
The Mjølner BETA System

Mjølner BETA System Tutorial

Mjølner Informatics Report

MIA 94-24(1.3)

August 1996

Copyright © 1994-96 Mjølner Informatics ApS.
All rights reserved.

No part of this document may be copied or distributed
without the prior written permission of Mjølner Informatics

i

Introduction

This manual is a tutorial on the Mjølner BETA System. The tutorial gives an intro-
duction to the Mjølner BETA System environment to someone who already knows
how to program in another (object-oriented) language and want to know how to do it
in BETA.

Often a hidden strength of a language lies in the available libraries and the ease with
which it can interact with the operating system or other software.

We present a sequence of tutorial programs designed to teach the essentials of BETA
programming. The programs start with trivial objectives like printing out “Hello
world” and doing arithmetic and gradually cover things like input/output, files, arrays,
procedures, objects, containers, GUI, and persistence.

How to install the Mjølner BETA System, call the compiler, etc., will not be de-
scribed in this tutorial. This information can be found the system manuals [MIA 90-
2], [MIA 90-4], and [MIA 90-6].

Most of the tutorial programs developed in this tutorial, are supplied along with the
Mjølner BETA System in the tutorial demo directory.

Although it is not necessary, it will be an advantage for the reader to be familiar with
the basic concepts of the BETA language. The BETA Language Introduction [MIA
94-26] gives an introduction to the BETA language. The BETA Book [Madsen 93] is
the main reference for the BETA language and every programmer with intend to use
BETA extensively should read this book.

 Acknowledgment

This tutorial is based on a set of tutorial notes written by Jean Vaucher, Professeur
d'informatique, Universite de Montreal, on sabbatical at CRIM, November 1993.
Mjølner Informatics are grateful to Jean Vaucher for taking the initiative in writing
the first BETA tutorial notes. By permission of Jean Vaucher, we have adopted these
notes for this tutorial and extended them with more sections containing examples on
repetitions, texts, containers, persistence, and GUI programming.

ii Mjølner BETA System Tutorial

Contents

1 Hello World .. .1

2 Simple Types and Output .. .3

3 Arithmetic and Expressions.. .6
3.1 Constants .. .6
3.2 Evaluations.. .6

4 Multiplication Table .. .9

5 Loops and Functions .. 13

6 Assignment and Procedure Calls. 15

7 Patterns and Variables .. 19
7.1 Patterns and Variables.. 19
7.2 Attribute Access.. 20

8 Dynamic Data Structures.. 22
8.1 Primitive Types.. 25

9 Repetitions (Arrays).. 26
9.1 Multidimensional Repetitions .. 28

10 Files .. 30
10.1 Command-line arguments.. 31
10.2 Storing Characters in a Repetition .. 33

11 Directory.. 35

12 Text Manipulation.. 37
12.1 Advanced Formatted Input and Output .. 39

13 Container Library.. 41
13.1 List . 41
13.2 HashTable Example .. 42

14 Exceptions.. 45
14.1 Examples Using Exception .. 45

15 Access to External Functions and Data.. 47
15.1 Example .. 47

16 Using the Persistence Library.. 51

17 Graphical User Interface .. 53
17.1 GUIEnv... 53
17.2 MotifEnv ... 58

18 Concurrent Library.. 60
18.1 Example .. 60
18.2 Concurrency and User Interface Environments.. 62

19 The Fragment System... 67
19.1 Interface .. 69

References.. 73

Index ... 75

Hello World iii

List of Programs

Program 1: HelloWorld.bet . 1
Program 2.1: SimpleTypesWithErrorsbet. 3
Program 2.2: SimpleTypes.bet . 5
Program 3: ExploreTypes.bet. 7
Program 4.1: Multiplication1.bet. 10
Program 4.2: Multiplication2.bet. 12
Program 5: SquareRoot.bet. 14
Program 6: MultipleAssigment.bet . 17
Program 8: StaticAndDynamic.bet. 24
Program 9.1: QuickSort.bet . 28
Program 9.2: MultiplicationTable.bet . 29
Program 10.1: CountChar.bet. 31
Program 10.2: CountChar1.bet . 32
Program 10.3: CountChar2.bet . 33
Program 11: ListDir.bet . 36
Program 12.1: FileCount.bet. 38
Program 12.2: StaticAndDynamic2.bet . 40
Program 13.1: SaveListDir.bet . 42
Program 13.2: DirTable.bet . 43
Program 15: Person.bet. 50
Program 16.1: DirList.bet . 51
Program 16.2: SaveListDir2.bet. 51
Program 16.3: SaveListDir3.bet. 52
Program 16.4: GetListDir.bet. 52
Program 17.1: TextEditor.bet. 56
Program 17.2: Hello.bet . 59
Program 17.3: Scale.bet . 59
Program 18.1: Seconds.bet. 61
Program 18.2: Clock.bet. 62
Program 18.3: ClockTextEditor.bet. 65
Program 19.1: HelloWorld.bet . 67
Program 19.2: HelloWorld with filled program slot. 68
Program 19.3: putBoxed.bet . 68
Program 19.4: HelloWorld.bet . 68
Program 19.5: HelloWorld with filled program and LIB slot . 69
Program 19.6: putBoxed.bet . 70
Program 19.7: putBoxedBody.bet. 70
Program 19.8: HelloWorld.bet . 70
Program 19.9: HelloWorld with filled program and LIB slot . 70

1

1 Hello World

We start with the simplest of all programs that prints the statement “Hello World” on
the screen.

ORIGIN '~beta/basiclib/v1.5/betaenv'
---- program: descriptor ----
(#
 (* HelloWorld.bet:
 * =======================
 * Author: J.Vaucher
 *
 * Purpose:
 * This is the simplest program possible.
 * Being able to compile and run it shows that the
 * compiler exists and that PATHS and ALIASES have been
 * correctly set. It also brings out “meta-programming”
 * considerations like the “fragment” system.
 *
 *)
do
 'Hello world !' -> putline
#)

Program 1: HelloWorld.bet

This illustrates the basic syntax of a BETA program:

(#
 <declarations>
do
 <statements>
#)

In this case, there are no declarations and the statement part is merely a simple output
statement.

The bulk of the program text is in the form of a comment traditionally delimited by (*
and *). In the BETA book [Madsen 93], comments are shown delimited by { and }
but the compiler only recognizes the form shown in Program 1.

The first two lines of the program are not strictly BETA (but are essential for correct
compilation). They are part of the fragment specification language that describes in-
ter-relationships between the various BETA modules that compose a complete pro-
gram. A brief introduction of the fragment system is given in the last section of this
tutorial.

The first line formally identifies the library environment required by our program; in
other words, it gives the file path name of the BETA module where all the basic func-
tions and procedures (such as putline) have been defined. In this respect, it acts
much like the #include <stdio.h> statement seen at the beginning of most C pro-
grams.

The body of the program is a simple procedure call to do output. It is interesting to
compare the syntax of BETA's procedure calls with that of other languages:

C++: cout << "Hello world !";
C: printf("Hello world !\n");
BETA: 'Hello world !' -> putline;

Declarations and
Statements

betaenv

Screen Output

2 Mjølner BETA System Tutorial

In BETA, the syntax of procedure calls is made identical to that of simple assign-
ments (or message passing). Evaluation is strictly left to right: parameters are evalu-
ated; then passed (->) to an object putline whose role is to output them to the screen.
Finally, note that text constants are delimited by apostrophes (“'”).

The betaenv library and many of the other libraries used in this tutorial are docu-
mented in the Mjølner BETA System manual [MIA 90-8].

More information

3

2 Simple Types and Output

In our next program we declare variables of the 4 basic types defined in BETA:
integer, real, char and boolean. Values are assigned to these variables and they
are written out. The first version of our program is shown in Program 2.1.

ORIGIN '~beta/basiclib/v1.5/betaenv'
---- program: descriptor ----
(***
 *
 * SimpleTypes1.bet: A program to show handling of simple types
 *
 * Note: this program will not compile
 *
 ***)
(# i,j,k: @integer;
 x,y,z: @real;
 c: @char;
 b1,b2: @boolean;
do 111->i;
 10->j -> k;
 i + 3 * j->k ;

 3.1415->x;
 10e5->y;

 'X'->c;
 true->b1;

 newline;
 'Printing out integers'->putline;
 ' i = '->puttext; i->putint; newline;
 ' j = '->puttext; j->putint; newline;
 ' k = '->puttext; k->putint; newline;

 newline;
 'Printing out reals: '->putline;
 ' x = '->puttext; x->putreal; newline;
 ' y = '->puttext; y->putreal; newline;
 ' z = '->puttext; z->putreal; newline;

 newline;
 'Now for a character, C="'->puttext; C->Put;
 '" and as a integer: '->puttext;
 C->putint; newline;

 newline;
 'Printing out booleans: '->putline;
 ' B1 = '->puttext; b1->putboolean; newline;
 ' B2 = '->puttext; b2->putboolean; newline; newline;

 'Now for something very C-like.'->putline;
 ' ''A''+ 3->put: '->puttext;
 'A' + 3->put;

 newline;
#)

Program 2.1: SimpleTypesWithErrorsbet

Simple types

4 Mjølner BETA System Tutorial

Again, one notes the initial fragment ORIGIN statement, a comment, and then the pro-
gram.

The declarations are Pascal-like with the addition of the @ character. In BETA, the
same declaration syntax will be used for types, variables, classes and procedures. In
this context, the @ denotes a static variable declaration whereas a declaration without
the @ corresponds to a type declaration.

The first few statements after the do show arithmetic and assignment. Arithmetic ex-
pressions follow convention; the usual operators (+,- ,* , / (or div) and mod) are
provided. Assignment goes left to right following the arrow and multiple assignment
is allowed.

The next few lines show the syntax of real, character and boolean constants. Note that
characters use the same delimiters as text strings.

In the remainder of the program we do output. The procedures used are:

• newline: skips to a new line

• puttext: writes a text

• putline: same as puttext followed by newline

• putreal: outputs a real

• put: outputs a character

• putboolean: outputs a boolean

Characters are type compatible with integers and can be used interchangeably in
expressions. An example of this is shown at the end of the program.

When we try to compile SimpleTypesWithErrors.bet, we get the following
semantic error message:

putreal
 *****Name is not declared

putboolean
 *****Name is not declared

There is also a complete listing of the program text with the same error messages in
SimpleTypesWithErrors.lst to help localize the errors. In this case the error is due
to the fact that putreal is not in the standard environment. putreal is in a library
that must be included in the program1. Likewise putboolean is in the textUtils
library.

The Mjølner BETA System comes with a library supporting a wide range of input and
output for numbers (integers, based integers, reals, etc.) called numberio. In order to
print reals on the screen, this library must be included. A library is included using a
fragment INCLUDE statement:

1 putreal is not in the standard environment in order to minimize the size of the resulting binary

excutable for simple programs that only uses the basic environment. numberio contains
operations like, put/getreal and put/getbased.

Static Variables

Screen Output

Type
Compatibility

Static Semantic
Errors

Simple Types and Output 5

ORIGIN '~beta/basiclib/v1.5/betaenv';
INCLUDE '~beta/basiclib/v1.5/numberio';
INCLUDE '~beta/basiclib/v1.5/textUtils';
---- program: descriptor ----
(#
 i,j,k: @integer

 < original program >
 ...
#)

Program 2.2: SimpleTypes.bet

And the results are shown below.

Printing out integers
 i = 111
 j = 10
 k = 141

Printing out reals:
 x = 3.141500
 y = 1000000.000000
 z = 0.000000

Now for a character, C="X" and as a integer: 88

Printing out booleans:
 B1 = true
 B2 = false

Now for something very C-like.
 'A'+ 3->put: D

Simple types with
numberio

6

3 Arithmetic and Expressions

We will start with the simplest of all expressions:

3.1 Constants

BETA accepts constants in the usual formats:

Integer

1, 1666, 0, -12

There is also a format (<base>X<number>) for integers in other bases. All the follow-
ing constants represents 11:

2x1011, 3x102, 16xB, 0xb, 11

Predefined constants exist for MaxInt and MinInt in betaenv.

Reals

3.14159, 3E9 , 3.14E-9

Predefined constants exist for MaxReal and MinReal in the math library.

Booleans

true, false

Text and Characters

'a', 'ABC'

• a character is a text of length 1.

• the text delimiter character can be represented by doubling: '''Hi''', is the
text :'Hi'

• following the C convention, many useful control characters can be introduced
by using the backslash: '\t' for tabulator and '\n' for newline.

3.2 Evaluations

In BETA, the term evaluation is used to refer to expressions, assignment statements
and procedure calls.

For evaluations arithmetic, boolean and relational operators are provided. The opera-
tor precedence is similar to C with the AND and OR operators considered to be on a par
with * and + respectively. This means that parentheses will often be needed to obtain
the desired result. The priorities are shown below:

Relative Priority Class Operators

least relational =, <>, >, >=, <, <=

additive +, -, or, xor

multiplication *, /, div), mod, and

highest unary not, -, +

When a real value is assigned to an integer the fractional part is removed irrespective
of the sign of the value. Various functions for manipulating reals, including rounding,
log, log10, sin, cos, tanh, sqrt, and power are available in the math library. This
library also contains predefined constants such as PI, e, pihalf (PI/2), log2e (log(e)
to base 2), log10e (log(e) to base 10), ln2 (natural log of 2), etc.

Based Integers

Control
Characters

Operator priority

Math Library

Arithmetic and Expressions 7

The max, min and abs functions are not generic; they do not work properly with reals
since they will convert input values to integers. Instead the functions fmax, fmin and
fabs in the math library could be used.

Finally, since characters are type compatible with integers and there is no type control
at this level, some interesting evaluations may be done, such as:

(i+1) * ('a' * i) / 4.33->putint

The program shown in Program 3 shows some of the things discussed here. First, it
includes both the numberio and the math fragments required for the numeric work. It
also shows our first procedure, tab, introduced to help simplify formatting the output.

ORIGIN '~beta/basiclib/v1.5/betaenv';
INCLUDE '~beta/basiclib/v1.5/numberio';
INCLUDE '~beta/basiclib/v1.5/math';
---- program: descriptor ----
(#

 (* p3.bet: Exploring types and functions
 ***)

 i,j,k: @integer;
 x,y,z: @real;
 tab: (# do ' '->puttext #);

do '\nEnvironment constants: \n\n'->puttext ;
 '\t MaxInt = '->puttext; maxint->putint;
 '\n\t MinInt = '->puttext; minint->putint;
 '\n\t MaxReal= '->puttext; maxreal->putreal (# do exp->style #);
 '\n\t MinReal= '->puttext; minreal->putreal (# do exp->style #);
 3->i; -10->j;
 '\n\n *** Simple functions *** \n'->puttext;
 '\n I J max(I,J) min(I,J) abs(J) \n'->puttext;
 tab ;
 i->putint; tab;
 j->putint; tab;
 (i,j)->max->putint; tab; tab;
 (i,j)->min->putint; tab; tab;
 j->abs->putint;
 '\n\n *** Reals ***\n'->puttext;
 '\nX Y fmax(X,Y) fmin(X,Y) fabs(-
3.6) \n'->puttext;
 3.01->x; 3.78->y;
 x->putreal; tab;
 y->putreal; tab;
 (x,y)->fmax->putreal; tab; tab;
 (x,y)->fmin->putreal; tab; tab;
 -3.6->fabs->putreal;
 '\n\nPi = '->puttext; pi->putreal;
 '\ncos(Pi/4) = '->puttext;
 (Pi div 4)->cos->putreal;
 '\n\nMixing types: (i+1) * (''a'' * i) / 4.33'->
 putText; ' = '->putText;
 (i+1) * ('a' * i) / 4.33->putint;
 newline;
#)

Program 3: ExploreTypes.bet

In BETA, procedures, types and objects are treated in a unified manner as variations
of a single concept, the pattern. The general syntax for such a pattern declaration is:

<names>: <descriptor>

Type
compatibility

Pattern

8 Mjølner BETA System Tutorial

In the simplest case, the object descriptor is what we have called a block which can
contain declarations and imperatives. In the case of procedures which need parame-
ters or functions which return results, there can also be input and output parameters
but we leave that for later.

