
involved in the program. Again case isirrelevant.

3. Itisnot allowed to usethe ‘-’ (dash) character in fragment file names.

Because the Fr agment Denot at i on Sseparator character is‘/’ it is not allowed
to use the ‘/’ in fragment file names, not even on platforms where the file
system would alow it.

5. In generd, it is advisable to restrict the characters used in the fragment file
names to be a-z, A-z, 0-9, and ‘' '. If other characters are used in the
fragment file names, there is a danger, that the supporting tools (such as
linkers) will complain.

The symptom on breaking rule 1 or 2 is typically a “Mul ti pl e defined synbol
MLFOO' and the like, in the linking phase, the symptom for breaking rule 3 is that the
compiler / Vahalla[MIA 92-12] / Sif [MIA 90-11] may become confused. Finally the
symptom on breaking rule 5 may be a complaint from the assembler about illegal
characters.

Except for rule 3, these restrictions only apply to the file names. The directories /
Folders containing the files, may be freely named.

Error Handling

/ Error Handling

BETA programs containing errors will cause error messages during compilation. Error
messages may appear during syntax analysis, static semantic analysis, code generation
and assembly/linking. In addition various forms of system errors may occur.

/7.1 Syntax Errors

A syntax error is given when there are errors in the context free syntax of the BETA
program. These includes missing semicolons, non-matching brackets, etc. Such errors
are printed on the screen and may look as follows:

Parse errors
1 ORIG@ N ' ~beta/ basiclib/vl. 6/ betaenv'
2 --PROGRAM descri ptor--
S (# T (#4#8);
4 X: [100) @nteger;
kkkkkkrkhkikhkkhkkx*x A
Expected synbols: >= nod < <= = %<>>->* 1] div + /
xor or and
File "syntaxerror.bet"; Line 4
S (# T (#4#8);
4 X: [100) @nteger;
5 do (for i: X range repeat
6 3->X[i];
7 if)
kkkkkkkx AN

Expected synbols: NAME _KONST_ _STRING_ none not @@

restart leave ; (# % & (this + inner for tos suspend
File "syntaxerror.bet"; Line 7

HHHFHFHHH

The error message shows that there are syntax errorsin lines 4 and 7. In line 4 the ar-
row(”) points at the place where an illegal symbol is met. The compiler gives a list of
acceptable symbols. In this case) should have been a]. Inline 7, thei f should have
been afor.

7.2 Static Semantic Errors

Static semantic errors appear in situations where a name is used without being de-
clared, where a pattern name is used as an object, etc. Each error found is printed on
the screen with a small indication of the context. After the checking, a pretty print of

26

BETA Compiler Reference Manual

the fragment including a precise indication of the error is generated on the | st -file (see
section 4)6

In appendix A, the semantic error messages that may be reported by the compiler are
listed.

7.3 Check for bound SLOTs.

In genera the compiler will only attempt to link, if a PROGRAM dot has been found
in the dependency graph.

If SLOTs of category DoPart Or Descri ptor in the dependency graph are not bound,
and linking would otherwise have happened, the compiler issues a warning, and does
not attempt to link.

Likewise, if two or more fragments tries to bind the same SLOT, the compiler will
give awarning.

7.4 Assembler and Linker Errors

Errors may also appear during assembling and linking. The following type of errors
may appear:

. The assembler/linker complains about a corrupt ..s or .o file This may
happen if the compilation/assembly has been interrupted for some reason
leaving an incomplete file. This can usuadly be handled by forcing a
recompilation of the corresponding BETA file. (Deletethe .. s and . o filesin
question)

. The linker may report errors such as "Undefined Reference’ or "Multiply
Defined Symbol"”. This may be due to violations of the restrictions mentioned in
section 6.

. The disk may run full during assembling or linking. Restart compilation after
having obtained more disk space.

See also section 6.6.

6 Some semantic errors may cause the compiler to fail without generating a pretty
print. There should however aways be an error indication on the screen. In case
the compiler fails during checking and it is not obvious for what reason, it is
possible to trace the checking of declarations and imperatives using the option - -
t raceCheck (see section 8). However, this may generate a large amount of output
on the screen. The compiler may aso fail during code generation. These errors may
be traced using option - - t raceCode. However, tracing errors in this way should
rarely be needed.

Error Handling 27

7.5 System Errors

Two kinds of system errors may appear: (1) Errors in the compiler, and (2) error sit-
uations in the operating systems. Most times a meaningful error message is given in
these situations, but due to the nature of these errorsthisis not always the case.

Compiler errorsshould bereported to Mjglner Informatics
ApS. Thiscan bedonein one of three ways:

1. Viaedectronic mail using the Internet address
support@mijolner.dk

2. By sending afax to Mjglner Informatics ApS at
+45 86 20 12 22

3. By issuing an ordinary mail to the address
Mjglner Informatics
Science Park Aarhus,
Gustav WiedsVeg 10
DK-8000 Arhus C
Denmark

Operating system errors are often due to local problems. Examples of such errors may
be: insufficient access to files, no more disc space, file server inaccessible, etc.

7.6 Run-time Errors

Run-time errors are errors in the program detected during its execution. In this case an
error message is given and a dump of the call stack of objects is generated on the file
f 0o. dunp if the program is named f oo.

