BETA Terminology

The following is a short description of important concepts used in the BETA
language. Please note, that these descriptions are deliberately informal. The precise
meanings of these terms must be found in [BETA93].

Contents

BETA TERMINOL OGY .ttt e e e e e e i 1
AV] =1 011N 1
DECLARATIONS AND OBJIECT DESCRIPTORS. . ..ttt ettt et et et et e e e e e e e 2
REFERENCE AT T RIBUT ES . ..ottt et e e e e e i, 3
PA T TERN AT T RIBUTES. ...ttt sttt e e e e e e e e e e s 4
IV PE R A T IV EES . ..ottt e e e e e e e e e e e 4
BLOCK STRUCTURE AND SCOPING ...ttt ettt te e et e e e e e e e e e e e e e e 7
NS e =T D O = I = 15T 7
INHERI T AN CE. ..ottt ettt e e e e e e e e e e e e e e e e e, 8
VI RTUA L PA T T ERN S ..ottt e e e i, 9
BETA TERMINOLOGY = INDE X ..ttt e e e e e e e e e e e e e e e et et e et e e et et et ettt et ettt 10

Modelling

Object-oriented programming
A program execution is viewed as a physical model or representation of part of
theworld. Objects on the computer model phenomenain the world; attributes of
objects model properties of phenomena.

Computer Real world
Object Phenomenon
Attribute Property
Pattern Concept

BETA program execution
A collection of objects. Some represent phenomena while others are ssmply part
of the implementation.

Object
Computer representation of areal world phenomenon. Its structure consists of
attributes and actions.

Pattern
Computer representation of areal world concept. Objects defined according to
the pattern are called instances or pattern defined objects: A patternistoits
instances as a concept is to its phenomena.

Sngular object
An object representing a singular "one-of-a-kind" phenomenon - the object is not
defined as an instance of some pattern.

Sate of an object
The combined values of its measurable properties at some point in time.

Measurable property
A property which has a measurable value. The value may vary over time.

Part object
An object which is part of another object. Part objects are used to model part or
aggregation hierarchies.

Separate object
An autonomous self-contained object which is not a part object.

Reference to separate object
An attribute which is areference to a separate object.

Kinds of actions
The actions of a phenomenon in areal world system often take place concurrently
(i.e. in paralel) with those of other phenomenain the system. A single phe-
nomenon normally alternates among its own actions.

Declarations and Object Descriptors

Declaration or attribute declaration
An association or binding of a name to some entity. The syntactic construct used
isthecolon":" asin, <nanme>: <entity>. For attributes of an object
descriptor, these are sometimes referred to as the attribute name and attribute de-
scription, respectively.

Pattern declaration
A declaration binding a pattern name to an object descriptor, describing the
structure of instances of the pattern. Pattern declarations serve as templates for
generating objects having a given structure.
Syntax is:

|<nane>: <obj ect - descri pt or > |

Sngular object declaration
Declaration of a singular object binding the object name to the singular object
description (an object descriptor).
Syntax is.
|<nanme>: @obj ect - descri pt or > |

Attribute reference
An occurrence of an attribute's name in an object descriptor.

Local attribute reference of a pattern
A reference from within a pattern's object descriptor to an attribute declared
inside the same object descriptor.

Global attribute reference
Any attribute reference which is not local.

Obj ect-descriptor
Used to describe the structure of objects and consists of a prefix part and amain
part.

Prefix part
Part of object descriptor used to specify the superpattern of the descriptor. The
prefix part is specified by a pattern name (or is empty).

Main part
Used to describe the additional structure of objects. Has the syntactic form(# ...
#) and consists of an attribute part and an action part.

Attribute part
Part of object descriptor used to describe the object's attributes. Consists of alist
of attribute declarations.

Action part
Part of object descriptor used to describe the actions to be performed when the
object is executed. Consists of three parts: enter-part, do-part, exit-part.

Enter part
Part of action part describing the enter parameters.

Do part
Part of action part consisting of alist of imperatives.

Exit part
Part of action part describing the exit parameters.

Program
An object descriptor that can be compiled and executed.

Reference Attributes

Reference attribute
An attribute that denotes an object. Reference attributes can be either static ref-
erences or dynamic references.

Satic reference
A reference attribute that constantly denotes the same object. Such objects are
often referred to as static objects. In cases where these objects are used to model
part (or aggregation) hierarchies, they are referred to as part objects, that is, they
are part of an enclosing object.