In our example, tab is defined by:

tab: (# do ' ' -> puttext #);

This has neither parameters nor a result. tab merely stands for the more lengthy
statement which outputs a string of 4 blanks. Contrast this declarations with that of
the variables for i,j,…,z which use @ to indicate that space is to be reserved for the
variables.

Returning to our program, we first print out the maxint and minint constants defined
for both integers and reals. Note the use of control characters, e.g. '\n' in the titles to
do some formatting.

Next, we show the use of the min, max and abs functions on integers. We also use the
tab procedure to space out the printed results.

After that we apply the fmin, fmax and fabs to reals.

Then we print PI, one of the built-in constants defined in math, as well as the value of
cos(45 degrees). Note that angles must be expressed as radians.

To finish off, there is a mixed evaluation with integers, booleans, characters and real.

The results of executing ExploreTypes are shown below:

Environment constants:

 MaxInt = 2147483647
 MinInt = -2147483648
 MaxReal= 1.797693e+308
 MinReal= 2.225074e-308

 *** Simple functions ***

 I J max(I,J) min(I,J) abs(J)
 3 -10 3 -10 10

 *** Reals ***

X Y fmax(X,Y) fmin(X,Y) fabs(-3.6)
3.010000 3.780000 3.780000 3.010000 3.600000

Pi = 3.141593
cos(Pi/4) = 0.707107

Mixing types: (i+1) * ('a' * i) / 4.33 = 268

For more sophisticated examples on use of reals and math functions, the reader should
look at the demonstrations programs:

• realtest.bet

• putreals.bet

These are located in the reals demo directory of basiclib.

Procedure

9

4 Multiplication Table

In this section, we will take on the simple task of printing out a multiplication table of
the integers from 1 to 9. For the purpose of illustration we shall introduce the follow-
ing concepts:

• procedure with parameters

• the for imperative

• the if imperative

for printing in fixed width columns. We shall also show the correct BETA way to do
formatted output, involving introducing an extension to a virtual pattern.

The for imperative

In BETA, all syntactic structures have a similar form of delimiters with opening and
closing parentheses and the for is no exception:

Block: (# ... #)
Comment: (* ... *)
For:(for ... for)

In opposition to other languages where the for can count up or down and the step can
be varied, in BETA only a simple version exists going from 1 to N where N is an ex-
pression (or evaluation to use the BETA terminology). This follows the BETA mini-
malist philosophy of providing the strict minimum combined with powerful extension
mechanisms.

More precisely, there are two forms of the for, depending on whether one wants to
have access to the counting variable or not. These are:

(for <evaluation> repeat <imperatives> for)

and

(for <var> : <evaluation> repeat <imperatives> for)

Both forms will be used in this section. Note that the loop variable <var> acts as a lo-
cally defined variable and is only accessible inside the for imperative. Thus the loop
variable <var> need not be declared elsewhere.

Neglecting labels, the body of our program could have the following form:

 (for i:9 repeat
 (for j:9 repeat
 i*j -> putint;
 2 -> tab;
 for);
 newline;
 for);

Where tab is a procedure that outputs blanks to separate the integers printed with
putint. In contrast with previous versions of tab which printed a fixed number of
blanks, here we provide it with a parameter N to indicate the number of spaces to
write. Above, in 2 -> tab, we want to print out 2 spaces.

In BETA, parameters are considered to be local variables which are assigned values
from an input list before executing the procedure body. Hence they are declared the
same way as any other local variable. The number of actual parameters that must be
supplied and which local variables will receive these values is specified by an enter
list. tab can be defined as follows:

Two kinds of for

Parameter list

10 Mjølner BETA System Tutorial

tab: (# N: @integer
 enter N
 do (for N repeat ' ' -> put for)
 #);

The enter list comes after the declarations and before the do part.

Here is the program:

ORIGIN '~beta/basiclib/v1.5/betaenv'
---- program: descriptor ----
(#
 (* Multiplication Table
 *
 * Objectives:
 * - use the FOR imperative
 * - introduce a parameterized procedure
 *)

 tab: (# N: @integer
 enter N
 do (for N repeat ' ' -> put for)
 #);

do '\n\t** Multiplication Table ** \n\n'-> puttext;
 4 -> tab;
 (for i: 9 repeat
 i -> putint; 2->tab;
 for);
 newline; newline;
 (for i: 9 repeat
 i->Putint; 3 -> tab;
 (for j: 9 repeat
 i*j->putint ;
 2 -> tab;
 for);
 newline
 for)
#)

Program 4.1: Multiplication1.bet

Since this program uses no reals, we have used the same simplified fragment state-
ments that we used in our first program. The results are shown below:

 ** Multiplication Table **

 1 2 3 4 5 6 7 8 9

1 1 2 3 4 5 6 7 8 9
2 2 4 6 8 10 12 14 16 18
3 3 6 9 12 15 18 21 24 27
4 4 8 12 16 20 24 28 32 36
5 5 10 15 20 25 30 35 40 45
6 6 12 18 24 30 36 42 48 54
7 7 14 21 28 35 42 49 56 63
8 8 16 24 32 40 48 56 64 72
9 9 18 27 36 45 54 63 72 81

In this output, the columns do not line up because some of the integers use require a
single digit and others require 2 and putint prints with minimum space.

To overcome this, we will write a simple procedure to output an integer in a field of
width w. By simple, we mean that it will only work with positive integers less than
1000. To determine the number of digits required to print an integer we use the if
imperative. The if imperative has two forms:

Multiplication Table 11

(if <Exp> then
 <Imperatives>
 else
 <Imperatives>
if);

and

(if <Exp>
 // <Exp> then <Imperatives>
 // <Exp> then <Imperatives>
 // <Exp> then <Imperatives>
 ...
 else
 <Imperatives>
if);

A first crack at the code to compute ND the number of digits in an integer i is:

(if true
 // i < 10 then 1 -> ND
 // i < 100 then 2 -> ND
 else 3 -> ND
if)

This is coded along the lines of the standard if…else if…else if… pattern of other
languages such as Pascal or Simula but is not quite correct according to the strict
definition of the if imperative, because the if does not specify that the alternatives
will be evaluated in a sequential manner. Therefore if I= 5, ND could receive either 1
or 2 as a value. Although the code would probably work, it should be written as:

(if true
 // i<10 then 1 -> ND
 // (i>=10) and (i<100) then 2 -> ND
 else 3 -> ND
if)

Remember that the parentheses are required in the second alternative due to the opera-
tor priorities.

Now we can design a procedure, (N,W) -> Outint, that will print an integer N right
justified in a field of W spaces wide. This procedure will require a list of 2 parameters
when it is called.

Outint:
 (# N,W: @integer;
 enter (N,W)
 do (if true
 // N<10 then 1 -> ND
 // (N>=10) and (N<100) then 2 -> ND
 else 3 -> ND
 if);
 ND -> tab;
 N -> putint;
 #);

The complete modified program is given below and the output follows.

ORIGIN '~beta/basiclib/v1.5/betaenv'
---- program: descriptor ----
(#
 (* Multiplication Table 2
 *
 * Objectives:
 * - use the IF and FOR imperatives
 * - use procedures & parameters
 *)

tab: (# N: @integer;

Simple if

General if

Procedure
arguments

12 Mjølner BETA System Tutorial

 enter N
 do (for N repeat ' ' -> Put for)
 #);

Outint:
 (# N,W, ND : @integer;
 enter (N,W)
 do (if true
 // N<10 then 1 -> ND
 // (N>=10) and (N<100) then 2 -> ND
 else 3 -> ND
 if);
 W-ND -> tab;
 N -> putint;
 #);

do
 '\n\t** Multiplication Table ** \n\n'-> puttext;

 4 -> tab;
 (for i: 10 repeat
 (i,4) -> Outint;
 for);
 newline; newline;

 (for i: 10 repeat
 (i,4) -> Outint;
 (for j: 10 repeat
 (i*j,4) -> Outint;
 for);
 newline
 for)
#)

Program 4.2: Multiplication2.bet

and the results:

 ** Multiplication Table **

 1 2 3 4 5 6 7 8 9 10

 1 1 2 3 4 5 6 7 8 9 10
 2 2 4 6 8 10 12 14 16 18 20
 3 3 6 9 12 15 18 21 24 27 30
 4 4 8 12 16 20 24 28 32 36 40
 5 5 10 15 20 25 30 35 40 45 50
 6 6 12 18 24 30 36 42 48 54 60
 7 7 14 21 28 35 42 49 56 63 70
 8 8 16 24 32 40 48 56 64 72 80
 9 9 18 27 36 45 54 63 72 81 90
 10 10 20 30 40 50 60 70 80 90 100

Finally, the way formatted output is done in the demo programs distributed with the
Mjølner BETA System. It involves extending the virtual pattern format defined in
putint. Thus the OutInt procedure of Program 4.1 should be rewritten as follows:

Outint:
 (# N,W : @integer;
 enter (N,W)
 do N -> screen.putint(# format::(# do W -> width #)#)
 #);

and the results would be identical to those obtained previously. The latter procedure
would be much more robust, accepting any positive or negative integer value.
Program Multiplication3.bet uses this procedure. See also Section 12.1.

Formatted output

13

5 Loops and Functions

In this section, we take on the task of writing a function that computes square roots.
This will lead us to consider conditional looping and the definitions of functions, or in
BETA terms, patterns that can return values.

To compute a square root we will use Newton's algorithm where the computation is
done by successive approximations until the error is less than a preset level (epsilon).

The usual way to program this involves a while loop. In C, the code to get the root of
X could look like this:

Root= X;
while (abs(X-Root**2) > epsilon) {
 Root= (Root+X/root) / 2;
}

Assuming that X = 100, the calculated values of Root in each iteration will be:

150.5
226.2401
315.0255
410.8404
510.0326
610.0001
710.0000... and the loop ends.

Surprisingly, there is no while loop in BETA language. BETA is designed with a
more fundamental (and extensible) feature as the ability to either leave or restart any
labeled imperative. In the basic BETA environment betaenv, a loop pattern using
these features is defined and can be used like:

X -> Root;
Loop(# while::(# do (X-Root*Root -> fabs) > X / 10E6 -> value #);
 do (Root + X/root) / 2 -> root;
 #);

A while loop can also directly be implemented using a labeled imperative with a
restart. The following BETA code is a repeated conditional imperative imple-
mented using a labeled if with a restart imperative at the end:

X -> Root;
L: (if (X-Root*Root -> fabs) > X / 10E6 then
 0.5 * (Root + X div Root) -> Root;
 restart L;
 if);

Here, the error, epsilon, is set at one part in a million. The complete program code is
given in Program 5 below. Here the code for the Square Root has been put in the form
of a procedure which returns a value: that is to say a function. As shown in the exam-
ple, a function call has the following syntax:

i -> Sqrt -> Res;

We have already seen the notation <parameters> -> <procedure> whereby data is
passed (as parameters) to the procedure object. In BETA, the same syntax is used to
show that results are obtained from Sqrt and passed on to Res.

ORIGIN '~beta/basiclib/v1.5/betaenv';
INCLUDE '~beta/basiclib/v1.5/numberio'
 '~beta/basiclib/v1.5/math';

While loop
in betaenv

While loop using
labeled
imperative and
restart

14 Mjølner BETA System Tutorial

---- program: descriptor ----
(#

(* SquareRoot.bet: Exploring functions
 * + conditional loops
 *)

 Res: @real;

 Sqrt:
 (# X, Root: @real;
 enter X
 do X -> Root;
 Loop(# while::
 (# do (X-Root*Root -> fabs) > X / 10E6 -> value #)
 do (Root + X/root) / 2 -> root;
 #);
 exit Root
 #);

 tab:
 (# N: @integer;
 enter N
 do (for N repeat ' '-> put for)
 #);

do '\n\t ** Functions and variables **\n' -> putline;
 ' I sqrt(i) ' -> putline;
 (for i:10 repeat
 i -> Sqrt -> Res;
 i -> putint(# format::(# do 2 -> width#)#);
 3-> tab;
 Res -> putreal;
 newline;
 for)
#)

Program 5: SquareRoot.bet

The declaration of Sqrt shows an exit list which defines the list of values obtained
after executing the body of the function. In this case, there is only one value, a real,
but BETA functions could return multiple results.

The output obtained upon execution are shown below.

 ** Functions and variables **

 I sqrt(i)
 1 1.000000
 2 1.414214
 3 1.732051
 4 2.000000
 5 2.236068
 6 2.449490
 7 2.645751
 8 2.828427
 9 3.000000
10 3.162278

Function results

15

6 Assignment and Procedure Calls

We have previously mentioned that BETA strives for minimalism along with orthog-
onality. So far we have hidden this fact by programming in a standard fashion and
presenting the programs with traditional concepts such as variables, functions, as-
signment statements, etc. Now we shall begin the study of BETA’s particularities by
considering assignment.

We have already noticed that BETA evaluates expressions left to right and uses an
unusual assignment operator, ->. Our examples have shown simple examples of as-
signment such as:

i+1 -> i;

In BETA, we can do more: assignment is defined to operate on lists of values with
single value assignment being a special case. Thus we can say:

(1,2,3) -> (i,j,k);

Which has the same effect as the series of simple assignments:

1 -> i; 2-> j; 3 -> k;

We can also cascade such assignments:

(a,b,c) -> (m,n,o) -> (x,y,z) ;

If we just consider the first items in the lists, the above statement means that we take
the value of a and pass it on to m, then we take the value of m and we pass it on to x.

If the number or types of the items in lists do not match, an error is signaled:

(111, 222) -> i;

or

'string' -> i; (* where i is an integer *)

So far, this is all pretty obvious but, in BETA, the destination of an assignment is not
restricted to being a simple variable or a list of such variables; the target of an as-
signment can also be a more complex object with an enter list. In that case, assign-
ment takes place between the values in the list on the left and the variables named in
the target’s enter list.

If both the source S and target T of an assignment are complex objects, the assign-
ment:

S -> T;

becomes a multiple assignment between the exit list of S, (O1, …, Oi, …) and the
enter list of T (I1, …, Ii, …). In addition, the do part of S is executed before this mul-
tiple assignment and the do part of T is executed after. In other words, this happens:

1. Execute do of S

2. (O1,…Oi…) -> (I1,…Ii…)

3. Execute do of T

For cascaded assignments:

S -> T -> U;

We have:

1. Execute S

Evaluations

Complex
evaluations

16 Mjølner BETA System Tutorial

2. Output of S -> input of T

3. Execute T

4. Output of T -> input of U

5. Execute U

Note that the body of each object mentioned in the assignment is executed once. Of
course, defining assignment between complex structures or objects in terms of as-
signment between individual exit expressions and enter variables is a recursive
explanation which eventually leads to assignment between primitive objects like inte-
gers which has an obvious interpretation in terms of machine code. This is described
in great detail in section 5.8 of the BETA Book.

Note that absence of a do part has no effect on assignment: it is equivalent to a null
statement; but absence of an enter or and exit part has great importance. An object
without an exit part cannot appear as a source in an assignment. Similarly, an object
without an enter cannot appear as a target.

This property is exploited in the math fragment to define read-only objects or con-
stants. These have only an exit list:

e: (# exit 2.7182818284590452354 #);
Pi: (# exit 3.14159265358979323846 #);

BETA’s generalized definition of assignment means that there is no fundamental dif-
ference between assignments and procedure calls. Following from this argument is
the fact that procedure declarations and type declarations will be syntactically identi-
cal. To illustrate this, consider the following declarations. The first is a type definition
for a complex numbers with two real attributes. The second is a procedure that adds
reals numbers.

complex: (# Re,Im: @real;
 enter (Re,Im)
 exit (Re,Im)
 #);

add: (# A,B: @real;
 enter (A,B)
 exit A+B
 #);

These definitions have been purposely made alike. There is no do part in either; the
computation for add being done by an expression in the exit list. Each has 2 local
real attributes. Each has an enter list and an exit list, meaning that objects of the type
complex and those of the type add can be assigned values and can provide values and
thus can be used on both sides of an assignment statement. For example:

(1.0, 3.3) -> complex -> (x,y);

(1.0, 3.3) -> add -> x;

In the case of complex, the output value is an exact duplicate of its local state and of
the input values: complex objects will be used mainly for their storage potential (as
variables). With add, the output value is computed from the state (input) values: add
objects are more useful for this computational aspect. In actual fact, complex would
seldom be used directly in such an assignment; it would more properly be used as a
model for variables which would in turn be used in assignments.