Consider the following fragments (note that the name of the fragments are complete
UNIX file paths)

fusr/smth/nylib. bet:

ORIG N ' ~bet a/ basi cli b/vl. 6/ bet aenv'
--LIB: attributes--
[ibl: (# do I NNER #);
[ib2: libl
(# T: (# x: @nteger #);
R ~T
do (* &T[]->R[] *)
111->R x; (* R[] is NONE *)
| NNER
#)
[ib3: 1ib2(# do 'hello' ->putlLine #)

fusr/smth/runtineerr. bet:

28

BETA Compiler Reference Manual

.dump file

ORIA@ N ' ~bet al/ basi clib/vl. 6/ betaenv';
| NCLUDE ' nylib'

PROGRAM descriptor--

(# fool: (# do foo2 #),

foo2: (# do foo.foo3 #);
foo: @# foo3: (# do |lib3 #)#)

do fool

#)

Execution of this program on a sun4 machine will result in the following run-
timeerr. dunp file

Bet a execution aborted: Reference is none.

Call chain: (sun4)

item | ib3#<lib2#>libl# in /usr/smth/nylib
-- BETAENV-~ in ~betal/basiclib/vl. 6/ betaenv
item <foo3#> in /usr/smth/runtimeerr
-- foo# in /usr/smth/runtimeerr
item <foo2#> in /usr/smth/runtimeerr
-- PROGRAM ~ in /usr/smth/runtineerr
item <fool#> in /usr/smth/runtimeerr
-- PROGRAM ~ in /usr/smth/runtineerr
conp <PROGRAM ~> in /usr/smth/runtineerr

basi ¢ component in ~betal/basiclib/vl. 6/betaenv

The information inr unt i meer r . dunp has the following meaning:

The activation stack of invoked objects is shown. Each element of the stack is
shown as two lines. The object and its statically enclosing object.

For each object, the name of the file where it is defined is also shown.

From the above file it can be seen that the error occurred in an instance of
l'i b3. The description |i b3#<I i b2#>1i bl shows the superpattern chain of
l'i b3. The braces (<,>) indicates that the error occurred in the do-part of | i b2.

The symbol immediately after the name of an object shows its kind. The differ-
ent possibilities are:

Thedescriptor belongsto apattern, e9. P: (#...#)

l

Singular named descriptor, eg. X2 @# ... #)
* Singular unnamed descriptor,eq. ...; (# ... #);...
Descriptor SLOT.

Notice that, e.g. the PROGRAM SLOT is marked with both - and ~ since a de-
scriptor SLOT gives rise to a singular named descriptor.

It can be seen that 1 i b3 was cdled from f 003, which was called from f 002,

which was caled from f oo1, etc. The bottom most objects are defined in be-
t aenv

For each active object its enclosing object is shown, on aline starting with “- -~
The encloser of e.g. foo3 isfoo. The rest of the objects have enclosers, which
aredots.

For each object, the corresponding fragment file is shown. The pattern 1i b3 is

defined in the file
fusr/smth/nylib

Compiler Arguments

8 Compiler Arguments

When activating the BETA compiler, the following command line arguments are valid.

Most options have both a"- - <name>" and a"- - no<name>" form: Activate the option
using "- - <name>"; deactivate the option using "- - no<name>". In the listing below, the

activating form is shown first (and explained), if both exist for an option.

. . . Shortcut
For most options, there is a short (one-character) option for the non-default form. orietts

One-character options alow multiple option characters after the "- " (e.g. - qwd").

. Case
Long optlon names are case Insensitive, whereas one-character optlons are Case gensitiveness

sengtive.
A star (*) in the listings below indicates the default option.
--help -h Show abrief overview of the legal command line options

--repeat -r Run compiler in repeating mode. After having translated
the fragments specified in the argument list, if in repeating
mode, the compiler prompts the user for the name of
another fragment to be trandlated:

Type Fragnent File Nane:

Thisinteraction is continued until the compiler is explicitly
killed, e.g. by sending acont r ol - C or the end-of-stream
character to the compiler process.

The compiler may aso be given additional options at the
prompt, e.g. you may type- - nol i nk foo. bet to translate
f 0o. bet , but avoid linking of it.

If no new fragments are specified at the prompt, the
compiler will retrandate the last fragment it has trandlated
when <RETURN> it typed.

By using repeating mode, the compiler saves time when
analyzing dependencies between fragments, since fragments
are saved in memory between compilations.

--noRepeat *

--link * Link program

--noLink -X

--static Use static linking

--dynamic * Usedynamic linking

--list * Generate .Ist file, if semantic errors

--noList -|

30

BETA Compiler Reference Manual

--debug

--noDebug

--code
--noCode

--checkQua
--noCheckQua

--checkNone
--noCheckNone

--checklndex
--noCheck| ndex

--warn
--noWarn

--warnQua
--noWarnQua

--verbose
--quiet
--mute

--traceCheck
--noTraceCheck

--traceCode
--noTraceCode

--out

--preserve
--noPreserve

--job
--noJob

--switch

Generate debug info to enable debugging. Thisis used by
the BETA debugger—Vahala. On the other hand, using -
- noDebug forces the linker to strip the application , which
reduces the size of the executable files by 30-50%, and also
speeds up linking time. The actual machinelevel code
generated for the BETA program isidentical with or
without debug info.