Satic reference declaration
Used to define static reference attributes.
Syntax is:
|<nanme>: @pt n. nane or obj . descri ptor> |

Dynamic reference
A reference attribute that denotes aobject. The referenceisvariablein that it
may denote different objects over time. Initially it denotes NONE which
represents "no object.”

Dynamic reference declaration
Used to define dynamic reference attributes.
Syntax is:

|<name>: “<pattern nane> |

Indexed collection of static / dynamic references
A repetition (or array) of object references referred to by a single name plus an
index. The size of arepetition A isdenoted by A. r ange. Al 1] refersto the
first element in the repetition, Al A. r ange] to the last.
Syntax is:
Nane: [eval] @ptn.name or obj.descriptor>
Nane: [eval] “<ptn.nane>
The size of the repetition can be dynamically extended by:

[<nunber> -> A extend |

Qualification or qualifying pattern
The pattern name appearing in areference attribute declaration. It restricts the set
of objects that can be denoted by the reference.

Remote access
Used to denote attributes within an enclosing object.
Syntax is:

[reference. attribute

Computed Remote access
Used to denote attributes within objects that are returned as the result of
evaluations.
Syntax is:

[(eval uation).attribute |

Pattern Attributes

Pattern reference
A reference attribute that denotes a pattern. The structure of the pattern is repre-
sented locally using a structure object. Such objects include a reference back to
the object of which the pattern is an attribute. Thisreferenceiscalled the origin
of the pattern.

Pattern reference declaration
Used to define a pattern.
Syntax is:

|<nane>: <obj ect descri ptor> |

Pattern variable declaration
Used to define pattern variable attributes. A pattern variable may denote different
patterns during the execution. The qualification restricts the set of patterns which
may be denoted by the pattern variable.
Syntax is.

|<nane>: ##<pattern nane> |

Class pattern
Generally, apattern used to model physical objects.

Procedure pattern
Generally, apattern used to model action sequences.

Function pattern
A procedure pattern which computes and returns avalue. Such patterns always
have an exit part.

Basic pattern
A pattern that is predefined within the BETA language. Examplesarei nt eger ,
r eal , bool ean, and char. Relevant operationsinclude: +, -, *, di v, nod,
and,or,not,true,fal se, =, <, >, <> <=,>=

| mperatives

Imperative
Describes an action; executing the imperative causes the action. Imperatives
appear in the do-part of an object. Kinds of imperatives include evaluations,
reference assignments, dynamic object creation, and control structures.

Evaluation imperative
An imperative that can cause state changes and may produce a value when
executed.

Value assignment
An evaluation imperative that sets (changes) the value of an attribute.
Syntax is:

3 -> | |

Reference assignment
An imperative used to change the value of adynamic reference.
Syntax is:
[obj Ref[] -> dynObj Ref[] |
objRefT may be any object reference but dynOb jRef must be a dynamic
object reference.

Pattern assignment
An imperative used to change the pattern denoted by a pattern variable.
Syntax is:
[ref## -> dynPat Ref ## |
ReT may be the name of a pattern variable, the name of an object, or the name of
a pattern but dynPatReT must be a dynamic pattern reference.

Multiple assignment
An evaluation imperative that causes several assignments.
Syntax is:

3 ->1 ->

Dynamic object creation / generation
Imperatives used to create new dynamic objects.
Syntax is:

| &Pat or &Pat []

Value equality
Tr ue when two references denote objects that have the same state.
Syntax is:

A =B

Reference equality
Tr ue when two references denote the same object.
Syntax is.

ALl = B[]

Pattern equality
Tr ue when two pattern references denote the same pattern.
Syntax is:
| At# = Bi# |
Note that < and <= are also defined for pattern comparisons based on the
inheritance hierarchy.

Procedure call
An evaluation imperative that causes invocation of a procedure pattern.
Syntax is:
| &Pr ocPat |
or
|(argl, arg2) -> &ProcPat |

Function call
An evaluation imperative that causes invocation of a function pattern.
Syntax is:

[(argl,arg2) -> &FuncPat -> result

Control structure
An imperative that controls the flow of executions.