(# c1,c2: @complex;
do (1.0, 3.3) -> c1;
 c1 -> c2;
#)

The point, however, is that BETA does not distinguish between types and functions. It
considers both as examples of a more fundamental concept: the object, which can be
used for many things depending on how the programmer chooses to define and use it.

Constants

Procedure and
type declarations

Local state

Assignment and Procedure Calls 17

The program below shows the examples that we have talked about:

ORIGIN '~beta/basiclib/v1.5/betaenv'
---- program: descriptor ----
(#
 (* Multiple assignment and function calls *)

 i,j,k : @integer;
 Nines: (# exit 99999 #); (* Constant *)

 complex: (# Re,Im: @integer;
 enter (Re,Im)
 exit (Re,Im)
 #);
 add: (# A,B: @integer;
 enter (A,B)
 exit A+B
 #);

do
 'Examples using multiple assignment and function calls' ->
 putline; newline;

 'Outputting a constant: Nines= ' -> puttext;
 Nines -> putint;
 newline; newline;

 '(1,2,3) -> (i,j,k); '-> putline; newline;

 (1,2,3) -> (i,j,k);
 ' I= '-> puttext; i -> putint;
 ', J= '-> puttext; j -> putint;
 ', K= '-> puttext; k -> putint; newline;

 newline; '(i,j) -> (j,i): ' -> puttext;

 (i,j) -> (j,i);
 ' I= '-> puttext; i -> putint;
 ', J= '-> puttext; j -> putint; newline;

 'Note that (x,y) -> (y,x) doesn''t imply swap semantics.' ->
 putline; newline;

 ' (*** More examples ***)' -> putline; newline;

 (111,999) -> complex -> (i,j);
 (111,999) -> add -> k ;

 ' I= '-> puttext; i -> putint;
 ', J= '-> puttext; j -> putint;
 ', K= '-> puttext; k -> putint; newline;
#)

Program 6: MultipleAssigment.bet

Now for its output:

Examples using multiple assignment and function calls

Outputting a constant: Nines= 99999

(1,2,3) -> (i,j,k);

 I= 1, J= 2, K= 3

(i,j) -> (j,i): I= 1, J= 1

18 Mjølner BETA System Tutorial

Note that (x,y) -> (y,x) doesn't imply swap semantics.

 (*** More examples ***)

 I= 111, J= 999, K= 1110

19

7 Patterns and Variables

In this section, we get a bit more formal with the BETA way of expressing object-ori-
ented concepts. This section treats topics from chapter 3 of the BETA Book but with a
slightly different approach.

Often object-oriented concepts are summarized as follows:

1) Objects are meant to represent the things that we see or talk about in the real
world.

2) Objects have properties. These are often divided between state (attributes) and
potential actions (services, methods or scripts).

3) Objects which have the same attributes and behave the same way are said to be-
long to the same class. A class definition specifies the attributes and actions
common to all objects of the same class. The objects described by a class are
said to be instances of that class.

4) Often it is useful to introduce the notion of class hierarchy to reflect various
levels of similarity. The specification mechanism which allows incremental de-
scription of the similarities at each level is called inheritance.

5) Additionally, some languages model the fact that individual objects can operate
in parallel. These active objects are sometimes called agents, processes or actors.

Actually, in this section, we will only talk about points 2 and 3. Point 1 is included for
completeness and point 4 is not covered in this tutorial (see the BETA language in-
troduction [MIA 94-26] or the BETA book [Madsen 93]). Point 5 will be covered
later.

In BETA, objects are described by a syntactic construct called an object-descriptor
(or descriptor for short). This has the form:

(# ... #)

and is used to specify the local attributes and actions of an object (or class of objects).

An unusual feature of the BETA object-descriptor (compared to other object-oriented
languages) is that, with enter and exit lists, it introduces the notion of value for ob-
jects. The different facets of an object are defined by the various (optional) parts of
the object description:

(# <declarations>
enter <input list>
do <imperatives>
exit <output list>
#)

This single concept of descriptor has been used to replace many diverse concepts that
we are familiar with from traditional languages. In particular, it is used for proce-
dures, functions, types, classes, macros and local blocks. These different roles are
achieved by using the descriptor in different contexts, by combining it with other op-
erators or by selective use of the internal parts.

7.1 Patterns and Variables

In BETA, a descriptor can be given a name. Thereafter, the name becomes a short-
hand form for the full description. The association of name and descriptor is written
amongst the declarations and is known as a pattern declaration. It has the following
syntax:

Object-oriented
concepts

Inheritance

Concurrency

Descriptor

20 Mjølner BETA System Tutorial

<pattern-name>: <prefix> <descriptor>

Thereafter, the pattern name or the descriptor can be used interchangeably and the
term pattern is used to mean either form. prefix is an optional name of a pattern that
pattern-name inherits from.

As we have seen previously, variable declarations are characterized by the @ token:

<variable-names>: @<pattern>

Examples:

POINT: (# X,Y: @real;
 enter (X,Y)
 exit (X,Y)
 #);

P1,P2: @Point;
P3: @(# X,Y: @real;
enter (X,Y) exit (X,Y)
 #);

P1 and P2 are considered to be objects of the same class. Note also that case is imma-
terial in BETA: POINT being the same as PoINt or point.

Thereafter, the following assignments are allowed:

P1 -> p2;
(0,0) -> p1 -> p2 -> p3;

Note that BETA uses structural equivalence in its value assignments and compar-
isons. This is not as strict as in other languages and assignment is possible between
variables of any two patterns with similar enter and exit lists. This was shown
above (with identical lists) and if we define another pattern complex with two reals as
value, assignment will be allowed between Point and complex objects.

C1: @(# Re,Im: @real;
 enter (Re, Im)
 exit (Re, Im)
 #);

7.2 Attribute Access

So far we have concentrated on showing that BETA objects can behave either as
classical data variables or as procedures. The example patterns that we showed often
had local attributes (of primitive types) used either to implement value or to hold
temporary results of computations.

BETA objects also function as structured (or record) data and the local attributes are
accessible via the traditional dot notation. For the POINT P1 defined in the previous
section, the examples below show how its local attributes X and Y can be both read
and set directly:

0 -> P1.X; 123 -> P1.Y;
P1.X -> putint;

Notice, that the first line is equivalent to: (0,123) -> P1.

The local attributes can have any type and could be function objects. Below, we use a
modified Point pattern which has a third attribute dist to compute the distance from
the origin.

Point: (# X,Y: @real;
 dist: @(# exit (X*X + Y*Y) -> sqrt #);
 enter (X,Y)
 exit (X,Y)
 #);

P1,P2 : @Point;

Pattern
declaration

Static variable
declarations

Structural
equivalence

Structured data

Local function

Patterns and Variables 21

This third attribute is read-only (because it has no enter list) but can be consulted
just like X and Y:

(3,4) -> P1;
P1.dist -> putint;(* will print "5" *)

Many object-oriented languages enforce encapsulation by disallowing direct reading
or writing of the local variables and restrict access to the invocation of the local
methods. Smalltalk is the obvious example of this approach but even Simula, where
by default all local data and methods are accessible, introduced a Hidden/Protected
mechanism to allow protection. This is meant to enforce separation of the provided
behavior from the details of implementation.

In the BETA language, there is no provision for hiding the internal details of an ob-
ject. The mechanisms for protection as well as those for modularization and configu-
ration management are relegated to a separate fragment system which is described in
the last section of this tutorial.

Encapsulation

22

8 Dynamic Data Structures

The variables that we have declared so far (with @) are said to be static objects and the
variable names are said to be static references.

Advanced programming requires more than just static data structures. In particular,
list processing is based on the notion of dynamically created objects linked by point-
ers. Recursive procedures also rely on dynamically allocated activation records. More
to the point, objects are generally created on demand with a new operator.

In BETA, pointers or dynamic references as they are called are declared very much as
in C using the * token. Below, we declare refA and refB to be references to Point
objects whereas the declaration for P1 and P2 cause storage space to be reserved for 2
points and associate (permanently) the names P1 and P2 to those points.

refA, refB: ^Point;
P1,P2: @Point;

Initially, refA and refB point nowhere and have the value NONE whereas P1 and P2
designate real live points. Thus, we can assign data to P1 but not to refA.

P1 -> P2; (* OK *)
P1 -> refA; (* run-time error because refA is NONE *)

This seems normal but reread these two imperatives carefully. Anyone having used
pointers in other languages should notice that the BETA pointer concept is a little dif-
ferent that most other languages. We have used (correctly) the same notation for the
variable and for the pointer. If this were C, with:

Point p1,p2;
Point *refA,*refB;

then refA would represent the address of a Point and *refA would be used to denote
the contents of that Point. In C, the assignments would have read

p2 = p1;
*refA = p1;

Now we can return to the BETA approach to dynamic data which is quite different
from the traditional one.

In BETA, a pointer is treated as a reference which may point to different objects (or
to NONE) at different times during execution whereas a variable is considered to be a
reference which will always denote the same object. Thus both are references but one
is static and the other dynamic and they will be used in the same way to access the
data. The concept of pointer storage address is avoided.

In BETA, simple use of a reference (static or dynamic) in an evaluation refers to the
contents of the object referenced. Thus, assuming that refA and refB designate Points
(and not NONE) then,

(0.0, 0.0) -> P1 -> refA -> refB -> P2 ;

means that the contents (or value) of each point is set to (0,0).

To manipulate references to objects and not just the contents, we need to use a refer-
ence operator. In BETA, this is a postfix operator written [] (read box). Thus the
following imperative:

refA[] -> refB[];

has the effect that refB now points to (references) the same object as refA.

Dynamic
references

Static and
dynamic
references

Reference
operator

Dynamic Data Structures 23

BETA's approach is the converse of C’s: BETA uses a referencing operator and C
uses a dereferencing operator.

Assignment Type BETA C

Content refA -> refB; *refB = *refA;

Reference refA[] -> refB[]; refB = refA;

In BETA, it is also possible to make a dynamic reference denote a static object. This
can also be done in C:

BETA: P1[] -> refA[]
C: refA = &P1;

This is one way to give dynamic references values other than NONE. The other and
more obvious one involves dynamic creation of new objects at run-time. In BETA,
the new operator is written &. Thus,

&Point

causes a new point object to be created. Now, comes a delicate aspect.

To create a new object and to get the address of this new Point, we also need the ref-
erence operator:

&Point[] -> refA[];

As mentioned in section 3.2.3 of the BETA book, this is a subtle point:

“The difference between &P and &P[] is very important: the expression &P means
‘generate a new instance of P and execute it’; the expression &P[] means ‘generate a
new instance of P without executing it and return a reference to this new object’.”

In C a Point is allocated like this:

refA = (Point*) malloc(sizeof(Point));

The following program shows the use of static and dynamic references. This uses a
Point user-type with integer attributes. There are 2 static references, P1 and P2, and a
dynamic reference, refA. At various points in the program refA points to either P1 or
P2 or to a dynamically allocated object. Note that access to Points via the static or
dynamic variables is syntactically identical. We assign various values to the three ref-
erences and use dump to show the contents of the first attributes of all three. This
shows that effectively refA designates various Points during execution. At the end,
we show the use of a dynamically generated Point in a cascaded assignment. In this
case, the purpose is just to show that it can be done and what happens. Useful version
of this dynamic generation will be shown later.

(111,333) -> &Point -> P1;

What happens here is that

1) a new Point object is created,

2) the values (111,333) are assigned to the variables in the enter list of the new
Object,

3) the (empty) do part of the object is executed,

4) a value assignment is done between the exit list of the Point and the enter list
of P1 and

5) finally, the (empty) do part of P1 is executed. The newly created Point is inac-
cessible and the space it occupies will be reclaimed by the garbage collector.

Instead using the reference operator gives:

(111,333) -> &Point[] -> refA[];

Dynamic
reference to
static object

New operator

Create and
execute

Create and return
a reference

24 Mjølner BETA System Tutorial

What happens here is that

1) a new Point object is created,

2) the values (111,333) are assigned to the variables in the enter list of the new
object,

3) a reference assignment is done between newly created object and refA. refA
now refers to the new object.

ORIGIN '~beta/basiclib/v1.5/betaenv'
---- program: descriptor ----
(#
 (* Static and Dynamic references *)

 Point: (# X,Y: @integer;
 enter (X,Y)
 exit (X,Y)
 #);

 refA : ^Point;
 P1,P2: @Point;

Dump:
 (#
 do 'P1: ' -> puttext;
 P1.X -> screen.putint(# format::(# do 3->width#)#);
 ', P2: ' -> puttext; P2.X -> putint;
 ', refA: ' -> puttext; refA.X -> putint;
 newline;
 #);

do
 'Dynamic references' -> putline;
 newline;

 &Point[] -> refA[];

 (1,1) -> P1-> P2 -> refA;
 Dump;

 (2,2) -> P2;
 (3,3) -> refA;
 Dump;

 P1[] -> refA[]; Dump;
 P2[] -> refA[]; Dump;

 (1,1) -> P1; (2,2) -> P2; (3,3) -> refA;
 Dump;

 (111,333) -> &Point -> P1;
 Dump;
 Newline;
#)

Program 8: StaticAndDynamic.bet

The results from execution are shown below:

Dynamic references

P1: 1, P2: 1, refA: 1
P1: 1, P2: 2, refA: 3
P1: 1, P2: 2, refA: 1
P1: 1, P2: 2, refA: 2

Dynamic Data Structures 25

P1: 1, P2: 3, refA: 3
P1: 111, P2: 3, refA: 3

8.1 Primitive Types

In the previous section, all examples of static and dynamic references dealt with a
user defined type, Point. Could we have done the same thing with one of the four
primitive types in BETA: integer, char, boolean or real? The answer is no. For
these 4 types, it is not legal to apply neither the new nor the reference operators. Simi-
larly, we shall see later that other limitations apply and these types cannot be used as
prefixes for other object definitions.

Thus the following expressions are illegal:

RefInt: ^integer;(* ILLEGAL *)
&real -> ...(* ILLEGAL *)

The reason is that for safe pointer operation, each object that can be designated by a
dynamic reference (pointer) needs extra space for administrative data. In the case of
primitive types, this overhead can be overwhelming and it has been chosen to handle
them differently (and more efficiently) than other patterns. This is the same approach
used in Simula, Pascal and Eiffel.

In Smalltalk, another approach was used: the language tries to treat all objects (and
types) in exactly the same way. This makes for a very powerful system but, in spite of
considerable research, Smalltalk programs are still bulky and notoriously slow.

With the & operator, C allows pointers to anything and this is a major source of errors
in C code that neither the compiler nor the run-time system can help to control.

For situations where one would like to use primitive objects in ways identical to user-
defined objects, BETA has defined 4 special patterns: IntegerObject, CharObject,
RealObject and BooleanObject. These are completely compatible with their primi-
tive counterparts (assignment, comparison, etc.) but dynamic creation (&), the refer-
ence operator ([]), inheritance, etc., are allowed on them.

Objects of
primitive types

26

9 Repetitions (Arrays)

In BETA arrays are called repetitions.

A: [10] @integer;

This repetition describes a set of static references to integers. 10 is called the range of
the repetition (the upper bound). In spite that the lower bound is always 1, repetitions
are flexible since the upper range is accessible as a local attribute of the repetition,
they can be assigned, extended and sub-range access is possible (slices).