Generate code

Generate runtime checks for QUA errors

Generate runtime checks for NONE references

Generate runtime checks for repetition index out of range

Generate warnings

Generate warnings about runtime QUA checks

Verbose compiler info output
Only compiler info on parse, check, etc.
No compiler info output

Trace the compiler during semantic checking

Trace the compiler during code generation

Specify name to use for resulting executable image

Preserve generated . j ob and assembly files

Executethe. . j ob file

Set/unset one or more compiler switches. The - s option
makes it possible to define one or more so-called compiler
switches. Switches are specified as integers on the
command line after - - swi t ch or - s, possibly terminated by
a0 (zero). Switches are used for a number of purposes:
parameterization of the compiler, debugging, testing etc.
The most interesting switches with respect to

Compiler Arguments

31

--linkOpts

fragmentl ... fragmentN

parameterization are listed below; notice that some of them
may also be set as ordinary options.

5. Suppress code generation. l.e. only semantic

checking is performed. This switch will also set switch
33. Same as -C.

6: Suppress linking. Same as -x.

14: Do not generate run-time checks for NONE-
references. Same as -N

15: Do not generate run-time checks for index-errors.
Same as-I.

18: Preserve assembly- and job-files. Same as -p.

19: Suppress notification of insertion of run-time
checks for qudification errors in reference assignment.
Same as-q.

21: Continue trand ation after semantic errors.
23: Preserve job-files.

32: Do not produce .Ist file in case of semantic errors.
Same as-I.

33: Do not execute .job file. Same as -j.

37: Do not generate debugging information. Same as -
d.

42: Do not generate run-time checks for qualification
errors in reference assignment. Same as -Q.

191 Print each descriptor just before it is checked.
192: Print each declaration just before it is checked.
193: Print each imperative just before it is checked.

308: Print each declaration just before code is generat-
ed for it.

311: Print each imperative just before code is genera-
ted for it.

Specify text string to be appended to the link directive

Arguments other than the above mentioned options are
treated as the names of fragments to be translated by the
compiler. It should be noted that for an option to take
effect in the trandation of afragment whose name is passed
as argument to the compiler, the option must appear before
the fragment name in the argument list.

32

BETA Compiler Reference Manual

Generic
properties

Configurations

9 Machine Dependent
Configurations

In this section, the terminology of the fragment system is used freely without further
explanation. The fragment system has been extended to support generic software de-
scriptions. The same generic software description may be used to instantiate configu-
rations for different machines. The term “machine” covers a CPU and an operating
system running on that CPU.

The concept of generic software descriptions is implemented by means of special
“generic properties’. Normally, a property has exactly one associated set of values. A
generic property has a number of such value-sets. The idea is that the programmer can
gpecify a vaue-set for each machine. These vaue-sets are the ones termed
<Machi neSpeci fi cati onLi st > in the formal specification of propertiesin section 6.3
and 6.5. As an example:
OBJFI LE sun4s "xlib.o

i nux "zlib.o

default "Wib. o
OBJFILE is the name of a generic property. The OBJFILE property is used for inclu-
sion in the linkage phase of externa object files, e.g. produced by a C compiler. A
generic property specification should be seen as a kind of “switch/case” statement. The
semantics of the above OBJFILE property is that when instantiating a configuration
for the machine sun4s, the value xlib. o is chosen. This means that the object file
xl'i b. o isincluded when linking a configuration for a sun4s machine. Similarly for
| i nux machines. The def aul t literal indicates that when instantiating configurations
for machines other than sun4s or | i nux , the object filewl i b. o should be included.

Besides OBJFILE, there are the following generic propertiess MAKE, BETARUN,
LIBFILE, LINKOPT, RESOURCE, and MDBODY . For al of these properties, the
relation between machine symbols and value-sets are specified in the same manner as
described above. To be precise, the following agorithm is used when instantiating a
configuration for a specific machine type, say A.

1. If A matches any of the machine symbols of the generic property, the value-set
associated with that particular machine symbol is chosen. If no match is possi-
ble, proceed with step 2.

2. If the symbol def aul t is specified as machine symbol, the associated val ue-set
is chosen. If not, awarning isissued.

The only distinction between the different generic propertiesis in the interpretation of
the elements of the chosen value-set. For OBJFILE, the value-set is interpreted as
external object filess MAKE is meant to point out a number of so-called makefiles.
These are executed just prior to the linkage phase. A makefile is often used to keep the
included object files up to date with respect to the source files from which they
originate. For BETARUN, the value-sets must contain exactly one element, and this

Machine Dependent Configurations

33

element denotes the runtime system to be used in the resulting configuration. With re-
spect to LIBFILE, the elements of the value-sets are interpreted as external libraries,
e.g. the X11 library, to be included in the linkage phase. The chosen value-set in an
MDBODY property denotes ordinary BETA fragments to be treated as if they had
been specified by means of a norma BODY property. The MDBODY property may
thus be used to specify that a fragment appears in a number of machine dependent
variants. Finaly, the LINKOPT property denotes arguments to append to the link-di-
rective in the linking phase of compilations. Finaly, the RESOURCE property is used

(only on PC and Macintosh) to specify a set of resource files to add to the application.

Configurations are instantiated by the compiler, by default for the machine on which tCi:(;(;ss-compila-

the compilation takes place. It is possible to instantiate a configuration for a machine
other than the one, on which the compilation is performed (“cross-compilation”). This
requires extensions to the Mjglner System; please contact Mjalner Informaticsif thisis
needed.

9.1 BUILD Property

The BUILD property unifies the OBJFILE and MAKE properties. The BUILD
property is used to specify rules for keeping external (i.e. non-BETA) sources up to
date, and to include the external filesin the link directive.