For imperative
A control structure used to support iteration. A list of imperatives are executed
repeatedly while an index steps from 1 up to the number of iterations.
Syntax is:

(for Index: Range repeat
| nperative-1ist
for)

General-if imperative
A control structure used to support selection. Based on evaluating a condition
evaluation and comparing it to the values of a number of selection evaluations,
one of a set of imperative-listsis executed.
Syntax is:

(if EO

/1 E1 then I1
/'l E2 then |2

/1 En then In
el se |
if)
Smple-if imperative
A control structure used to support boolean selection. Based on evaluating a
condition evaluation and testing if it istrue or false, one of two imperative-listsis

executed.
Syntax is:
(if E then
1
else |2
i f)

Labelled imperative
A means of naming an imperative. Referencesto the label (viajump imperatives)
can be made from within the imperative.
Syntax is:

L: Inperative or L: (# ...do ...#)

Jump imperative
Causes flow of control to "jump" to another location. A jump imperative is one
of alLeave imperative or aRestart imperative.

Leave imperative
Causes termination of the execution of alabelled imperative; execution resumes
after the labelled imperative. Thisimperative can only appear within the labelled
imperative.
Syntax is:
[l eave L |

Restart imperative
Causes restarting of the execution of alabelled imperative, that is, jump isto the
start of the imperative. Can only appear within the labelled imperative.
Syntax is:

l[restart L |

Block Structure and Scoping

Block structure
The nesting of one structure in another in the text of aprogram. In BETA, object
descriptors and imperatives can be nested inside of other object descriptors and
imperatives. Itisthejob of the programmer to useindentation to make such
nesting visible to readers. In the following example, Deposit's object descriptor is
nested inside of Account's.

Account :
(# Deposit:

Declaration of a name
An association of a name with some defining expression.
Syntax is:
|<nane>: ... |
Recall that colon ":" aways signals a declaration of some kind.

Application of a hame
Any occurrence of aname in aprogram which is not adeclaration. Note that this
does not include keywords of the BETA syntax (e.g. if, for, repeat, do), but does
include predefined pattern and attribute names (e.g. char, putint, stream).

Scope of a declaration
The part of the program text "covered" by the declaration, that is, where
applications of the declared name refer to the given declaration. In BETA, the
scope of adeclaration is the object descriptor it appearsin. The exception to this
isthat the declaration may be "hidden" by declarations of the same namein
nested object descriptors or labelled imperatives. Note that the declared name can
also be applied outside its object descriptor using remote access. We say that a
nameislocal to the object descriptor in which it is declared and global to any
nested object descriptors (for which it is not hidden).

I nserted Objects

Inserted item
A means of generating (and executing) a procedure object allocated as part of the
enclosing object.
Syntax is:

JA->P->B |

or

A ->P(# ..#) -> B |
This differs from dynamic generation, &P, in that the instance of P is generated
only once rather than each time the imperative is executed. Note that inserted
items should not be used to define recursive procedures. That is, an inserted
instance of P may be specified in the action part of P.

| nheritance

Direct subpattern
A pattern Pisadirect subpattern of Q if P extends (specialises) the definition of
Q. Qiscalled the direct superpattern of P and instances of P are also instances of
Q.
Syntax is:

IP: Q# ..#)

Qiscalled the prefix pattern (or ssimply prefix), while the contentsof (# ... #) is
called the main-part of P. The prefix Q meansthat P's object descriptor inherits
all of Q'sdeclarationsin addition to any new ones defined in P's main-part.

Subpattern
A pattern Pisasubpattern of Q if it is either adirect subpattern of Q or a
subpattern of a direct subpattern of Q. Likewise, Q isasuperpatternof Pif itis
either adirect superpattern of P or a superpattern of the direct superpattern of P.
A pattern can have at most one direct superpattern.

Abstract superpattern
A pattern used only as a superpattern for other patterns, that is, it is not intended
to be used to generate objects. If Pis declared without the use of a superpattern,
P. (# ...#),then Pisassumed to be a subpattern of the most general abstract
superpattern, Cbj ect . Note that the basic patterns, Integer, Real, Boolean, Char
and Real are not subpatterns of Object.

Super pattern as qualification
If Risadynamic reference qualified by thepattern Q (i.,e. R "Q and Qisa
superpattern of P, then instances of both P and Q can be assigned to R. However,
only attributes of Q (and of superpatterns of Q) can be accessed using remote
accessthrough R. That is, if attribute A is declared in the main part of P, then the
remote access R. Aisillegal.