BETA repetitions compared to its C counterpart:

Language BETA C

Declaration A: [10] @integer; int [10] A;

Lower 1 0

Upper A.range 9

Size A.range 10

Access A[i] A[i]

Assignment A -> B; not possible

Extend 10 -> A.extend not possible

Slices A[2..3] not possible

It should be noted that it is not possible to take the address of a repetition, i.e. A[] is
illegal (legal in C as &A).

In the current Mjølner BETA implementation, it is possible to declare repetitions of
types: char, boolean, integer, real, and any object reference:

(# Record: (# ... #);
 A: [100] ^Record;
do &Record[] -> A[1][]; (* create a new instance of Record and
 * assign it to first entry in A *)
 ...
#)

Besides assigning values to the elements of a repetition, whole repetitions can be as-
signed to other repetitions regardless of their ranges, e.g.:

a: [10] @integer;
b: [1] @integer;
do (for i: A.range repeat (* initialize a *)
 i -> a[i]; (* put i into i’th position in repetition a *)
 for);

 14 -> b[1]; (* a is [1,2,3,4,5,6,7,8,9,10], and
 * b is [14]
 *)

 a -> b; (* make repetition assignment:
 * a is [1,2,3,4,5,6,7,8,9,10], and
 * b is [1,2,3,4,5,6,7,8,9,10]
 *)

The next program illustrates how to use repetitions in a simple sorting program called
quick sort, originating from C.A.R Hoare. Given a repetition, one element is chosen
and the others partitioned into two subsets: those less than and those greater than or
equal to the partition element. The same process is then applied recursively to the two

Flexible and
extensible
repetitions

Object reference
repetitions

Quick sort
example

Repetitions 27

subsets. When a subset has fewer than two elements it does not need any sorting and
the recursion stops.

In BETA it is illegal to use the reference operator on repetitions, and since the quick
sort algorithm is inherently recursive with the repetition as function argument in each
recursion, we face a problem. However, this problem is easily solved in BETA. We
simply define a pattern containing a repetition, and using an object of this type as the
argument to quick sort.

 numberRepetition: (# r: [1] @Integer #);
 qsort:
 (# nr: ^numberRepetition;
 enter (nr[], ...)
 do
 #);
 numbers: @numberRepetition;
do
 ...
 qsort(numbers[],...);

So the limitation of not being allowed to take a reference to repetitions is easily cir-
cumvented.

The quick sort algorithm also uses a swap operation, that swaps two elements in the
repetition. This operation can be define locally inside (statically nested inside) qsort,
so swap can operate on the same repetition:

 qsort:
 (# nr: ^numberRepetition;
 swap:
 (# i,j: @Integer;
 temp: @Integer;
 enter (i,j)
 do nr.r[i] -> temp;
 nr.r[j] -> nr.r[i];
 temp -> nr.r[j];
 #);
 enter (nr[], ...)
 do ...
 #);

The complete code including a loop for reading numbers to be sorted from the key-
board follows below:

ORIGIN '~beta/basiclib/v1.5/betaenv';
---program: descriptor---
(# (* Hoare QuickSort program illustrating how to use
 * repetitions, simple pattern declarations,
 * block structure and recursion.
 *)
 numberRepetition: (# r: [1] @Integer #);
 qsort:
 (# nr: ^numberRepetition;
 left, right, last: @Integer;
 swap:
 (# i,j: @Integer;
 temp: @Integer;
 enter (i,j)
 do nr.r[i]->temp;
 nr.r[j]->nr.r[i];
 temp->nr.r[j];
 #);
 enter (nr[], left, right)
 do L: (if left >= right then (* stop if rep. contains *)
 leave L; (* fewer than two elements *)
 else
 (* move partition element to nr.r[1] *)

Local swap
function

28 Mjølner BETA System Tutorial

 (left, (left+right)/2) -> swap;
 left->last;
 (* partition *)
 (for i: right-left repeat
 (if nr.r[i+left] < nr.r[left] then
 last+1->last;
 (last,i+left) -> swap;
 if);
 for);
 (left,last) -> swap; (* restore partition elem. *)
 (nr[],left,last) -> qsort;
 (nr[],last+1,right) -> qsort;
 if);
 #);
 numbers: @numberRepetition;
 t: ^Text;
 i: @Integer;
do
 (* initialize a repetition with numbers typed
 * by the user
 *)
 'Type some numbers: '->puttext;
 getline->t[]; (* read all what the user types until newline *)
 1->i;
 t.reset;
 L: (if not t.eos then
 (* parse the text;
 * assuming that the user only types numbers
 *)
 (if i>numbers.r.range then
 (* remember to extend the repetition *)
 numbers.r.range->numbers.r.extend;
 if);
 t.getint->numbers.r[i];
 i+1->i;
 restart L;
 if);

 (* sort the repetition *)
 (numbers[],1,i-1) -> qsort;

 'Sorted numbers: '->puttext;
 (for j: i-1 repeat
 numbers.r[j]->putint; ' '->put;
 for);
 newline;
#)

Program 9.1: QuickSort.bet

Running the program and typing some numbers results in the following output:

nil% QuickSort
Type some numbers: 9 8 4 6 3 8 2 7 12 45 2 78 5 6 1 0 2
Sorted numbers: 0 1 2 2 2 3 4 5 6 6 7 8 8 9 12 45 78

9.1 Multidimensional Repetitions

It is not possible to make multidimensional repetitions using the current version of the
Mjølner BETA System. However, multidimensional repetitions are easily constructed,
e.g. a repetition with dimension NxM can be declared like:

mul_table: [N*M] @Integer;

which is intended to realize a two-dimensional array of the form:

Repetitions 29

M

N

j

i

The following example shows how the multiplication table constructed in section 4
previously can be stored in a two-dimensional repetition:

ORIGIN '~beta/basiclib/v1.5/betaenv'
---- program: descriptor ----
(#
 (* Multiplication Table 3
 *
 * Objective: Store values in a repetition
 *)
 N,M: @Integer;
do
 '\n\t** Multiplication Table ** \n\n'-> puttext;
 'Enter dimensions (NxM): '->puttext;
 getint -> N;
 getint -> M;
 (# mul_table: [N*M] @Integer;
 do (* build table *)
 (for i: N repeat
 (for j: M repeat
 i*j -> mul_table[(i-1)*M + j];
 for);
 for);

 (* print table *)
 newline;
 ' '->puttext;
 (for i: M repeat
 i -> screen.putint(# format::(# do 4-> width #)#);
 for);
 newline;
 (for i: N repeat
 i -> screen.putint(# format::(# do 4-> width #)#);
 (for j: M repeat
 mul_table[(i-1)*M + j]
 -> screen.putint(# format::(# do 4-> width #)#);
 for);
 newline;
 for)
 #);
#)

Program 9.2: MultiplicationTable.bet

30

10 Files

Our objective in this section is to open a file and analyze the characters that it con-
tains. This means that we will be doing input for the first time. At first, we will
merely count the characters in the file but we will also use command-line arguments
to apply the program to various files.

File handling in BETA is quite painless. Files for both input and output are imple-
mented through a single pattern: file. This pattern is not in the standard environment
betaenv but in an extended library called file which includes betaenv so it is suffi-
cient to replace betaenv by file in the ORIGIN statement.

A complete program skeleton to read a file called data1 is as follows:

ORIGIN '~beta/basiclib/v1.5/file'
--- program: descriptor ---
(# F: @File;
do 'data1' -> F.Name;
 F.openRead;

 (*... use F ...*)

 F.close;
#)

Here, F is declared as a file variable. The external file name is provided then open-
read is invoked. After use, the close operation should be called. Here we have used
only three attributes of the pattern file:

• Name

• OpenRead

• Close

Other useful attributes/operations are:

• OpenWrite: creates an empty file or erases the current contents of an existing
one

• OpenAppend: positions for writing at end of existing data

• OpenReadWrite: to allow Get, Put and Pos operations

• Get: returns the next character

• Put: writes or appends a character

• Eos: end-of-file check

The standard while <not end-of-file> loop for sequentially handling the contents
of a file translates into the following BETA code:

Loop:
 (if not F.Eos then
 F.get -> ch;(* reading the next element *)
 ...
 restart Loop
 if);

Here is the whole program for counting the characters in the file data1. We have
added visual feedback to the user by printing '.' on the screen for every 10 characters
read. Note that using the input/output predicates directly (i.e. put or get) without .
notation (i.e. f.get) accesses the standard streams (keyboard and screen).

File Library

File attributes

End-of-file loop

Files 31

ORIGIN '~beta/basiclib/v1.5/file'
---- program: descriptor ----

(# (*
 * CountChar.bet: Simple file handling program
 * -Counting characters-
 *)

 inFile: @file;
 Ch: @char;
 nc: @integer;
do
 'data1' -> inFile.name; inFile.openRead; (* OPENING *)
 'Reading: '-> puttext; inFile.name -> putline;
 Loop:
 (if not inFile.eos then
 inFile.get -> ch;
 nc + 1 -> nc;
 (if nc mod 10 = 0 then '.' -> put if);
 restart Loop
 if);
 newline;
 nc -> putint; ' characters in file' -> putline;
 inFile.close;
#)

Program 10.1: CountChar.bet

The output looks like this:

nil% CountChar
Reading: data1
....
41 characters in file

If the file data1 is not present, execution gives the following error message.

nil% CountChar

**** Exception processing
File exception for 'data1'
No such file

Beta execution aborted: Stop is called

Look at CountChar.dump'

10.1 Command-line arguments

At present, our program only works with one file data1. It would be more useful if
the name of the file could be specified by the user. A common way to allow this in
UNIX is to pass the name of the files to be used as arguments on the command line
used to invoke the program. For example, to count the characters in file data2, we
would like to invoke count as follows:

% CountChar data2

The demo file programs that come with BETA all work this way. To do this, there are
two useful functions in the standard environment which correspond to the UNIX C
argc and argv variables. These are:

• noOfArguments: which returns the number of arguments on the command line
and

• arguments: which given an integer parameter N returns the n'th argument on the
command line. Remember that argument 1 is the name used for the program -
CountChar1 in our example - and that the one we want will be argument 2.

File Exception

32 Mjølner BETA System Tutorial

Below, we show how count has been modified to use the command argument. To
keep things simple, we do not check the number of arguments or provide for an error
message. For examples of how to do this, see the demo programs.

ORIGIN '~beta/basiclib/v1.5/file'
---- program: descriptor ----

(# (* CountChar1.bet: Simple file handling program
 * -Counting characters-
 *)

 inFile: @file;
 Ch: @char;
 nc: @integer;
do
 2 -> Arguments -> inFile.name;
 inFile.openRead; (* OPENING *)

 'Reading: '-> puttext; inFile.name -> putline;
 Loop:
 (if not inFile.eos then
 inFile.get -> ch;
 nc + 1 -> nc;
 (if nc mod 10 = 0 then '.' -> put if);
 restart Loop
 if);
 newline;
 nc -> putint; ' characters in file' -> putline;
 inFile.close;
#)

Program 10.2: CountChar1.bet

And below we show the application of CountChar1 to the count program itself.

nil% CountChar1 CountChar1.bet
Reading: CountChar1.bet
..
...
681 characters in file
nil%

A nice thing about passing file names as command line arguments is that the shell will
expand the file name as expected. In particular, the '~' and '*' characters are inter-
preted correctly in the example below:2

nil% count ~/Beta/dat*
Reading: ../Beta/data1
....
41 characters in file

These also work:

• count ~vaucher/Beta/data1

• count ./data1

• count ../Beta/file/../data1

Were we to set the filename directly, it would be OK to include “.” and “..” in the
path name but “~” would not be handled properly.

2 For Unix shells only.

Files 33

10.2 Storing Characters in a Repetition

The following example program illustrates how to count each occurrence of charac-
ters in the input file. The count for each character is stored in a repetition:

occurrences: [256]@Char;

using the assignment:

occurrences[Ch]+1->occurrences[Ch];

and the occurrences are printed using a for and an if statement:

 (for i:256 repeat
 (if occurrences[i]>0 then (* only print if > 0 *)
 i->put; (* notice how a char can be printed *)
 ': '->puttext;
 occurrences[i]->putint;
 newline;
 if);
 for);

The complete program is as follows:

ORIGIN '~beta/basiclib/v1.5/file'
---- program: descriptor ----

(# (* CountChar2.bet: Simple file handling program
 * -Counting occurrences of characters-
 *)

 inFile: @file;
 Ch: @char;
 nc: @integer;
 occurrences: [256]@Char;
do
 2 -> Arguments -> inFile.name ;
 inFile.openRead; (* OPENING *)

 Loop:
 (if not inFile.eos then
 inFile.Get -> Ch;
 nc+1->nc;
 occurrences[Ch]+1->occurrences[Ch];
 restart Loop
 if);

 newline;
 (for i:256 repeat
 (if occurrences[i]>0 then (* only print if > 0 *)
 i->put; (* notice how a char can be printed *)
 ': '->puttext;
 occurrences[i]->putint;
 newline;
 if);
 for);

 'Total '->puttext;
 nc -> putint;
 ' characters in file' -> putline;
 inFile.close;
#)

Program 10.3: CountChar2.bet

And below we show the application of CountChar2 to the CountChar2.bet program
itself.

Indexing using a
char

34 Mjølner BETA System Tutorial

nil% CountChar2 CountChar2.bet

 : 241
#: 2
': 8
(: 8
): 8
*: 11
+: 2
-: 117
.: 7
/: 7
0: 2
1: 3
2: 3
4: 1
5: 2
6: 2
:: 9
;: 21
>: 12
@: 4
A: 1
C: 6
E: 1
F: 6
G: 3
I: 3
L: 3
N: 4
O: 2
P: 1
R: 2
S: 1
T: 1
[: 5
]: 5
a: 20
b: 5
c: 34
d: 5
e: 55
f: 13
g: 6
h: 13
i: 41
l: 20
m: 5
n: 39
o: 26
p: 16
r: 34
s: 16
t: 31
u: 15
v: 1
w: 3
x: 2
y: 1
~: 1
Total 952 characters in file
nil%

35

11 Directory

Directory handling is very similar to file handling in the Mjølner BETA System. Files
and directories have similar properties like name, path, etc. Files are special since the
contents typically are characters that can be read and written, directories are special
since the contents are files and directories. These similar and special properties are
both modeled in the file and directory libraries.

When using the directory library, a directory is simply declared as

ORIGIN '~beta/basiclib/v1.5/directory';
...
 d: @directory;
...

A directory can be given a name:

'myDir' -> d.name;

And it can be tested for existence, content, entries, and be scanned:

• d.exists: returns true if the directory exists

• d.empty: returns true if the directory has some content

• d.noOfEntries: returns the number of entries (files and directories) in the direc-
tory.

• d.scanEntries: calls INNER for each entry (found) in the directory.

The following program shows a simple use of directory: The directory with the path
given as argument is scanned, and the names of all the entries are printed.

ORIGIN '~beta/basiclib/v1.5/directory';
---program: descriptor---
(# d: @directory;
do (if noOfArguments <> 2 then
 'Usage: ' -> puttext; 1->arguments->puttext; ' path' -> putline;
 stop;
 if);

 (* set name of directory *)
 2 -> arguments -> d.name;

 (* print name of directory *)
 newline;
 d.name -> puttext;

 (* test for content *)
 (if d.empty then ' is empty.' -> putline;
 else ' is not empty.' -> putline;
 if);

 'It contains the following '-> puttext;
 d.noOfEntries -> putint;
 ' entries:' -> putline;

 (* scan the entries *)
 d.scanEntries
 (# (* found refers to the current entry *)
 do found.path -> putline;
 #);

Directory and File

Directory
attributes

36 Mjølner BETA System Tutorial

 newline;
#)

Program 11: ListDir.bet

This program also checks for the number of arguments. If the number of arguments is
not 2, then an error message is printed, and stop is called. stop is defined in the basic
environment betaenv, and when called, terminates the execution.

Below we show the output of ListDir on the current working directory:

nil% ListDir .