Syntax:
BUI LD <nmachi ne> ' <obj ectfil e>'
'<depl>' '<dep2>' ... '<depN>'
' <commrand>' ;
where
<machi ne> is the target machine specification (see MDBODY description)

<obj ectfile> istheexterna objectfile to include and possibly maintain. A $$
in this specification is expanded to the machine type. This is
unlike other properties, like MDBODY, where a single $ is
expanded to the machine type. If a backslash (\) or a newline
must be included literally in the specification, it must be quoted

with backdash.
<depl>
<dep2>
<depN> Are source files, that the <obj ect fi | e> depends on.
<conmand> is a command (sequence) that is executed by the compiler asit

is, except for the following substitutions:

$$ isexpanded to the machine type, as explained above.
$0 is expanded to <obj ect fi | e>

$1 isexpanded to <dep1>

34

BETA Compiler Reference Manual

$2 isexpanded to <dep2>

$Nis expanded to <depN>

If abackdlash (\) or a newline must be included literaly in the
commands, it must be quoted with backs ash.

Functionality

The <objectfile> is included in the link directive. The compiler will execute
<comands> if and only if

a <objectfil e>doesnot exist
or

b. any of the files <dep1>, <dep2>, ... <depN> are newer than an existing
<objectfil e>

The compiler will execute <commands> from the directory in which the file containing
the BUI LD property resides.

Example

If the object file foo.0 (foo.obj) is to be generated from the foo.c file in the external
directory, but aso depends on the foo.h file in the external directory, you could specify

thisas:
BU LD nti '"$$/fo0.0bj"' 'external/foo.c' 'external/foo.h
"cl -c $1 -Fo$0 -nologo -w -2 -Zd -Zp4'
ppcmac ' :$$:foo0.0bj' ':external:foo.c' ':external:foo.h'
"MC-D MAC -0 $0 $1'
default '$%$/foo0.0' "external /foo.c' 'external/foo.h'
"$CC -0 $1 $2';

Notice, that regular environment variables may be used in the <commands>
specification, e.g. in the default (UNIX) specification, the variable CC are used (on
UNIX, thisis aways set to an appropriate value in the job-file).

More than one build pr. fragment

In general, more than one build pr. fragment will not work. The reason is that the
meta-programming system combines al build directives into one directive (property).

This means that:
BU LD sun4d4s 'ccl' default 'cc2';
BU LD sun4s 'cc3' default 'cc4'

means the same as:
BU LD sun4d4s 'ccl' default 'cc2' sund4s 'cc3' default 'cc4'

BUILD 'executes all entries for a given plaform. This means that the 2 sun4s entries
will be executed for sunds. The 2 default entries will be executed for al other
platforms.

If the following two build entries are used:
BU LD sun4ds 'ccl' default 'cc2';
BU LD sgi 'cc3' default 'cc4

ONLY ccl will be executed for sunds and ONLY cc3 for sgi, and the 2 default entries
for al other platforms. This is probably not what is intedended: For sun4s you would
expect ccl and cc4 to be executed and sgi, cc2 and cc3.

Machine Dependent Configurations

35

36

BETA Compiler Reference Manual

10 Code Generation for Mul-
tiple Machines

When instantiating a configuration for some machine, a number of object files are
produced by the compiler - one for each fragment contributing to the configuration.
On most architectures, the compiler actually generates symbolic assembly code, and
this code is turned into object files by means of the native assembler. The native linker
is used to produce an executable image for the machine in question on basis of these
object files.

10.1Placement of Object Code

Different machines normally use different formats for object files. The files containing
object code and symbolic assembly code are aways placed in a sub-directory relative
to the directory containing the common source code. A sub-directory is created for
each special object file format. Currently the following subdirectories are used:

sun4s SUN-4 (SPARC) running Solaris
hpux9pa HP 9000/700 running HP-UX

sgi Silicon Graphics (MIPS) running IRIX
[i nux PC running Linux
nti PC running Windows NT or Windows 95

ppcnac Power Macintosh

For executable images to be activated “directly”, without prefixing their name with the
name of a sub-directory, executable images are placed in the same directory as the
common source files. It is however possible to control the naming of the executable
images. Thisis done by means of the -0 option to the compiler.

10.2Macro Expansion

Consider this use of the MDBODY property:
MDBODY default './$/betaenvbody_$'

The symbol $ is expanded by the compiler. It is expanded to the name of the subdirec-
tory into which the generated code will be placed. That is, if code is generated for a
ppcmac (Macintosh) machine, the above expands to ./ ppcrmac/ bet aenvbody_nac.

Code Generation for Multiple Machines

37

This may be a convenient short-hand, but may also make is possible to instantiate
configurations for new machines without changing the origina source code.

Bibliography

[KLMM 94]

[MMN93]

[MIA 90-4]
[MIA 90-6]
[MIA 90-§]

[MIA 90-11]

[MIA 92-12]

[MIA 94-24]

[MIA 94-34]

J. L. Knudsen, M. Léfgren, O. L. Madsen, B. Magnusson
(eds.): Object-Oriented Environments — The Mjglner Ap-
proach, Prentice Hall, 1994, ISBN 0-13-009291-6.

O. L. Madsen, B. Mdller-Pedersen, K. Nygaard: Object-
Oriented Programming in the BETA Programming Lan-
guage, Addison-Wesley, 1993, ISBN 0-201-62430-3

Mj@ner Informatics. The Mjglner System: Using BETA on
UNIX Systems, Mjgalner Informatics Report MIA 90-4.