Action specialisation
The use of a subpattern to extend the action part of a pattern. Action
specialisation can involve any or all of the enter-part, exit-part and do-part. The
enter and exit parts of instances of P (again, a subpattern of Q) consist of Q's enter
and exit parameters together with those defined by P. Extending the do-part of Q
requires the use of thei nner imperativein Q's action part. Executing the do-
part of an instance of P proceeds by executing Q's do-part and executing P's do-
part each timei nner isencountered.
Syntax is:

Q (# ..do ..inner ..#);
P: Q# ..do ..#);

Virtual Patterns

Virtual pattern
A pattern attribute V of apattern Q isvirtual if it isonly partially defined in Q.
That is, the definition of V can be extended in subpatterns of Q.
Syntax is:

Q (# V:< S #)

Q (# V:< SO(# ...#) #)

Q (# V- < (# ..#) #)

In thefirst of the three forms, we say that the virtual V is qualified by the pattern

S, in the second and third forms, we say that V isdirectly qualified.

Further binding of a virtual pattern
The means by which avirtual attribute V of a pattern Q is extended in a
subpattern P of Q.
Syntax is:
P. Q# V.:< Sl #)
P. Q# V.:< SL(# ...#) #)
P. Q# Vi< (# ..#) #)
S1, S1(#... #), or (#... #) Iscalled the extended descriptor of V. If we'reusing
either thefirst or second form, and if V isqualified by Sin the pattern Q, then S1
must be a subpattern of S. In the case of the third form there are no constraints on
Q'sdeclaration of V. If X isan instance of P, then X.V specialises (that is, adds
propertiesto) the definition of V in Q. Notethat V isnow avirtual patternin P
(aswell as Q) and can continue to be further bound in subpatterns of P.

Final binding of a virtual pattern
The means by which avirtual attribute V of a pattern Q is extended in a
subpattern P of Q, and at the same time made non-virtual.
Syntax is:
R P(# V.. S2 #)
R P(# V.. S2(# ..#) #)
R P(# V.. (# ..#) #)
Final binding isidentical to further binding, except that with final binding, V is
no longer virtual.

BETA Terminology - | ndex

A Evaluation imperative..............cccoeeevnneennnn. 5
eValUALioNS.......vveiei e 4
Abstract superpatternccceeeeeeeeeeeiiinnnnnn. 8 EXit PArameters.......o.oevevvnieiiine e 3
actionpart...........coeeeeeii 2,3 EXitpart ... 3
Action specialisation..................cccevvenee.... 8 EXIT-PArt .. 2
aggregation hierarchies................cccoeeeeee. 1 extended desCriptorceeviveeeieiiiinnnnn. 9
Application of aname..............ccoevvevneennnn. 7 F
AITAY . ettt 3
Attribute.......oooii 1 Final binding of avirtua pattern................. 9
attribute declarations.cccoooeeviiinienes 2 For imperative.........ccoooveeviinieiiiinn i, 6
attribute description.............ccccveiviiiiiinienes 2 Functioncall ..., 6
attribute namecooveuiieiii e 2 Function pattern............ccoeveeeiieiiineeeneeennn. 4
attribute part.........coooeveieeiiie e 2 Further binding of avirtual pattern............... 9
Attribute reference...........cccceeiiiiieiiiiinnns 2 G
AttriDULES ... 1
B General-if imperative.........ccooccevvvviieeennnnn. 6
Global attribute reference.........ccoooeevevviees 2
BasiC pattern..........ovvveeveiiieii e 4 |
BETA program eXeCutionc.ceeeunn.. 1
biNding.........coooeiiiiii 2 IMPEratiVe .. v 4
Block Structure............cccccoeeviiiiiiiiiine, 7 IMPEratiVES......ceeeeeiieeeeiciiieee e, 2,4
c INAENationovvvviiiieeeiiiii e 7
Indexed collection of static / dynamic
Class pattern.........ccovveveeiinieiiii e 4 FEfEreNCeS.ovvvvieiii e, 3
Computed Remote acCess...........coevvveeeennnn. 4 INNEritanCe..........uvivieiiei e 8
COMPULES. ..t 1 INNEFITS Loue e 8
CONCEPL....coeiiiiiiiiie e 1 inner imperative.............ccoccn. 8
Control SruCtUre........cceevvvvvreeeiiiieeeeieeee. 6 Inserted item..........ccccvvvenienii, 7
CONrol StrUCKUNrES.......ccevvveiveiieeeeeee e, 4 Inserted Objects.........cvvvvviieiiiiiiiiiiinn, 7
INSEANCES ...cvvv e 1
D instances of the patterncccoooeevineees 2
Declarationof aname ..., 7 teration.....co.coveeieiie e 6
Declaration or attribute declaration............... 2 J
Declarations and Object Descriptors............. 2
Direct SUDPaLtern..........ccc.eeeeeevveeeeiiiiieean, 8 Jump imperative ..., 6
direct superpattern...........cccccveeeeeeeeeeenennn, 8 JUMP iMPEratives........coooevvveeeeeiieeeeeeie, 6
DOPart....ccceveeeeieeie 2 K
dO-Part......cccuviiiiiiiiie 2
dynamic object creation.............cccooeeeeennnnn. 4 Kindsof actions............ccoovevevvniiiiiiinnenennn, 1
Dynamic object creation / generation............ 5 L
dynamiC ObJECESvvevniiiiieiiiccieee 5
Dynamic reference...........ccveeiiiieeeriiinnnnns 3 Labelled imperative.............ccevvviiinneeninnns 6
Dynamic reference declaration.................... 3 Leave imperative............coevvvveeeeeeeee i, 6
dynamiC references........ooovvveveiiveiineeinnens 3 Local attribute reference of apattern............ 2
E M
enclosingobject.................. 3 (07 T g0 o S 2
eNnter parameters.........ccovvviniiiinine 2 MAIN-PAIT ... 8
Enterpart.......ccoooveiiiiii 2 measurable properties.............cceeeeeeeeeeennn, 1
ENLEr-Part ...oovvneiiiiiiee e 2 MOdelliNg.coveeeiieii e 1