. is not empty.
It contains the following 17 entries:
.
..
CountChar.bet
CountChar1.bet
CountChar2.bet
ExploreTypes.bet
HelloWorld.bet
ListDir
ListDir.ast
ListDir.bet
MultipleAssignment.bet
Multiplication1.bet
Multiplication2.bet
Multiplication3.bet
SimpleTypes.bet
SquareRoot.bet
sun4s

Stop operation

37

12 Text Manipulation

The basic BETA environment defines a Text pattern for manipulating texts. Text
constants have been used a lot in the previous examples. Here we explore more on the
many facilities of the text concept. Constant texts can be assigned to text variables
and texts can be added:

(# t: @text;(* declare t as a static ref. to a text object *)
 r: ^text;(* declare t as a dynamic ref. to a text object *)
 i: @integer;
do 'foo' -> t; (* assign a constant to t = 'foo' *)
 ' ' -> t.append; (* append one blank to t = 'foo ' *)
 ' ' -> t.prepend; (* prepend one blank to t = ' foo ' *)
 t.length -> i; (* assign the length of t to i (5) *)
 (2,4) -> t.sub -> r[]; (* get substring 'foo' from t *)
#)

Users do not have to bother about extending the text when adding or manipulating.
The length of the text object will automatically be adjusted. Many functions on texts
uses a current position in the text (t.pos). For example:

(# t: @text;
do 'foo'->t; (* sets pos to t.length *)
 'bar'->t.puttext; (* adds 'bar' after current pos: t='foobar'*)
 1->t.pos;
 'bar'->t.puttext; (* t = 'barbar' *)
#)

Texts sub-strings can be fetched and assigned to another text object reference, and
texts can be inserted at a specified position:

(# t: @text; (* declare t as a static ref. to a text object *)
 r: ^text; (* declare t as a dynamic ref. to a text object *)
do ' foo ' -> t; (* assign a constant to t = ' foo ' *)
 (2,4) -> t.sub -> r[]; (* get substring 'foo' from t *)
 ('bar',5) -> t.insert; (* insert substring 'bar' in t = ' foobar ' *)
#)

Texts can be compared using the equal function.

(# t: @text;
 b: @boolean;
do ...
 'foo' -> t.equal -> b; (* case sensitive comparison *)
 'foo' -> t.equalNCS -> b; (* not case sensitive comparison *)
#)

The following example program is an extended version of the character counting pro-
grams constructed before. The program can count either characters or lines in the in-
put file. In addition to text comparison, the program uses two new features.

• getline: reads from input, i.e. what the user types. Waits until the user has typed
a newline

• ascii.newline: ascii is an object defined in betaenv containing attributes for
manipulating and comparing ASCII characters. newline is a generic definition of
the newline character. ascii also contains conversion functions, e.g. toLower,
definition of white space, e.g. isWhiteSpace, etc.

ORIGIN '~beta/basiclib/v1.5/file'
---- program: descriptor ----

Flexible and
extensible text
concept

Comparing texts

ASCII object

38 Mjølner BETA System Tutorial

(# (* FileCount.bet: Simple file handling program
 * -Counting lines/characters-
 *)

 inFile: @file;
 Ch: @char;
 nc: @integer;
 answer: ^text;
 lines, chars: @Boolean;
do
 2->Arguments->inFile.name ;
 inFile.openRead; (* OPENING *)
 'Count what in '''->puttext; inFile.name->puttext;
 ''' (lines/chars)? '->puttext;
 (* read from keyboard – what the user types *)
 getline->answer[];
 (if true
 //('lines'->answer.equal) then true->lines;
 //('chars'->answer.equal) then true->chars;
 else
 'Unknown input'->putline;
 Stop; (* end execution *)
 if);
 Loop:
 (if not inFile.eos then
 inFile.Get->Ch;
 (if true
 //lines then (if Ch//ascii.newline then nc + 1->nc if);
 //chars then nc + 1->nc;
 if);
 restart Loop
 if);
 newline;
 nc->putint;
 (if true
 //lines then ' lines '->puttext;
 //chars then ' characters '->puttext;
 if);
 'in file '''->Puttext;
 inFile.name->puttext;
 '''\n\n'->puttext;
 inFile.close;
#)

Program 12.1: FileCount.bet

The output running FileCount on itself is:

nil% FileCount FileCount.bet
Count what in 'FileCount.bet' (lines/chars)? lines

46 lines in file 'FileCount.bet'

nil% FileCount FileCount.bet
Count what in 'FileCount.bet' (lines/chars)? chars

1238 characters in file 'FileCount.bet'

Finally, the table below lists some of the useful attributes of texts:

Text Manipulation 39

t.length Returns number of characters of text
t.pos Returns current position
t.empty -> b Returns True if t is empty
t.clear -> b Sets the length to zero
c -> t.put Appends the character c to t
t.get -> c Returns the character at current position,

and increments position by 1
t.peek -> c Returns the character at current position,

without updating the position
r[] -> t.puttext Adds r to t starting at current position
r[] -> t.prepend Prepends the text r to t
r[] -> t.append Appends the text r to t
i -> t.putint Inserts the integer i to t starting at

current position
t.getint -> i Reads the next integer from t starting at

current position
t.getAtom -> r[] Reads characters until next white-space

and returns the text
t.getLine -> r[] Reads characters from t until next newline

and returns that text.
i -> t.inxget -> c Returns the character at position i
(c,i) -> t.inxput Replaces the character at position i
t.copy -> r[] Returns a copy of t
r[]->(t.copy).append->s[] Returns s[] where s = t cat r3

r[]->(t.copy).prepend->s[] Returns s[] where s = r cat t
t.scanAtom(# do … #) Scans from current position until next

white-space and call INNER for each char
t.scanAll(# do … #) Scans all the elements in t and calls IN-

NER for each char
(i,j) -> t.sub -> r[] Returns the text from position i to posi-

tion j from t
(i,j) -> t.delete Deletes characters in the range i:j
r[] -> t.less Tests whether r is less than t. Lexico-

graphic ordering is used
r[]->t.greater Tests whether r is greater than t. Lexico-

graphic ordering is used
t.makeLC Converts all characters to lower case
t.makeUC Converts all characters to upper case
c -> findAll(# do … #) Calls INNER for each occurrence of c in t
t.EOSerror Called when reading past length of the

text

Please see the basic libraries manual [MIA 90-8] for more details about the text con-
cept.

12.1 Advanced Formatted Input and Output

The Mjølner BETA System also provides facilities for formatted input and output
(similar to the scanf and printf functions in C). These facilities are implemented in
the form of the getFormat and putFormat operations defined in the
'~beta/basiclib/v1.5/formatio' library.

Both getFormat and putFormat take a text string as argument. This text string must
contain a format specification of the input to be read from (respectively output to) the
stream. The format string may be any string, possibly with one or more embedded
markers. The markers specify the variable parts of the expected input (respectively

3 Actually this is an example of how to combine patterns that exits references. Append is called on

the reference returned by copy. This facility is called computed remote.

Useful Text
operations

More information

getFormat and
putFormat

40 Mjølner BETA System Tutorial

output), such as integer values. The markers are indicated in the string by a leading '%'.
Following the '%' is the specification of the marker type.

In section 8 previously, the example program uses a complex Dump function to print
out three numbers and some text. putFormat could have been used instead as illus-
trated in the following example.

ORIGIN '~beta/basiclib/v1.5/formatio'
---- program: descriptor ----
(#
 (* Static and Dynamic references *)

 Point: (# X,Y: @integer;
 enter (X,Y)
 exit (X,Y)
 #);

 refA : ^Point;
 P1,P2: @Point;

 Dump:
 (#
 do 'P1: %3d, P2: %d, refA: %d\n'->
 putFormat(# do P1.X -> d; P2.X -> d; refA.x -> d #)
 #);

do
 'Dynamic references' -> putline;
 newline;

 &Point[] -> refA[];

 (1,1) -> P1-> P2 -> refA;
 Dump;

 (2,2) -> P2;
 (3,3) -> refA;
 Dump;

 P1[] -> refA[]; Dump;
 P2[] -> refA[]; Dump;

 (1,1) -> P1; (2,2) -> P2; (3,3) -> refA;
 Dump;

 (111,333) -> &Point -> P1;
 Dump;
 Newline;
#)

Program 12.2: StaticAndDynamic2.bet

The output is exactly the same as in section 8:

nil% StaticAndDynamic2
Dynamic references

P1: 1, P2: 1, refA: 1
P1: 1, P2: 2, refA: 3
P1: 1, P2: 2, refA: 1
P1: 1, P2: 2, refA: 2
P1: 1, P2: 3, refA: 3
P1: 111, P2: 3, refA: 3

41

13 Container Library

One of the strengths of the Mjølner BETA System is the large set of available li-
braries. One of very useful libraries, is the container libraries. The container library
supports a number of different ways to store data: sets, multisets, lists, hashtables,
stacks, etc. Here we will show how to use the list and the hashTable.

13.1 List Example

The list library is available in the '~beta/containers/v1.5/list', thus this library
must be included when using lists.

We will use the directory example above, and make a list to store the entries of the di-
rectory.

A list is simply declared as follows:

dirList: List
 (# element:: Text #);

Here we declare a pattern named dirList that inherits from the list pattern in the
'~beta/containers/v1.5/list' library. We specify the type of the elements in the
list by extending the virtual pattern element to be the type of text. For details about
the BETA concept of virtual patterns, see the BETA language introduction [MIA 94-
26].

The dirList pattern inherits an operation from the list pattern that can be used to
add elements, so we can simply add an element to the list by:

dirname[] -> dirList.append;

Lists have several other operations. Some useful operations are briefly described in
the table below. Please see the container manual [MIA 92-22] for more details.

l.clear Removes all elements currently in the list, mak-
ing it empty

l.empty -> b Returns true if the list is empty
l.size -> i Returns the number of elements currently in the

list
equal:: (# … #) Defines the equality test used by the implementa-

tion of the different operations. Users of list
must further bind equal to contain the proper
equality test for the specified element type.
Default equality test for equal references (i.e.
the same object)

e[] -> l.has Takes an element, and checks whether it is in the
list

l.scan(# … #) Scans through the list, invoking INNER for each
element in the list. In each turn of the scan,
"current" refers to the current element in the
list.

l.copy-> ll[] Default copy is one-level (shallow) copying.
I.e. copying the list and all objects in the
list.

elm[]->l.prepend insert elm as first element
elm[]->l.append insert elm as last element

Virtual patterns in
BETA

Useful operations
on List

42 Mjølner BETA System Tutorial

In the table above, it is mentioned, that the equality test should always be defined. For
our directory list this can be done like:

dirList: List
 (# element:: Text;
 equal::
 (# (* since the element type is text simply test whether the
 * two text strings are equal
 *)
 do left[]->right.equal->value;
 #);
 #);

The extended directory listing program can the be as follows:

ORIGIN '~beta/basiclib/v1.5/directory';
INCLUDE '~beta/containers/v1.5/list';
---program: descriptor---
(# dirList: @List
 (# element:: Text;
 equal::
 (# (* since out element type is text simply test whether the
 * two text strings are equal
 *)
 do left[]->right.equal->value;
 #);
 #);
 d: @directory;
do (if noOfArguments <> 2 then
 'Usage: ' -> puttext; 1->arguments->puttext; ' path' -> putline;
 stop;
 if);
 (* set name of directory *)
 2 -> arguments -> d.name;
 (* print name of directory *)
 newline;
 (* initialize list *)
 dirList.init;
 (* scan the entries and append to list *)
 d.scanEntries
 (# (* found refers to the current entry *)
 do found.path -> dirList.append;
 #);
 (* dirList now contains all the names of the entries in the
 * directory
 *)
 dirList.scan
 (# (* current refers to the current text element *)
 do current[] -> putline; (* print the text *)
 #);
#)

Program 13.1: SaveListDir.bet

Later we shall see how this list can be saved (persistent) and used in another program.

13.2 HashTable Example

We could also choose to save the file list in a hash table. A hash table is typically used
to store objects that should be retrieved fast from the table. In order to store an object
in a hash table it is necessary to define a hash function that given an element returns a
value that can be used in the hash table implementation. A good hash function for our
file list could be

hashFunction::
 (# (* scan all characters in the filename and compute a value

Specialize List

Container Library 43

 * for the hash function
 *)
 do name.scanAll(# do value*100 + ch -> value #);
 #);

The hashtable can then be defined as follows:

 dirTable: @ hashTable
 (# element:: Text;
 hashFunction::
 (#
 do e.scanAll(# do value*100 + ch -> value #);
 #);
 #);

And the complete program using this hash table:

ORIGIN '~beta/basiclib/v1.5/directory';
INCLUDE '~beta/containers/v1.5/hashTable;
---program: descriptor---
(# dirTable: @ hashTable
 (# element:: Text;
 hashFunction::
 (#
 do e.scanAll(# do value*100 + ch -> value #);
 #);
 #);
 d: @directory;
do (if noOfArguments <> 2 then
 'Usage: ' -> puttext; 1->arguments->puttext; ' path' -> putline;
 stop;
 if);
 (* set name of directory *)
 2 -> arguments -> d.name;
 (* print name of directory *)
 newline;
 (* initialize table *)
 dirTable.init;
 (* scan the entries and append to list *)
 d.scanEntries
 (# (* found refers to the current entry *)
 do found.path -> dirTable.insert;
 #);
 (* dirTable now contains all the names of the entries in the
 * directory
 *)
 dirList.scan
 (# (* current refers to the current text element *)
 do current[] -> putline; (* print the text *)
 #);

 (* print hashtable statistics on screen*)
 '\nStatistics: '->screen.putline;
 dirTable.statistics(# do screen[]->print #);
#)

Program 13.2: DirTable.bet

Running this program on the current directory gives the following output:

nil% DirTable .

StaticAndDynamic.bet
FileCount.bet
ExploreTypes.bet
CountChar2.bet
CountChar1.bet

44 Mjølner BETA System Tutorial

CountChar.bet
Multiplication3.bet
Multiplication2.bet
Multiplication1.bet
MultiplicationTable.bet
DirTable.bet
DirTable.ast
HelloWorld.bet
SaveListDir.bet
QuickSort.bet
SquareRoot.bet
..
.
MultipleAssignment.bet
DirTable
sun4s
ListDir.bet
SimpleTypes.bet

Statistics:
Histogram: (0,2,1,3,0,0,0,0,2,3,0,3,2,0,0,2,0,0,0,1,2,2,2,0,1)
Maximum Collisions: 3
Minimum Collisions: 0
Average Collisions: 2

More information and more examples using the other containers in this library can be
found the Mjølner BETA System manual [MIA 92-22].

More information

45

14 Exceptions

The pattern exception defined in '~beta/basiclib/v1.5/betaenv' is used as a
superpattern for all exceptions in the Mjølner BETA System. The default action of an
exception is to stop the program execution and print an informative error message on
the screen. In addition, the file <programname>.dump contains a dump of the call
stack. Exception uses the pattern Stop for termination. Specific error messages can
be defined by specializing the exception pattern. The attribute msg of exception is a
text object that is used to accumulate error messages . If you wish to prevent the
program execution from being stopped in order to handle the exception during execu-
tion, the boolean attribute continue of exception must be set to true.

The exceptions are often defined as a virtual pattern of other patterns (such as the
file pattern, discussed below).

In order to differentiate between potential fatal exceptions and more harmless excep-
tions, the notification pattern is also defined in betaenv defined as:

notification: exception(# do true->continue; INNER #);

14.1 Examples Using Exception

In order to illustrate the use of exceptions, let us return to the previous file example.
Without using the exception handling facilities an attempt to open a non-existing file
produced the following error messages:

nil% CountChar

**** Exception processing
File exception for 'data1'
No such file

Beta execution aborted: Stop is called

Look at CountChar.dump'

Now let us see what can be done by using exceptions.

The binding of noSuchFileError shows how to prevent the system from stopping the
execution when the program attempts to open a non-existing file. Instead the user is
prompted for another file name. The binding of noSpaceError shows that a message
can be added to msg.