Mj@ner Informatics. The Mjglner System: Using BETA on
the Macintosh, Mjainer Informatics Report MIA 90-6.

Mj@ner Informatics: The Mjginer System: Basic Libraries,
Reference Manual, Mjglner Informatics Report MIA 90-8

Mjalner Informatics: Sf — A Hyper Structure Editor, Tu-
torial and Reference Manual Mjginer Informatics Report
MIA 90-11.

Mj@ner Informatics. The Mjglner System — The BETA
Source-level Debugger — Usears's Guide, Mjaginer
Informatics Report MIA 92-12

Mj@ner Informatics. The Mjglner System — The Mjg@iner

System Tutorial Mjaner port MIA 94-24.
Mjalner Informatics. The Mjglner System — Using on
Windows 95 or Windows NT Mjalner port
MIA 94-34.

39

Appendix A. Semantic Errors

and Warnings

A.1 Semantic Errors

The following is a list of semantic error messages that may be reported by the com-
piler. See aso section 7.2.

1

© o N O~ WD

=
©

11.
12.
13.
14.
15.
16.
17.

18.
19.

Name is declared more than once

Name is not declared

Attribute is not declared

A pattern is expected here

An item is expected here

A repetition is expected here

A simple evaluation cannot be assigned

The lists have different lengths

The lists have different lengths

In"leave P' or " restart P', "P" must be an enclosing label

or enclosing pattern

Illegal assignment/comparison of value, reference or repetition

Only asingle nameis alowed here

Attempt to bind V which isnot virtual (V ::<T)

InV ::< T, T does not have a correct qualification

An object is expected here

A basic pattern cannot be used as a super-pattern

A virtual pattern or a pattern defined as a descriptor slot cannot

be used as super-pattern

A string of length 1isachar - NOT atext

Illegal recursion in the definition of a pattern.

One of the following type of errors have occurred:

(1) There may be acirclein the super-pattern chain:
A:C#..#),B:A#..#),C:BM#... %

(2) The pattern may direct or indirectly contain a static instance
of itself:

41

42

BETA Compiler Reference Manual

20.
21
22
23.
27.
28.
29.
30.
31.
32.
33.

35.
36.
37.
38.
39.
40.
41.
42.
43.

45,

46.

47.

48.

49,

50.

51.

52.
53.

55.

P.(#.., X:@P,..do..#

(3) The pattern may directly or indirectly contain an inserted
instance of itself:

P.(#..do..;P#..4#),..48) or

A:#..P.#R M ..do..;RP#..4#),; .. 84 ... 8%

Incompatible qualifications in assignment/comparison

Only simple values or references may be compared

Only simple values may appear in unary expressions

Fatal error: virtual binding not found

The descriptor is both used as item and component

Static size of descriptor islarger than 32760 bytes

Illegal recursion in object-description

Illegal assignment to constant value/reference or repetition

Only pattern-declarations may appear in afragment of category 'attributes
A virtual qualification must be a pattern name or a descriptor

A virtual pattern or descriptor-slot cannot be used as a component
An enter/exit parameter of an "external" must be one of:
integer,char,real ,integer-repetitions,char-repetition,

subpattern of cstruct,variable-subpattern of external

An "external" can only have one exit parameter

A sub-pattern of "external" cannot be used as super-pattern

The DO-part of an "external" should be empty

A repetition/for-imp range must be an integer, char or boolean evaluation
A simple pattern cannot be used here

Unknown inline primitive

The superpattern of this descriptor has no INNER

Attempt to bind avirtual in a descriptor with no superpattern

The qualification of avariable pattern must be a pattern

A pattern-, virtual-, variable-pattern, or reference is expected here
A repetition name is expected here

In "this(P)" or "inner P*, P must be the name of an enclosing pattern
An unexpanded nonterminal must be a SLOT

A super-pattern must be a simple pattern or asimple

pattern attribute of a static object

A simple pattern or virtual pattern cannot be assigned

astructure reference

A structure reference can only be assighed to/compared

with another structure reference

Only integer,char,boolean, real objects and references can be
compared in an if-imperative

Rename declaration has NOT been implemented

Syntax error in number

Name not declared. Thereis no corresponding virtual declaration
A pattern with a do-part slot cannot be used as a super-pattern

Semantic Errors and Warnings 43

56.
57.

58.

59.

60.

61.

62.
63.

65.
66.

67.

68.

69.

70.

80.

81.

82.

83.

85.

87.

88.
89.

90.
91.
92.
93.

94.