R
N
Real WOrld......ovvvnieviee e 1
(100 1 = | P 1 FECUMSIV oo 8
NESHING ceevvieee i 7 Reference assignmentccceeeeeeeeeenns 5
NONEot 3 reference assignments............cceeeeeeeeeeeennn. 4
o Reference attribute...........ccoovveeviiiieiiennnnn. 3
Reference Attributes...........ccccceeiiiiieiinnns 3
L@ o= 1 Reference equality.........coocvvvveviiiiiiiineinnnnns 5
Object-desCriptor........oovvvveiveiiiiieeeiiiieeees 2 Reference to separate object............occeeven. 1
Object-oriented programming..................... 1 REMOLE ACCESS. ... ivvvieeieiiiiev e 3
ODJECES. e 1 FEPELItiON....ceuniiii e 3
one-of-akind.........ccooooiiiiiiiiii 1 repreSentationoovvvvuveeineiiieecieeeenes 1
(o 4 To] o PP 4 Restart imperative...........c.cccovvevineennnns 6,7
P S
Part ODJECE.ccvvnieeiii e 1 Scope of adeclaration............ccceeveeviiinnenes 7
part ODJECES......vuiiiii 3 SCOPING: + ettt 7
Pattern. 1 SElECHION. ... 6
Pattern assignment...........cooceeveeeniienneeennnn. 5 Separate ObJECtccvuieiieiiie 1
Pattern Attributes..........ccoeeviiiiiiiiieeennn, 4 Simple-if imperative..........cccooeviiviiieiinnnnn, 6
Pattern declaration...........c.ccoeveviiiveinnneennnn. 2 Singular Objectvvviieiiii e 1
pattern defined objects...........ccooeiiiiiiinnnnn. 1 Singular object declaration......................... 2
Pattern equality.........coooevieviiieiiiiinieeci, 5 State of an ObJeCteevvvviiiiiiiii 1
PaAttern NAMEc.uiieiieiieeei e 2 StatiC ObJECES...ceuiiiiieeii e 3
Pattern reference...........ccccvevvevviinieeieninn, 4 Static reference........coooevviiiiiiii 3
Pattern reference declaration....................... 4 Static reference declaration........................ 3
Pattern variable declaration 4 Static referenCes.... ..o vvvivveeriii e 3
Phenomenon...........ccovveveeiiieiiiii e 1 structure Object........oovevviviiiiiiiieii e, 4
physical model..........ccooovviiiiiiiiiiiei, 1 SUDPALENN .. 8
PrEfiX .. 8 Superpattern as qualification 8
PrefiX part... ..o 2 Vv
PrefiX pattern........cocceeveieeeeii e, 8
Procedurecall...........c.oooeeviiviiiiiiiiennns 5 Valueassignment.........ccceeeeeeeeeeeeiiiiiienennns. 5
Procedure patterncccoceeviiinineinnn 4 Value equalityc.oooveeveveeieeeeeieeeenn 5
Program..........cooveiiiii 3 VITtUAl. ... 9
program execution.................ccoeeeeuvvninnn.e. 1 Virtual Pattern.............eeeeeeeeeeeeeeeeeeieeeinnnns 9
Property ..o 1 Virtual Patterns..........oveeveviiiiiiiieieeieenn, 9
Q
Qualification or qualifying pattern............... 3

11