ORIGIN '~beta/basiclib/v1.5/file'
(# inFile: @file
 (# noSuchFileError:: (* continue execution *)
 (# do true->continue; false->OK #)#);
 outFile: @file
 (# noSpaceError:: (* extend exception; put message to msg *)
 (# do 'It is time to delete garbage!'->msg.putline #)#);
 OK: @boolean;

do 'in.bet' -> inFile.name;
 true -> OK;
 openFile: (* labeled block *)
 (#
 do inFile.openRead;
 (if not OK then
 'File does not exist!' -> screen.putline;
 'Type input file name: ' -> screen.puttext;

Exception pattern

Notification
pattern

46 Mjølner BETA System Tutorial

 inFile.readFileName;
 true -> OK;
 restart openFile (* restart labeled block *)
 if)#);

 'out.bet' -> outFile.name;
 outFile.openWrite;
 readFile:
 (#
 do (if not inFile.eos then
 false -> inFile.gettext -> outFile.puttext;
 outFile.newline;
 restart readFile
 else leave readFile
 if)#);
 inFile.close;
 outFile.close;
#)

An attempt to open a non-existing file will produce the following error messages:

File does not exist!
Type input file name:

It gives the possibility to proceed with another file name.

In case of disk space exhausted, the following message will be printed on the screen
before the program execution is stopped:

**** Exception processing
Error in file 'in.bet'
File system is full
It is time to delete garbage!

The first line is from the general pattern exception, the second and the third lines are
from the binding of noSpaceError in file and the fourth line is from the binding
above, i.e. at the user level.

47

15 Access to External Functions and
Data

The Mjølner BETA System allows a tight integration between the BETA language
and routines and data structures, originating from the C language. Many of the li-
braries in the Mjølner BETA System (such as the interface to the X Window System)
is based on this tight integration.

The integration allows for two types of integration, namely integration of routines,
and integration of data structures. The facilities give the BETA programmer the pos-
sibility to invoke routines, written in C, and for accessing data structures, allocated in
C. Moreover, the facilities also works the other way around, namely by allowing
BETA patterns to be invoked (instantiated) from C routines, and BETA objects to be
manipulated by C routines.

15.1 Example

Imagine that we have a database with person records. The database has a C interface
and we like to use the database in BETA.

The following C declarations and functions illustrates a simplified database:

typedef struct Person {
 long ID;
 char *firstname,*surname;
 char sex; /* m(ale) or f(emale) */
} Person;

#define MaxPersons 200

Person Persons[MaxPersons];

Person *getPerson(long ID) {
 if (ID>=0 && ID<MaxPersons)
 return &Persons[ID];
 else
 return 0;
}

long putPerson(long ID, char * firstname, char* surname, char sex) {
 if (ID>=0 && ID<MaxPersons) {
 Persons[ID].ID=ID;
 Persons[ID].firstname=firstname;
 Persons[ID].surname=surname;
 Persons[ID].sex=sex;
 return 1;
 } else {
 return 0;
 }
}

We can then interface to the two functions and the Person struct by the following
external and externalRecord declarations:

getPerson: external
 (# ID: @integer;
 ptr: @integer;

Integration of
routines and data

Callbacks from C
to BETA

The C database
interface

48 Mjølner BETA System Tutorial

 enter ID
 exit ptr
 #);
putPerson: external
 (# ID: @integer;
 firstname, surname: [1]@char;
 sex: @char;
 result: @boolean;
 enter (ID,firstname,surname,sex)
 exit result
 #);
Person: externalRecord
 (# ID: @long(# pos::(# do 0-> value #)#);
 firstname: @long(# pos::(# do 4-> value #)#);
 surname: @long(# pos::(# do 8-> value #)#); (* char ptr *)
 sex: @byte(# pos::(# do 12-> value #)#);
 #);

Interfacing to C routines are done by specifying the external pattern as the superpat-
tern for the BETA pattern, which, when invoked, should invoke the C routine. The
name of the entry call of the C routine should be the same as the name of the BETA
pattern. The BETA compiler will then generate a call to an external routine with the
same name as the BETA pattern, using C's style of passing parameters. The pattern:

getPerson: external
 (# ID: @integer;
 ptr: @integer;
 enter ID
 exit ptr
 #);

describes the interface to an external C function with the name getPerson.

Transferring data to and from the external languages is dealt with through two special
purpose patterns: cStruct and externalRecord. cStruct is the means for specifying
a BETA object with a specific storage layout, and with the purpose of transferring this
object to the external language for processing. That is, a cStruct object is allocated
by BETA and made available for processing externally. externalRecord is the
means for specifying a BETA interface into some data structures, allocated externally.
The pattern:

Person: externalRecord
 (# ID: @long(# pos::(# do 0-> value #)#);
 firstname: @long(# pos::(# do 4-> value #)#);
 surname: @long(# pos::(# do 8-> value #)#); (* char ptr *)
 sex: @byte(# pos::(# do 12-> value #)#);
 #);

describes an interface to an external allocated struct (Person) with four fields.

We can create a person by calling putPerson like this:

(117,'Roger','Smith','m')->putPerson

We can get a person from the database by:

117 -> getPerson -> aPerson.ptr;

Notice, that we must assign to the ptr attribute of the externalRecord Person.

The Person can now be examined like any other BETA object, except for the “string”
declarations firstname and surname. These refers to C strings. The Mjølner BETA
System includes a cString library for easy interface to these C strings, so we simply
make a small operation to print out the strings:

putCString:
 (# cstr: @cString;
 enter cstr

external pattern

cStruct and
externalRecord

cString

Access to External Functions and Data 49

 do cstr.get -> puttext;
 #);

Finally we must specify where to find the C object file we are interfacing to. This is
done using a OBJFILE specification. The specification:

OBJFILE nti '$/cperson.obj'
 mac '$/cperson.obj'
 default '$/cperson.o';

means that we should link with the file cperson.o located in the subdirectory with
the name of the platform—the same name as the code subdirectory ('$' expands to
name of platform).

The C object file can also be created automatically by using make files. The
specification:

MAKE nti 'person_nti.make'
 mac 'person_mac.make'
 default 'person_unix.make';

describes for each platform which make file must be used. The Unix version looks
like:

$(MACHINETYPE)/cperson.o: cperson.c
$(CC) -c -o $(MACHINETYPE)/cperson.o cperson.c

And now the complete program:

ORIGIN '~beta/basiclib/v1.5/external';
INCLUDE '~beta/sysutils/v1.5/cstring';
OBJFILE nti '$/cperson.obj'
 mac '$/cperson.obj'
 default '$/cperson.o';
MAKE nti 'person_nti.make'
 mac 'person_mac.make'
 default 'person_unix.make';
--program: descriptor--
(#
 getPerson: external
 (# ID: @integer;
 ptr: @integer;
 enter ID
 exit ptr
 #);
 putPerson: external
 (# ID: @integer;
 firstname, surname: [1]@char;
 sex: @char;
 result: @boolean;
 enter (ID,firstname,surname,sex)
 exit result
 #);
 Person: ExternalRecord
 (# ID: @long(# pos::(# do 0-> value #)#);
 firstname: @long(# pos::(# do 4-> value #)#);
 surname: @long(# pos::(# do 8-> value #)#); (* pointers to
text *)
 sex: @byte(# pos::(# do 12-> value #)#);
 #);
 putCString:
 (# cstr: @cString;
 enter cstr
 do cstr.get -> puttext;
 #);
 aPerson: @Person;
do

OBJFILE

MAKE

50 Mjølner BETA System Tutorial

 (* store a person in C-database *)
 (if not ((117,'Roger','Smith','m')->putPerson) then
 'Failed to store person'->putline; stop;
 if);
 (* get person from C-database *)
 117 -> getPerson -> aPerson.ptr;
 (if aPerson.ptr = 0 then
 'Failed to retrieve person' -> putline; stop;
 if);
 'Person: ' -> puttext;
 aPerson.ID -> putint;
 ' ' -> put;
 'Name: ''' -> puttext;
 aPerson.firstname -> putCString;
 ' ' -> put;
 aPerson.surname -> putCString;
 ''' ' -> puttext;
 'Sex: ' -> puttext;
 aPerson.sex-> put;
 newline;
#)

Program 15: Person.bet

Output of running the program is:

nil% Person
Person: 117 Name: 'Roger Smith' Sex: m

51

16 Using the Persistence Library

The persistence library can be used to save your data on the disk for later use in an-
other program execution. Any object created can be saved using the persistence li-
brary. The patterns defining the objects do not have to be extended in any way before
the objects can be saved. Imagine that we like to save the character count in the pre-
vious example for usage in another program. The pattern definition of the directo-
ryList can be described in a separate file (called DirList.bet) as follows:

ORIGIN '~beta/containers/v1.5/list
--- lib: Attributes ---
 directoryList: List
 (# ...
 #);

Program 16.1: DirList.bet

Notice, that we do not define a program fragment in this file, instead we define at-
tributes only. A file describing simple pattern declarations only can use the slot called
lib defined in the betaenv environment (see section 19 below about the fragment
system, for more details). The declarations in the DirList file can be used by includ-
ing the file in the program. Thus the program listed Program 13.1 can be changed
like:

ORIGIN '~beta/basiclib/v1.5/file';
INCLUDE 'DirList'
---- program: descriptor ----
(# dir: @directory;
 dirList: ^directoryList;
do &directoryList[] -> dirList[];
 ...
#)

Program 16.2: SaveListDir2.bet

We can now save DirList using the persistent store, The persistent store is available
as a library in the file '~beta/persistentstore /v1.5/persistentstore. By
including this file we can use the persistentstore pattern to save the list. persis-
tentstore has the following useful operations:

• persistentstore.create: given a text create a persistent store with that name

• persistentstore.openWrite: given a name opens the persistent store with read
and write permission. openRead opens a store with read permission only

• persistentstore.get: given a name and a pattern variable, returns an object in
the storage with that type

• persistentstore.put: given a name and an object, stores that object in the per-
sistent store

• persistentstore.close: closes the persistent store

The following program is similar to the one above, except that it stores the dirList
in a persistent store.

ORIGIN '~beta/basiclib/v1.5/file';
INCLUDE '~beta/persistentstore/v1.5/persistentstore;
INCLUDE 'DirList'

Making a library

Operations on a
persistent store

52 Mjølner BETA System Tutorial

---- program: descriptor ----

(# (* Saving the file names in a persistent store *)

 dir: @directory;
 theStore: @persistentstore;
 dirList: ^directoryList;
do &directoryList[] -> dirList[];

 ... (* Program 13.1 *)

 'fileStore'->theStore.create;
 (dirList[],'myList')->theStore.put;
 theStore.close;
#)

Program 16.3: SaveListDir3.bet

The persistent store is now located in the file directory: fileStore.

Finally, we can make a program that reads the list, and examines the data:

ORIGIN '~beta/basiclib/v1.5/file';
INCLUDE '~beta/persistentstore/v1.5/persistentstore;
INCLUDE 'DirList'
---- PROGRAM: descriptor ----

(# (* Reading counted occurrences of characters
 * from a persistent store
 *)
 theStore: @persistentstore;
 dirList: ^directoryList;
do
 'fileStore'->theStore.openWrite;
 ('myList', directoryList##)->theStore.get->dirList[];
 dirList.scan(# ... #);
 ...
 theStore.close;
#)

Program 16.4: GetListDir.bet

A complete description of the facilities in the persistent store library can be found in
[MIA 91-20].

More information

53

17 Graphical User Interface

In this section we will show how to use two different graphical user interface li-
braries. The first example uses the device independent library called GUIEnv and the
second example uses the X11 specific MotifEnv library.

17.1 GUIEnv

GUIEnv is a device independent graphical user interface library, intended for making
applications with graphical user interfaces running on:

• Macintosh
• X Window System (Motif Widgets)
• Windows (Win32)

GUIenv realizes user interfaces of many different look-and-feels. GUIenv allows
construction of portable user interfaces in such a way that the look-and-feel of the ap-
plications, will conform to the standardized look-and-feel of the specific platform.

The basic GUI library is defined in the file '~beta/guienv/v1.4/guienv'. An ap-
plication with a graphical user interface, thus must have origin in this file. The
guienv library defines a pattern also called guienv in which all the user interface at-
tributes, operations, and patterns are available. So every GUIEnv application typically
has the following outline:

ORIGIN '~beta/guienv/v1.4/guienv';
-- program: descriptor --
guienv
 (# (* write GUI code here *)
 #)

Our task will be to develop a simple texteditor that can open a text file, edit the file
and save the file. We would like an application that looks like the following (Motif
version):

We will need a window to display the text in. guienv defines a window pattern, that

guienv
application
outline

Texteditor
example

Window

54 Mjølner BETA System Tutorial

we can use. We would like that this window is opened when the application starts up,
so in the do part of the specialization of guienv we open the window.

guienv
(# theWindow: @window
 (# ...
 #);
do theWindow.open;
#);

Inside the window we want a texteditor that can contain the text from the file. guienv
supplies a textEditor for this purpose:

theWindow: @window
 (# thetextEditor: @textEditor
 (# open::
 (#
 do theWindow.size -> Size;
 True -> bindBottom; True -> bindRight
 #)
 #);
 open::(# do thetextEditor.open #);
 #);
do theWindow.open;

The lines:

open::
 (#
 do theWindow.size -> Size;
 True -> bindBottom; True -> bindRight
 #);

means that we extend the open virtual of textEditor, set the size of the textEditor
to be same size as the window, and bind the textEditor to the bottom and right cor-
ners of the window.

The next thing we need to do, to complete the user interface is to make a menu. The
application should have a menu with three items: open a file, save the file, and quit
the application. guienv supplies a standard menubar on each window for this pur-
pose. We extend the standard menubar with one menu called File, and we make
three items in this menu called Open, Save, and Quit.

menubarType::
 (# fileMenu: @menu
 (# openItem: @menuitem
 (# ... #);
 saveItem: @menuitem
 (# ... #);
 quitItem: @menuitem
 (# ... #);
 open::
 (#
 do 'File' -> name;
 openItem.open; openItem[] -> append;
 saveItem.open; saveItem[] -> append;
 quitItem.open; quitItem[] -> append;
 #)#);
 open::(# do fileMenu.open; fileMenu[] -> append #);
 #);

Like the textEditor, we extend the open virtual of the File menu to open and ap-
pend the three items and to give the menu a title.

Each menuitem has two virtuals that needs to be extended: eventHandler and open.
For the quit item we do the following:

TextEditor

File menu

Quit item

Graphical User Interface 55

quitItem: @menuitem
 (# eventHandler::
 (# onSelect::(# do Terminate #)
 #);
 open::(# do 'Quit' -> name #);
 #);

The eventHandler has a virtual called onSelect that is invoked whenever this
menuitem is selected. We call Terminate (defined in guienv) to stop execution. The
open virtual is extended to give the item a name.

Finally, we need to do some file handling in the open and save items. The open item
does the following when selected

onSelect::
 (# theText: @StyledText;
 do theWindow[] -> fileSelectionDialog -> textFile.name;
 textFile.openRead;
 textFile.scan
 (# while:: (# do true->value #);
 do ch -> theText.put
 #);
 theText[]->theTextEditor.contents.contents;
 textFile.close;
 #)

First we call fileSelectionDialog that opens a standard file open dialog and re-
turns a name of a file that we can open (we ignore errors, pressing cancel, etc.). We
open the file, read all the file content into a StyledText and sets the StyledText as
the content of the textEditor. StyledText is a specialization of Text with specifi-
cation of face, font, size, etc.

The save item does the following when selected:

onSelect::
 (# theText: @Text;
 do textFile.openWrite;
 theTextEditor.contents.contents->textFile.puttext;
 textFile.close;
 #)

Because StyledText is a specialization of Text we can write the StyledText con-
tents of the TextEditor directly to the file using the puttext operation.

We open the same file, write the textEditor content into the file and close the file.

The complete code needed for this application is shown below.