The QUA construct has not been implemented
A basic pattern like integer, real, char, boolean, false, and true
cannot be used as a super-pattern
In alist being assigned to and being assigned from asin
...>(EL1,E2,...En)-> ...
the elements may not be patterns
The enter-parameters of an external call must be supplied
The left-side of the assignment/comparison has no (exit-)list
or the right-side has no (enter-)list
An element of the |eft-side/right-side of the assignment/comparison
has no (exit-)list or (enter-)list
The Left-side of the assignment/comparison has no (exit-)list
An element of the left-side of the assignment/comparison has no (exit-)list
The right-side of the assignment/comparison has no (enter-)list
An element of the right-side of the assignment/comparison has no (enter-)list
A simple value (integer,boolean,char,real) cannot be assigned/compared
to/with alist
An object with no exit-list is being assigned/compared to a reference.
The left-side may be missing a"[]" or the right-side may have a superfluous "[]"
An element with no exit-list in the left-side list is being
assigned/compared to a reference on the right-side
The left-side may be missing a"[]" or the right-side may have a superfluous "[]"
A reference is being assigned/compared to an object with no enter-list
The right-side may be missing a"[]" or the |eft-side may have a superfluous "[]"
A reference is being assigned/compared to an element on the right-side with no enter-list
The right-side may be missing a"[]" or the |eft-side may have a superfluous "[]"
"inner P" isonly legal in the do-part of the pattern "P"
In a computed-remote, "(EV).X","EV" cannot be an evaluation-list
In a computed-remote, "(EV).X", "EV" must have one exit-element,
which must be areference
In a computed-remote, "(EV).X", "EV" isnot alegal evaluation
"Extend" and "new" must have an enter-parameter
"leave P" or "restart P', where "P" is a pattern,
isonly lega in the do-part of "P"
A repetition index must be an integer-evaluation
The base of this number istoo large
A subpattern of "data' may only have declarations of the forms:
"X:AT" where"T" is subpattern of "data’, or
"X: @T" where"T" isinteger,shortint,char,boolean,real
or subpattern of "data’
A subpattern of "data" may not have a do-part
A boolean evaluation is expected here
Primitive operation appears in wrong context
It is not possible to obtain a structure reference for a basic pattern
like integer, real, char, boolean, false, and true or instances of these
A virtual pattern cannot be bound to a basic pattern like

BETA Compiler Reference Manual

integer, real, char, boolean, false, and true

96. In "X:"<AD>.P',"Y: @<AD>.P', "<AD>" cannot be:
arepetition element asin "R[e].P"
a computed remote asin"(R).P"

It must be a static object
98. A sub-pattern of "externa" must be defined as a pattern
100. In"V < T","T" must be a non-virtual pattern
101. In"V :: T","T" must be a pattern
102. A cycle has been detected in the super-chain of the virtual/final binding
103. Incompatible types of binary operator
104. Incompatible left- and right-side of assignment
105. Illegal assignment to constant, literal or expression
107. A virtual cannot be bound to aslot
108. lllega use of the "&"-operator
110. Illegal recursion in exit list:

apattern isreferred directly or indirectly in its own exit list
111. Illegal recursion in enter list:

apattern isreferred directly or indirectly in its own enter list
112. Externa entry point has a blank- or control character
113. Thereisacirclein the super-pattern chain
114. lllegal operator """

A.2 Semantic Warnings

24. A run-time qualification check will be generated here
25. Repetition of static components is not implemented
26. Repetition of non simple patternsis not implemented
86. ‘"leaveP' and "restart P', where"P" is a pattern,

are currently not allowed in internal descriptors of "P"
95. In "X:*R.P","Y: @R.P", or "Z: @R.P(#...#),

"R" should NOT be a dynamic reference!

For "X: "R.P", consider using "X: AT.P",

where "T" isthe pattern qualifying "R" ("R: *T").

A future release may consider this to be a semantic error.
97. An"inner" in asingular object will never be executed
99. Fina binding to avirtual pattern is anew facility

in this version of the compiler.

Please report any problems to support@mijolner.dk
106. Assignment/comparison between boolean and integer
109. Text hasanull-char. All chars after the null-char are ignored

115. Use of "@@" in combination with object executions in external calls is insecure

Appendix B. The BETA
Grammar

This appendix contains a listing of a grammar describing the BETA language accepted
by the compiler. The grammar formalism used in the Mjginer System is a variant of
context free grammars. A structured context free grammar is a context free grammar
(CFG) where the rules (productions) satisfy a certain structure. See [MIA90-8] for a
description of structured context free grammars.

<Bet aFor n»>

<Descri pt or For n»
<Attri but esFornp :
<(bj ect Descri ptor> ::
<Mai nPart > :
<Attri butes>
<PrefixOpt >

<Prefix> :

<AttributeDecl Opt> ::
<Attri but eDecl > :

<Pat t er nDecl >

<Si npl eDecl >
<Repetiti onDecl >
<Vi rt ual Decl >

<Bi ndi ngDecl >

<Fi nal Decl >

<Vari abl ePatt er n>
<ref erenceSpecificatio

i ninp————=1~+1uini—

<Staticltenr

<Dynani cl t enr

<St at i cConponent >
<Dynam cConponent > : :
<Cbj ect Speci fi cati on>

<| ndex>

<Naned| ndex>
<ActionPart >
<Ent er Part Opt >
<DoPart Opt >
<Exi t Part Opt >
<Ent er Part >
<DoPart >

-1 11—

n> :

<Descri pt or For nm»
<Attri but esForne»

<(bj ect Descri pt or >
<Attributes>

<Prefi xOpt > <Mai nPart >

(e

<AttributebDecl Opt> ';"
<Prefix>

<Attri but eDenot ati on>
<Attri but eDecl >

<Patt er nDecl >

<Si nmpl eDecl >
<RepetitionDecl >

<Vi rt ual Decl >

<Bi ndi ngDecl >

<Attributes> <ActionPart> '#)'

<ref erenceSpeci fi cati on>

<Fi nal Decl

<Names> ':' <bjectDescriptor>

<Nanes> ':' <referenceSpecification>

<Names> ':' '[' <index> ']’

<Nanes> ':' '<' <QbjectSpecification>

<Names> ':' ':' '<' <QbjectSpecification>

<Nanes> ':' ':' <Qbject Specification>
<Attri but eDenot ati on>

I##I
H
|

|

|

|
@ <

AV |||

<Staticltenr
<Dynanmi cl t enr

<St ati cConponent >
<Dynani cConponent >
<Vari abl ePat t er n>

' hj ect Speci fication>
"N <Attribut eDenotation>
' <Cbj ect Speci fi cati on>
' <Attri but eDenot ati on>

<(bj ect Descri pt or>

<Attri but eDenot ati on>

<Si nmpl el ndex>
<Nared| ndex>

<NaneDcl > ':' <Eval uati on>

<Ent er Part Qpt > <DoPart Opt > <Exi t Part Opt >
<Ent er Part >

<DoPart >

<ExitPart>

"enter' <Eval uation>

[dol

<l nperatives>

45

46

BETA Compiler Reference Manual

<Exi t Part >

<l nperatives>
<I mpOpt >

<l mp>

<Label | edl np>
<For | mp>
I(I

<Ceneral | fI mp>

"for' <
<Si npl el f | np>
] (I
<Leavel mp>
<Restart | nmp>
<l nner | nmp>
<NareApl Opt >
<Suspendl| np>
<Al ternatives>
<Al ternative>
<Sel ecti ons>
<Sel ecti on>
<CaseSel ecti on>
<El sePart Opt >
<El sePart >
<Eval uati ons>
<Eval uati on>

|if|

<Assi gnnent Eval uati o
<Transacti on>

<(bj ect Eval uati on> :

<Ref er ence>

<Dynani cQbj ect Gener ati on>

<lInsertedltenr

<(bj ect Denot ati on>
<(bj ect Ref erence>
<StructureReference>
<Bval Li st >

<Dynani cl t enzener at i on> :
<Dynami cConponent Gener ati on> :

<Attri but eDenot ati on>

<Renot e>

<Conput edRenot e>
<l ndexed>
<Thi snj ect >
<Expr essi on>
<Rel at i onal Exp>

<Si npl eExp>
<AddExp>

<E

— VT 4+ N+ 0 A+ 0

N+

n

"if' <Eval uation> <Al ternatives> <El sePart Opt > "if"’

val uati on> 'then'

"exit' <Eval uation>
<ImpQpt > " ;"
<l mp>
<Label | edl np>
<For | mp>

<Si npl el f | np>
<Ceneral | fI nmp>
<Leavel mp>
<Restart | nmp>
<l nner | mp>
<Suspendl nmp>
<Eval uat i on>
<NaneDcl > ':' <l nmp>

dex> 'repeat' <lnperatives> 'for'

e
e

<l nperatives> <El sePartCpt> "if"
"l eave' <NaneApl >
"restart' <NaneApl >
"inner' <NaneApl Opt>
<NaneApl >

' suspend’

<Al ternative>

<Sel ections> 'then'
<Sel ecti on>
<CaseSel ecti on>

"/l <eval uation>
<El sePart >

"el se' <lnperatives>
<Bval uation> ','

<Expr essi on>

<Assi gnnent Eval uati on>
<Eval uation> '->
<(bj ect Eval uati on>

| <Obj ect Ref erence>
<Eval Li st >

<St ruct ur eRef erence>
<Insertedltenr

<ref erence>

<(bj ect Denot ati on>
<Dynam cObj ect Gener ati on>
<Dynami cl t emGener at i on>
<Dynami cConponent Gener at i on>
<(bj ect Descri pt or>
<Attri but eDenot ati on>
<Reference> '[]'
<AttributeDenotation> '##

"(' <Evaluations> ')’

'"& <nject Specification>

"& '|' <ObjectSpecification>

<NaneApl >
<Renot e>
<Conput edRenot e>
<l ndexed>
<Thi snj ect >
<AttributeDenotation> '.'
'"(' <Evaluations> ')" '.'
<AttributeDenotation> '['

<l nperatives>

<Transacti on>

<NaneApl >
<NaneApl >
<Eval uation> "]’

"this' '(' <NanmeApl> ')’

<Rel ati onal Exp> | <Si npl eExp>

<EqExp> | <LtExp> | <LeExp>

<@ Exp> | <CGeExp> | <NeExp>

<AddExp> | <SignedTerne> | <Terne

<Pl usExp> | <M nusExp> | <O Exp> | <Xor Exp>

The BETA Grammar 47

<Si gnedTer n <unar yPl usExp> | <unaryM nusexp>

<Ter n» <Mul Exp> | <Factor>

<Mul Exp> <Ti mesExp> | <Real Di vExp> | <I nt Di vExp>
<MbdExp> | <AndExp>

<EqExp> <Qper andl: Si npl eExp> ' =" <QOperand2: Si npl eExp>

<Lt Exp> <Qper andl: Si npl eExp> ' <' <QOperand2: Si npl eExp>

<LeExp> <Qper andl: Si mpl eExp> ' <=' <Operand2: Si npl eExp>

<& Exp> <Qper andl: Si npl eExp> ' >' <QOperand2: Si npl eExp>

<CGeExp> <Qper andl: Si npl eExp> ' >=' <Operand2: Si npl eExp>

<NeExp> <Qper andl: Si mpl eExp> ' <>' <Operand2: Si npl eExp>

<Pl usExp> <Si mpl eExp> '+ <Termp

<M nusExp> <Si npl eExp> ' -' <Ternp

<O Exp> <Si npl eExp> 'or' <Ternw

<Xor Exp> <Si npl eExp> ' xor' <Terne

<unar yPl usExp> "+ <Ternp

<unar yM nusExp> - <Ternp

<Ti mesExp> <Terne '*' <Factor>
<Real Di vExp> <Termp '/' <Factor>
<| nt Di vExp> <Termp 'div' <Factor>
<MbdExp> <Ternt 'nod' <Factor>
<AndExp> <Termp 'and' <Factor>
<Fact or > <Text Const >