ORIGIN '~beta/guienv/v1.4/guienv';
INCLUDE '~beta/guienv/v1.4/fields'
 '~beta/guienv/v1.4/stddialogs'
 '~beta/basiclib/v1.5/file';
-- program: descriptor --
guienv (* inherit from guienv *)
(# theWindow: @window (* make a window *)
 (# menubarType:: (* extend the menubar *)
 (# fileMenu: @menu (* make a file menu *)
 (# textFile: @file; (* the file we open and save *)
 openItem: @menuitem (* make an open item *)
 (# eventHandler::
 (* extend the virtual that is called when
 * this menu item is selected *)
 (# onSelect::
 (# theText: @StyledText;
 do theWindow[] -> fileSelectionDialog
 -> textFile.name;
 textFile.openRead;
 textFile.scan
 (# while:: (# do true->value #);

Open item

Standard file
open

Save item

The complete
code

56 Mjølner BETA System Tutorial

 do ch -> theText.put
 #);
 theText[]->
 theTextEditor.contents.contents;
 textFile.close;
 #)#);
 open:: (# do 'Open' -> name #);
 #);
 saveItem: @menuitem (* make a save item *)
 (# eventHandler::
 (# onSelect::
 (# theText: @Text;
 do textFile.openWrite;
 theTextEditor.contents.contents->
 textFile.puttext;
 textFile.close;
 #)#);
 open:: (# do 'Save' -> name #);
 #);
 quitItem: @menuitem (* make a quit item *)
 (# eventHandler::
 (# onSelect:: (# do Terminate #) #);
 open:: (# do 'Quit' -> name #);
 #);
 open:: (* extend the open virtual of filemenu
 * to open the items *)
 (#
 do 'File' -> name;
 openItem.open; openItem[] -> append;
 saveItem.open; saveItem[] -> append;
 quitItem.open; quitItem[] -> append;
 #)#);
 open:: (* extend the open virtual of the menubar
 * to open the filemenu *)
 (# do fileMenu.open; fileMenu[] -> append #);
 #);
 thetextEditor: @textEditor (* our text editor *)
 (# open:: (* extend the open virtual
 * to set the size and the placement *)
 (# do theWindow.size -> Size;
 True -> bindBottom; True -> bindRight
 #)#);
 open:: (* extend the window open virtual
 * to open the textEditor *)
 (# do thetextEditor.open #);
 #);
do theWindow.open; (* open the window when the appl. start up *)
#)

Program 17.1: TextEditor.bet

The three screen snapshots following below show how this application appears on
Windows NT, Motif (X11), and Macintosh after the program has loaded its own
source code for editing, and with the menu opened.

Graphical User Interface 57

Windows NT

X Window System—Motif

58 Mjølner BETA System Tutorial

Macintosh

More details and examples about the GUIEnv libraries can be found in [MIA 94-27].

17.2 MotifEnv

In this subsection we will show how to use the Motif specific user interface library.
Motif is a very large user interface toolkit, with user interface elements not easily ab-
stracted into a general device independent framework, so the Mjølner BETA system
includes a library for making Motif specific applications.

Xt Toolkits

Xt is a C-library top of Xlib, the low-level interface used in programming X Window
System applications. The purpose of Xt is to provide an object-oriented layer that
supports user-interface abstractions (windows, scrollbars, commands buttons, menus)
called widgets. A widget is a reusable, configurable piece of C-code that operates in-
dependently of the application except through prearranged interactions.

Xt contains the basic functionality to support widgets, i.e. an architectural model for
widgets that allow them to be written and used in an object-oriented fashion. Xt also
contains a small core set of widgets.

A widget set is a collection of widgets build on top of Xt that provide commonly used
user-interface components tied together with a consistent appearance and user inter-
face. Several different widget sets from various sources exist. The Athena widget set
is one example. Others are Motif from Open Software Foundation (OSF) and OPEN
WINDOWS from Sun and AT&T.

The Motif widget set contains many user-interface components, including scroll bars,
menus, buttons, dialogs, and a wide variety of composite widgets. Motif has conven-
tions about the use of its widgets and gadgets, that lead to a consistent look among all
applications using Motif. Along with each Motif license comes an OSF/Motif Style
Guide with the documentation. This document contains recommendations for appli-
cation design and layout.

The Mjølner BETA System comes with object-oriented interfaces to these libraries,
XtEnv, AwEnv and MotifEnv.

Using the MotifEnv Fragment

The motifenv file in '~beta/Xt/v1.9/MotifEnv' simply defines the MotifEnv pat-
tern for applications using the BETA interface to Motif. For each widget/gadget
wanted in the application, the files in the directory '~beta/Xt/v1.9/motif/',
defining the BETA interface to it, must be explicitly included.

More information

Widgets

OSF/Motif

MotifEnv

Graphical User Interface 59

An application using motifenv thus typically has the following outline:

ORIGIN '~beta/Xt/v1.9/MotifEnv';
INCLUDE '~beta/Xt/v1.9/motif/rowcolumn'
 '~beta/Xt/v1.9/motif/pushbutton'
-- PROGRAM: descriptor --
MotifEnv
 (# ...
 do ...
 #)

In this case the program is using the rowcolumn and pushbutton widgets.

The following small program shows how to make the traditional "Hello world" pro-
gram using a Motif Label widget:

ORIGIN '~beta/Xt/v1.9/motifenv'
INCLUDE '~beta/Xt/v1.9/motif/label'
-- program: descriptor --
MotifEnv
 (# hello: @Label;
 do hello.init;
 'Hello world' -> hello.labelString;
 #)

Program 17.2: Hello.bet

The border of the window, with grips for resizing the window, and the title bar with
buttons, is added by the window manager, in this case mwm, the Motif Window Man-
ager. The actual Label widget is the one showing the "Hello world" text.

The following example shows how to use the special purpose Motif Scale widget,
useful for adding, e.g., a potentiometer-like control to a panel of controls.

ORIGIN '~beta/Xt/current/motifenv':
INCLUDE '~beta/Xt/current/motif/scale'
-- program: descriptor --
MotifEnv
(# volume: @Scale
 (# init::
 (#
 do 0 -> minimum;
 100 -> maximum;
 XmVERTICAL -> orientation;
 'Volume' -> titleString;
 true -> showValue;
 #);
 valueChangedCallback::
 (#
 do 'New volume: ' -> screen.puttext;
 data.value -> screen.putint;
 screen.newline;
 #);
 #);
do volume.init;
#)

Program 17.3: Scale.bet

The valueChangedCallback is called after the scale has been changed. In this case
the callback is extended and prints out the new value of the Scale (data.value).

More details and examples about the X11 libraries can be found in [MIA 91-16].

hello.bet

Scale.bet

More information

60

18 Concurrent Library

Concurrent programming in BETA is supported by the systemenv library. This li-
brary contains patterns for describing the BETA concepts of concurrent systems. The
basic ideas are:

1. Components (coroutines) can be executed concurrently.

2. A primitive semaphore pattern is available for synchronization. The operations
on a semaphore is executed as an indivisible unit.

3. An abstract pattern Monitor similar to the monitor proposed by Hoare and
Brinch-Hansen.

4. An abstract pattern System is defined. System defines communication between
systems by means of synchronized rendezvous. A concurrency imperative conc
and an alternation imperative alt are defined for system.

18.1 Example

The following example of using the systemenv library makes three concurrent
coroutines that each sleeps for a specified number of seconds and then prints out the
seconds elapsed since startup. All three systems inherit from a generic system:

everyNthSecond: System
 (* inherit from System: can run concurrently *)
 (# N:< IntegerValue;
 now: @Integer;
 do cycle
 (#
 do INNER everyNthSecond;
 N -> sleep; (* sleep for N seconds *)
 now+N -> now; (* accumulate time *)
 #)
 #)

everyNthSecond inherits from system, i.e. it is able to run concurrently. The do-part
consists of a loop that calls INNER, then sleeps for N seconds, and when activated
again, updates the time, and calls INNER again. Notice, that N is defined as an Inte-
gerValue.

Now we can make a coroutine that inherits from everyNthSecond like this:

fourth: @| everyNthSecond
 (* a co-routine that inherits from everyNthSecond *)
 (# N:: (# do 4 -> value #); (* sleep for 4 seconds *)
 do 'fourth: ' -> puttext; now -> screen.putint; newline
 #)

A coroutine is declared using the '|' symbol. The declaration '@|' means that we de-
clare fourth to be a static reference to a coroutine. The do-part will be called every
4'th second since fourth inherits from everyNthSecond and extends the Inte-
gerValue N to be 4.

Finally, we need to start the coroutines concurrently. This is done by starting the
coroutine inside a conc pattern like this:

conc (* execute concurrently: *)
 (# do ... fourth[]->start; ... #)

Concurrent
coroutines

Pattern System

everyNthSecond

Declaring a
coroutine

Concurrent Library 61

The execution of conc will not terminate until all the systems executed inside it has
terminated.

The complete program with three concurrent systems is shown in Program 18.1. No-
tice, that the program never terminates.

ORIGIN '~beta/basiclib/v1.5/systemenv'
--- program: descriptor ---
systemenv (* inherits from systemenv *)
(#
 (* everyNthSecond calls INNER every N’th second. *)
 everyNthSecond: System
 (* inherit from System: can run concurrently *)
 (# N:< IntegerValue;
 now: @Integer;
 do cycle
 (#
 do INNER everyNthSecond;
 N -> sleep; (* sleep for N seconds *)
 now+N -> now; (* accumulate time *)
 #);
 #);
 every: @| everyNthSecond
 (* a co-routine that inherits from everyNthSecond *)
 (# N::< (# do 1 -> value #); (* sleep for 1 second *)
 do 'every: ' -> puttext; now -> screen.putint; newline;
 #);
 fourth: @| everyNthSecond
 (* a co-routine that inherits from everyNthSecond *)
 (# N::< (# do 4 -> value #); (* sleep for 4 seconds *)
 do 'fourth: ' -> puttext; now -> screen.putint; newline;
 #);
 eighth: @| everyNthSecond
 (* a co-routine that inherits from everyNthSecond *)
 (# N::< (# do 8 -> value #); (* sleep for 8 seconds *)
 do 'eighth: ' -> puttext; now -> screen.putint; newline;
 #);
do
 conc (* execute concurrently: *)
 (# do every[]->start; fourth[]->start; eighth[]->start #);
 (* terminates when all systems stops. In this case: never *)
#)

Program 18.1: Seconds.bet

Output of running Program 18.1 for 20 seconds:

nil% Seconds
every: 0
fourth: 0
eighth: 0
every: 1
every: 2
every: 3
fourth: 4
every: 4
every: 5
every: 6
every: 7
eighth: 8
fourth: 8
every: 8
every: 9
every: 10
every: 11
fourth: 12

62 Mjølner BETA System Tutorial

every: 12
every: 13
every: 14
every: 15
eighth: 16
fourth: 16
every: 16
every: 17
every: 18
every: 19
fourth: 20

18.2 Concurrency and User Interface Environments

Graphical user interface environments are usually event-driven in the sense that ac-
tions in the program are executed as a response to user input events. To handle this, a
number of separate implementations of systemenv exist for the different user inter-
face libraries, such as motifEnv and guienv:

Use ~beta/basiclib/v1.5/systemenv as origin for programs not using event-
driven user-interface libraries.

Use ~beta/Xt/v1.5/xsystemenv as origin for programs using the Motif user
interface library.

Use ~beta/guienv/v1.5/guienvsystemenv as origin for programs using
GUIEnv interface library.

Please note, that programs should only use one of the systemenv, xsystemenv, and
guienvsystemenv fragments.

Suppose that we like to extend the texteditor above with a clock that should be up-
dated every second. A clock can easily be made using the basic systemenv:

ORIGIN '~beta/basiclib/v1.5/systemenv';
INCLUDE '~beta/sysutils/v1.5/time'
-- program: descriptor --
systemenv
(#
 updateClock: @|System
 (#
 do cycle
 (#
 do 1 -> sleep;
 systemtime -> formattime -> putline
 #)
 #)
do updateClock[] -> fork
#)

Program 18.2: Clock.bet

Here we simply print out the current system time on the screen. Notice, that we have
included a new library called time in '~beta/sysutils/v1.5/time'. This library
contains facilities for getting the date and time, time usage, and for formatting times
for nice printing. Running the program shown above gives the following result:

Tue Aug 23 11:48:35 1994
Tue Aug 23 11:48:36 1994
Tue Aug 23 11:48:37 1994
Tue Aug 23 11:48:38 1994
Tue Aug 23 11:48:39 1994
Tue Aug 23 11:48:40 1994
Tue Aug 23 11:48:41 1994
Tue Aug 23 11:48:42 1994
Tue Aug 23 11:48:43 1994

A simple clock

time library

Concurrent Library 63

Tue Aug 23 11:48:44 1994
Tue Aug 23 11:48:45 1994
Tue Aug 23 11:48:46 1994
Tue Aug 23 11:48:47 1994
Tue Aug 23 11:48:48 1994
Tue Aug 23 11:48:49 1994

Now we want to integrate this clock in our GUIEnv texteditor program, so we can al-
ways see the time in the low left corner of the window. We need to use the
'~beta/guienv/v1.4/guienvsystemenv':

ORIGIN '~beta/guienv/v1.4/guienvsystemenv';
INCLUDE '~beta/guienv/v1.4/fields'
 '~beta/guienv/v1.4/stddialogs'
 '~beta/basiclib/v1.5/file'
 '~beta/sysutils/v1.5/time'
-- program: descriptor --
systemenv
(#
 setWindowEnv:: (* tell systemenv that myguienv is the
 * the graphical user interface
 *)
 (# do myguienv[] -> theWindowEnv[] #);

 updateClock: @|System
 (#
 do cycle
 (#
 do 1 -> sleep;
 systemtime -> formattime -> ... ;
 (* put time into the clock *)
 #);
 #);

 myguienv: @guienv (* inherit from guienv *)
 (# (* guienv code as before *)
 #);

do (* fork updateClock as a separate system *)
 updateClock[] -> fork;
#)

We need to specify to systemenv what graphical user interface system we are using.
This is done by extending the virtual setWindowEnv like the following:

setWindowEnv::(# do myguienv[] -> theWindowEnv[] #);

In order to do that, we have changed the guienv into a static object called myguienv.
myguienv will automatically be started by systemenv.

Finally, we need to create a user interface element that can show the time. We use a
staticText, that we position below the TextEditor field:

clock: @staticText
 (# open::
 (# w,h: @integer;
 do systemtime -> formattime -> label;
 theWindow.size -> (w,h);
 (5,h-16) -> position; (50,15) -> size;
 True -> BindBottom; False -> BindTop;
 #);
 #);

The complete program is:

ORIGIN '~beta/guienv/v1.4/guienvsystemenv';
INCLUDE '~beta/guienv/v1.4/fields'
 '~beta/guienv/v1.4/stddialogs'

setWindowEnv

staticText

Complete code

64 Mjølner BETA System Tutorial

 '~beta/basiclib/v1.5/file'
 '~beta/sysutils/v1.5/time';
-- program: Descriptor --
systemEnv
(#
 setWindowEnv::< (# do myguienv[]->theWindowEnv[] #);
 updateClock: @|System
 (#
 do
 cycle
 (# theText: @StyledText;
 do 1->sleep;
 systemtime->formattime-> myguienv.theWindow.clock.label;
 #);
 #);
 myguienv: @guienv (* inherit from guienv *)
 (# theWindow: @window (* make a window *)
 (# menubarType:: (* extend the menubar *)
 (# fileMenu: @menu (* make a file menu *)
 (# textFile: @file;
 openItem: @menuitem (* make an open item *)
 (# eventHandler::
 (* extend the virtual that is called *)
 (# onSelect::
 (* this menu item is selected *)
 (# theText: @StyledText;
 do theWindow[]->
 fileSelectionDialog->
 textFile.name;
 textFile.openRead;
 textFile.scan
 (# while::(#do true->value#);
 do ch->theText.put
 #);
 theText[]->
 theTextEditor.contents.
 contents;
 textFile.close;
 #)#);
 open:: (# do 'Open'->name #);
 #);
 saveItem: @menuitem (* make a save item *)
 (# eventHandler::
 (* extend the virtual that is called *)
 (# onSelect::
 (* this menu item is selected *)
 (# theText: @Text;
 do
 textFile.openWrite;
 theTextEditor.contents.
 contents->
 textFile.puttext;
 textFile.close;
 #)
 #);
 open:: (# do 'Save'->name #);
 #);
 quitItem: @menuitem (* make a quit item *)
 (# eventHandler::
 (# onSelect:: (# do Terminate #) #);
 open:: (# do 'Quit'->name #);
 #);
 open::
 (* extend the open virtual of filemenu
 * to open the items *)
 (#

Concurrent Library 65

 do 'File'->name;
 openItem.open;
 openItem[]->append;
 saveItem.open;
 saveItem[]->append;
 quitItem.open;
 quitItem[]->append;
 #)
 #);
 open::
 (* extend the open virtual of the menubar
 * to open the filemenu *)
 (# do fileMenu.open; fileMenu[]->append #);
 #);
 thetextEditor: @textEditor (* our text editor *)
 (# open::
 (* extend the open virtual to set the size
 * and the placement *)
 (# w,h: @integer;
 do theWindow.size->(w,h);
 (w,h-20)->Size;
 True->bindBottom;
 True->bindRight
 #);
 #);
 clock: @staticText
 (# open::
 (# w,h: @integer;
 do systemtime->formattime->label;
 theWindow.size->(w,h);
 (5,h-16)->position;
 (300,15)->size;
 True->BindBottom;
 False->BindTop;
 #);
 #);
 open::
 (* extend the window open virtual
 * to open the textEditor *)
 (# do thetextEditor.open; clock.open; #);
 #);
 do theWindow.open;
 (* open the window when the application start up *)
 #)
do updateClock[]->fork;
#)

Program 18.3: ClockTextEditor.bet

The following figure shows a snapshot of the program running on Motif:

66 Mjølner BETA System Tutorial

18.3 Changes from the Original Design

The abstractions defined here are based on the ones described in chapter 12 of the
BETA book. The implementation is identical to the design in the BETA book, except
for the following changes:

1. The syntax of fork is

S[]->fork and not S.fork.