<I nt eger Const >

<Not Exp>

<NoneExp>

<RepetitionSlice>
<Transacti on>
<Attri but eDenot ati on>

<RepetitionSlice>

"[' <Low: Eval uation> ':"' <Hi gh: Eval uation> "]’
<not Exp> = 'not' <factor>
<noneExp> = 'none'
<Nanes> + <NaneDcl > ',
<NameDcl > = <NaneDecl >
<NaneApl > = <NaneAppl >
<Si npl eEntry> ? <Text Const >
<Text Const > = <String>
<I nt eger Const > = <Const >

<Si nmpl el ndex> <Eval uati on>

Appendix C. New Features In
v5.3

The following new features have been implemented in version 5.3 of the compiler,
compared to version 5.1.

C.1 New Platforms

Thefollowing new platforms area available:

. The compilers for Windows NT and Windows 95 now generates binary code
directly.

. A version for the PowerPC based Macintosh generating binary code is now
available.

C2. The BUILD Property

See section 9.1

49

Index

B

backslash, 12; 45
backspace, 12; 45
basiclib, 3

BETA language, 6
BETALIB, 4
BETALIB, 17
BETARUN, 22; 31
BETARUN, 18
big-endian, 5
BODY, 22
BODY, 16; 17; 32

..db, 5
.job, 5
.55
.ast, 5
.astL, 5
Ast, 5
.0,5

<> 6

C

C3

C compiler, 31

call stack, 26

carriage return, 12; 45

, 45

command line arguments, 28
Compatibility, 7; 8
compiler info output, 29
compiler switches, 29
concurrency, 10
Configurations, 31
context free grammars, 41
context free syntax, 24
cross-compilation, 32

abstract syntax tree, 5

activation stack, 27
and .i.rea, 6

ASCII, 6
assembling, 25
assembly code, 5; 34

assembly language, 3

attributes, 13
attributes, 20

D

data structures, 19
debug info, 29

,29

descriptor, 13; 20; 25; 45
Deviations, 6
deviations, 1

disk space, 25

div, 6

DoPart, 13

DoPart, 25; 45
DoPart dot, 20
double quote, 12; 45
dynamic item, 9
dynamic linking, 28

BETA Compiler Reference Manual

E M
extension, 17 MachineSpecificationList, 17; 18; 22; 31
External library, 18 Macro Expansion, 34
MAKE, 22; 31
MAKE, 18; 31
F MDBODY, 22; 31
MDBODY, 17; 31; 32
mod, 6
;?I‘I:a?ne, 17 modularization, 13

Modularization of Data Structures, 19

File Name Restrictions, 23 Multiply Defined Symbol, 25; 45

Files Generated by the Compiler, 5
final binding, 9

formal syntax of the BETA fragment-system, 22 N

formfeed, 12; 45
fragment, 13

Fragment Denotations, 17
fragment system, 2
fragments, 30

newline, 12; 45
NONE references, 29

G

grammar, 41

H

horizontal tab, 12; 45

If, 12
implementation, 19
INCLUDE, 16; 22
INCLUDE, 17
incomplete file, 25
INNER, 20

INNER A, 21
Inserted components,, 9
inserted item, 10
Inserted items, 9
integer, 6

interface, 13; 19

, 45

O

object code, 5
object file, 18
object files, 34
objectDescriptor, 13
OBJFILE, 22; 31
OBJFILE, 18

octal number, 12; 45
OFF, 22

OFF, 18

ON, 22

ON, 18

ORIGIN, 16; 22
ORIGIN, 17

P

PowerPC, 45
Private, 16
properties, 16

L

label, 10

labelled compound imperative, 9

leave, 10

LIBFILE, 18; 22; 31
library, 3
linker-directive, 18
linking, 25
LINKOPT, 18; 22; 31
LINKOPT, 32
little-endian, 5

Ist-file, 25

Q

QUA checks, 29
question mark, 12; 45

R

real, 6

recursion, 9
repeating mode, 4; 28
RESOURCE, 22; 32
RESOURCE, 18
restart, 10
restrictions, 1; 23
result type, 6; 7; 8

runtime checks for QUA errors, 29

Run-time errors, 26
run-time system, 18

Index

S U

semantic error messages, 25; 37 Undefined Reference, 25; 45
Semantic Errors, 37
separate compilation, 13

Short-circuit Boolean Expressions, 12 V

, 45
Simplelf, 12

; ' Valhalla, 5; 29
single quote, 12; 45 variant %ontrol 13
A vertical tab, 12; 45
special characters, 11; 45 Virtual superpatterns, 9
static linking, 28

Static Semantic Errors, 24 W
statically enclosing object, 27
string literal, 11
string literals, 11; 45 warnings, 29
struc, 12; 45
structured context free grammar, 41

Syntax Errors, 24 X
system errors, 26

xor, 12

T

this, 10

trace, 25; 29 ~beta, 4

true, 6