2. The syntax of conc is

conc(# do S1[]->start; S2[]->start; S3[]->start #)

and not conc(# do S1.start; S2.start; S3.start #).

3. The syntax of alt is

alt(# do S1[]->start; S2[]->start; S3[]->start #)

and not alt(# do S1.start; S2.start; S3.start #).

This implementation of systemenv includes some new facilities, not described in the
BETA book:

4. semaphore had an additional attribute: tryP, which is a non-blocking call of P.

5. In addition to s[]->fork, s[]->kill is possible, and in addition to pause, 100
-> sleep is possible.

6. system has a new virtual attribute, onKilled, that is invoked before the system
terminates

7. systemenv has a new virtual attribute, deadlocked, that is invoked if all pro-
cesses are deadlocked.

8. Finally, systemenv defines three new attributes to cope with event driven user
interfaces: windowEnvType, theWindowEnv, and setWindowEnv. See further de-
tails on cooperation with user interface environments below.

In order to implement real concurrency, an interrupt mechanism must be imple-
mented. This is currently not done. A component/system will thus keep the control
until it makes an explicit or implicit SUSPEND. An implicit SUSPEND is made when a
component must wait for a semaphore, or executes the pause and sleep patterns.

The systemenv libraries are thoroughly described in the manual [MIA 94-25]

New facilities

The Concurrency
is Simulated

More information

67

19 The Fragment System

Every BETA program uses the Fragment System. A fragment can be viewed as a
piece of a BETA program – a module. Fragments are organized in files. A file may
consist of one or more fragments.

The basic BETA environment, called betaenv, supplies basic BETA patterns, such as
integer, char, boolean, and text. In order to use these basic patterns, the program must
specify that the betaenv environment is to be used. The following example illustrates
how:

ORIGIN '~beta/basiclib/v1.5/betaenv'
---program: descriptor---
(#
do 'Hello World!'->putline;
#)

Program 19.1: HelloWorld.bet

The example consists of two parts, the specification of ORIGIN and the descriptor4

called program.

The specification of ORIGIN tells that the program uses the fragment file
~beta/basiclib/v1.5/betaenv. The descriptor program tells that following the
line

---program: descriptor---

comes a BETA descriptor, i.e. (# ... #), that will be named program. The name is
used to identify the descriptor for the purpose of binding it to an unbound hole in
the betaenv environment. A simple betaenv environment could have the following
outline:

(* The basic BETA environment betaenv *)
(# ...
 put: (# c: @char; enter c do ... #);
 puttext: (# t: ^text; enter t[] do ... #);
 putline: (# t: ^text; enter t[] do t[]->puttext; newline #);
 newline: (# do ... #);
 text: (# ... #);
 ...
 <<SLOT LIB: Attributes>>
 ...
do (* initialize for execution *)
 <<SLOT program: descriptor>>
 (* terminate execution *)
#)

The betaenv environment consists of a single descriptor with two holes—slots. One
named program of type descriptor and one named LIB of type Attributes.

The program slot is empty and can be filled (or bound) by a BETA program by defin-
ing an descriptor like:

4 descriptor is an alias for ObjectDescriptor, i.e.

--program:ObjectDescriptor-- is also legal.

ORIGIN

program slot

betaenv

program and LIB
slots

68 Mjølner BETA System Tutorial

---program: descriptor---
(# ... #)

as illustrated above. Every BETA program must have exactly one such construct in
order to fill the empty slot in betaenv.

Filling a slot can be compared to a textual replacement5. The Hello World example
program above, thus replaces the program slot in betaenv, resulting in the following
expanded BETA program:

(* The basic BETA environment betaenv *)
(# ...
 put: (# c: @char; enter c do ... #);
 puttext: (# t: ^text; enter t[] do ... #);
 putline: (# t: ^text; enter t[] do t[]->puttext; newline #);
 newline: (# do ... #);
 text: (# ... #);
 ...
do (* initialize for execution *)
 (#
 do ‘Hello World!’->putline;
 #)
 (* terminate execution *)
#)

Program 19.2: HelloWorld with filled program slot

The LIB slot can be used to define libraries that may used in other BETA programs. If
we want to add an operation called putBoxed to the basic environment, we can fill the
LIB slot:

ORIGIN '~beta/basiclib/v1.5/betaenv'
---LIB: Attributes---
 putBoxed:
 (* print the text with a box surrounding:
 * 'text'->putBoxed results in '[text]'
 *)
 (# t: ^Text;
 enter t[]
 do '['->put; t[]-> puttext; ']'->put;
 #);

Program 19.3: putBoxed.bet

The HelloWorld program can then use this library by including it:

ORIGIN '~beta/basiclib/v1.5/betaenv';
INCLUDE 'putBoxed'
---program: descriptor---
(#
do ‘Hello World!’->putBoxed;
#)

Program 19.4: HelloWorld.bet

Resulting in the following output:

[Hello World!]

The HelloWorld example program using the putBoxed library, results in the follow-
ing expanded BETA program:

5 Textual replacement is not exactly correct due to the scope rules. Please see the BETA book

chapter 17 for a description of these rules.

Filling slots

Defining a library

Using a library

The Fragment System 69

(* The basic BETA environment betaenv *)
(# ...
 put: (# c: @char; enter c do ... #);
 puttext: (# t: ^text; enter t[] do ... #);
 putline: (# t: ^text; enter t[] do t[]->puttext; newline #);
 newline: (# do ... #);
 text: (# ... #);
 putBoxed:
 (* print the text with a box surrounding:
 * 'text'->putBoxed results in '[text]'
 *)
 (# t: ^Text;
 enter t[]
 do '['->put; t[]-> puttext; ']'->put;
 #);
 ...
do (* initialize for execution *)
 (#
 do ‘Hello World!’->putline;
 #)
 (* terminate execution *)
#)

Program 19.5: HelloWorld with filled program and LIB slot

The program can be made even more simpler by having ORIGIN in the putBoxed.bet
file:

ORIGIN 'putBoxed'
---program: descriptor---
(#
do ‘Hello World!’->putBoxed;
#)

This works because the putBoxed.bet has ORIGIN in the betaenv environment, so
the HelloWorld program will also have access to the betaenv environment.

The ---LIB: Attributes--- may be multiply specified in the same file or in differ-
ent files. The way to make libraries in BETA is thus to define the pattern declarations
in a fragment called LIB. The file containing the ---LIB: Attributes--- fragment
can then be included in your program and the declarations can be used.

19.1 Interface and Implementation

The fragment system can be used to separate interface from implementation. In the
putBoxed example above we included the implementation of the operation in the in-
terface. We can move the implementation of putBoxed to another file using a dopart
slot. This is specified as follows:

 putBoxed:
 (* print the text with a box surrounding:
 * 'text'->putBoxed results in '[text]'
 *)
 (# t: ^Text;
 enter t[]
 <<SLOT putBoxed: dopart>>
 #);

Here we have described only the interface of putBoxed, i.e. it can be seen that the op-
eration takes a text as a argument (and the comment states that the operation will print
the text with a surrounding box). The implementation is hidden. The implementation
can be described in a dopart fragment:

---putBoxed: dopart---
 do '['->put; t[]-> puttext; ']'->put;

Interface

Implementation

70 Mjølner BETA System Tutorial

In order to make things work we must specify where the implementation can be
found. This is done using a BODY specification in the putBoxed.bet file:

ORIGIN '~beta/basiclib/v1.5/betaenv';
BODY 'putBoxedBody'
---LIB: Attributes---
 putBoxed:
 (* print the text with a box surrounding:
 * 'text'->putBoxed results in '[text]'
 *)
 (# t: ^Text;
 enter t[]
 <<SLOT putBoxed: dopart>>
 #);

Program 19.6: putBoxed.bet

The file with the ---putBoxed: dopart--- fragment must specify where the dopart
fragment is to be filled. This is done using the ORIGIN:

ORIGIN 'putBoxed'
---putBoxed: dopart---
 do '['->put; t[]-> puttext; ']'->put;

Program 19.7: putBoxedBody.bet

Another major advantage of separating the implementation from the interface is sepa-
rate compilation. The putBoxed.bet and the putBoxedBody.bet file can be sepa-
rately compiled, and the putBoxedBody.bet file can be changed and recompiled
without recompiling the interface file putBoxed.bet or any of the programs that are
using the library putBoxed.

The HelloWorld program using the putBoxed library has not changed:

ORIGIN '~beta/basiclib/v1.5/betaenv';
INCLUDE 'putBoxed'
---program: descriptor---
(#
do ‘Hello World!’->putBoxed;
#)

Program 19.8: HelloWorld.bet

And the expanded BETA program, using the files: betaenv, HelloWorld, putBoxed,
and putBoxedBody is (exactly as above):

(* The basic BETA environment betaenv *)
(# ...
 put: (# c: @char; enter c do ... #);
 puttext: (# t: ^text; enter t[] do ... #);
 putline: (# t: ^text; enter t[] do t[]->puttext; newline #);
 newline: (# do ... #);
 text: (# ... #);
 putBoxed:
 (* print the text with a box surrounding:
 * 'text'->putBoxed results in '[text]'
 *)
 (# t: ^Text;
 enter t[]
 do '['->put; t[]-> puttext; ']'->put;
 #);
 ...
do (* initialize for execution *)
 (#
 do ‘Hello World!’->putline;

Separate
compilation

The Fragment System 71

 #)
 (* terminate execution *)
#)

Program 19.9: HelloWorld with filled program and LIB slot

The fragment system is described in abstract terms in the BETA book [Madsen 93].
That description also suggests many ideas of how to use the fragment system. The
current implementation of the fragment system is described in the compiler manual
[MIA 90-2].

More information

73

References

[Knudsen 94] J. L. Knudsen, M. Löfgren, O. L. Madsen, B. Magnusson
(eds.): Object-Oriented Environments – The Mjølner Ap-
proach, Prentice Hall, 1994, ISBN 0-13-009291-6.

[Madsen 93] O. L. Madsen, B. Møller-Pedersen, K. Nygaard: Object-
Oriented Programming in the BETA Programming Lan-
guage, Addison-Wesley, 1993, ISBN 0-201-62430-3

[MIA 90-2] Mjølner Informatics: The Mjølner BETA System: BETA
Compiler Reference Manual Mjølner Informatics Report
MIA 90-2.

[MIA 90-4] Mjølner Informatics: The Mjølner BETA System: Using
BETA on UNIX Systems, Mjølner Informatics Report MIA
90-4.

[MIA 90-6] Mjølner Informatics: The Mjølner BETA System: Using
BETA on the Macintosh, Mjølner Informatics Report MIA
90-6.

[MIA 90-8] Mjølner Informatics: The Mjølner BETA System: Basic Li-
braries, Reference Manual, Mjølner Informatics Report
MIA 90-8

[MIA 91-16] Mjølner Informatics: The Mjølner BETA System—X Win-
dow System Libraries, MjølnerInformatics Re port MIA
91-16.

[MIA 91-20] Mjølner Informatics: The Mjølner BETA System – Persis-
tent Store, MjølnerInformatics Report MIA 91-20.

[MIA 92-22] Mjølner Informatics: The Mjølner BETA System – Con-
tainer Libraries, Reference Manual, MjølnerInformatics
Report MIA 92-22.

[MIA 94-25] Mjølner Informatics: The Mjølner BETA System – Distri-
bution MjølnerInformatics Report MIA 94-25.

[MIA 94-26] Mjølner Informatics: The Mjølner BETA System – BETA
Language Introduction MjølnerInformatics Report MIA
94-26.

[MIA 94-27] Mjølner Informatics: The Mjølner BETA System – GUIEnv
Librarues MjølnerInformatics Report MIA 94-27.

75

Index

alt 66
betaenv 1, 2, 67
BODY 69
BooleanObject 25
Booleans 6
Characters 6
CharObject 25
Command-line arguments 31
Comparing texts 37
Complex evaluations 15
conc 66
Concurrency 19
Concurrent 60
Concurrent coroutines 60
Constants 6, 16
container 41
Control Characters 6
coroutine 60
Create and execute 23
Create and return a reference 24
cString 48
cStruct 48
Declarations 1
Declaring a coroutine 60
Defining a library 68
Descriptor 19
Directory 35
Directory attributes 35
Dynamic reference to static object 23
Dynamic references 22
Encapsulation 21
evaluation 6
Evaluations 15
Exception 45
external pattern 48
externalRecord 48
File 30
File attributes 30
File Exception 31
File menu 54
Filling slots 68
for 9
for imperative 9
fork and not S.fork. 66
Formatted Input and Output 39
Formatted output 12
fragment system 21, 67
Function results 14
Graphical User Interface 53
GUIEnv 53
hashtable 42
if 11

if imperative 9
Implementation 69
INCLUDE 4, 68
Inheritance 19
Integer 6
IntegerObject 25
Interface 69
labeled imperative 13
LIB slots 67
List 41
Local function 20
Local state 16
Macintosh 53
Making a library 51
Math Library 6
Monitor 60
MotifEnv 58
Multidimensional Repetitions 28
New operator 23
Notification 45
numberio 5
Object reference repetitions 26
object-descriptor 19
Object-oriented concepts 19
OBJFILE 49
Operations on a persistent store 51
operations on List 41
Operator priority 6
ORIGIN 4, 67
OSF/Motif 58
Parameter list 9
Pattern 7
pattern declaration 19
persistence 51
Primitive Types 25
Procedure 8, 16
Procedure arguments 11
program slot 67
Quick sort 26
RealObject 25
Reals 6
recursion 27
Reference operator 22
repetitions 26
restart 13
Screen Output 1, 4
semaphore 60, 66
Separate compilation 70
Simple types 3
Standard file open 55
Statements 1
Static and dynamic references 22

76 Mjølner BETA System Tutorial

Static Semantic Errors 4
Static variable declarations 20
Static Variables 4
statically nested 27
Stop 36
Structural equivalence 20
Structured data 20
System 60
systemenv 60
Text 6, 37
Text operations 39

TextEditor 54
type 16
Type Compatibility 4, 7
Using a library 68
Vaucher i
While loop 13
Widgets 58
Window 54
Windows 53
X Window System 53
Xt Toolkits 58

