
The Mjølner BETA System
Persistence in BETA

Reference Manual

Mjølner Informatics Report

MIA 91-20(1.3)

August 1996

Copyright © 1990-96 Mjølner Informatics ApS.
All rights reserved.

No part of this document may be copied or distributed
without the prior written permission of Mjølner Informatics

Table of contents
1 Introduction .. 1
2 Basic Definitions .. 1

2.1 Objects and Patterns .. 2
2.2 Betaenv ... 2
2.3 Fragments and Compiled Code... 3

3 The Persistentstore Pattern.. 4
3.1 Basic Operations.. 4
3.2 Restrictions.. 4
3.3 Example .. 5

4 Advanced Features.. 7
4.1 Lazy object fetch .. 7
4.2 References between different persistent stores .. 8

4.2.1 Where are objects saved? .. 8
4.2.2 Following references between persistent stores.. 9

4.3 Limiting reachability based persistence.. 9
4.3.1 Special objects.. 9
4.3.2 Runtime types .. 9
4.3.3 Combining runtime types and special objects..10

4.4 Files used for storing objects .. 10
5 Known Bugs and Inconveniences.. 10

5.1 Garbage collection .. 10
5.1.1 In-memory garbage collection.. .10
5.1.2 Secondary storage garbage collection .. .11

5.2 Persistent store identification and cross store references 11
6 Interface Description .. 12

Bibliography ... 21

Index ... 23

1

1 Introduction
In the Mjølner BETA System objects generated by a BETA program execution may
be saved on secondary storage and restored in another BETA program execution.
Usually this property of a programming language or system is referred to as object
persistence. Persistence in the Mjølner BETA System is based on a reachability
model, meaning that default behaviour when saving an object on secondary storage is
to save everything reachable from the object in question. A discussion of different
persistence issues and some of the ideas behind persistence in the Mjølner BETA
System may be found in [Agesen 89].

Recognizing that saving the full transitive object closure may at times be too coarse
grained, the Mjølner BETA System allows the programmer to control what part of
the reachable object graph is actually saved along. This allows pointers from
persistent objects to non-persistent objects despite the reachability based persistence
model.

Finally, in order to delay object fetch from secondary storage until an object is
actually needed, lazy object fetch is supported. When using lazy fetch, only the
persistence root and a few more objects are initially fetched from secondary storage.
Fetch of other reachable objects is deferred until their state is needed. At that time,
the object is transparently fetched from secondary storage.

2 Basic Definitions
A persistent object is an object that is saved on secondary storage during a program
execution and thus survives the program execution in which it was created. A
persistent object may be read by another program execution. Any BETA object can in
principle be persistent. In the current implementation, the execution state (i.e.
component stacks) is not saved. Furthermore, for certain types of objects it may not
be meaningful to make them persistent. This is e.g. the case with user interface
objects generated by libraries such as xtenv, bifrost and macenv. Xtenv objects
may e.g. have partial state information about windows, widgets, etc., but this
information will not be sufficient to restore the screen.

By default, when an object is made persistent, all objects that can be reached through
references are also made persistent. This includes statically enclosing objects1. The
set of objects that can be reached from an object in this way is called the transitive
closure of the object.

Persistent objects are saved in a persistent store, which is a collection of persistent
objects. A persistent store has a name. In the current implementation, the name of a
persistent store is the name of a file system directory containing the files making up
the persistent store. Several persistent stores may exist and references between
objects in different persistent stores are supported. A persistent store is itself a BETA
object with a number of attributes.

An object may be pointed out to become a persistent root by means of the put
operation on the persistent store. A persistent root must be given a logical name in the
form of a text string. On checkpoint time, all objects reachable from persistent roots
are saved in the persistent store.

1 Objects that are instances of a nested pattern P.PP depends on, i.e. have a reference to, some

instance of the enclosing pattern P.

Object
persistence

Lazy object fetch

Persistent object

The transitive
closure

Persistent store

Persistent root

2 Persistence in BETA

2.1 Objects and Patterns

An object generated as an instance of a pattern is only meaningful as an instance of
that pattern. Consider the following example:

 P: (# ... #);
 R: ^P;

 &P[] -> R[]; (* Save R *)

The object referenced by R is an instance of P. When this object is later read by a
program, it must be interpreted by that program execution as an instance of P.

It is not enough that the program reading the object has a declaration of a pattern P
which has the same structure as the pattern P which was used to generate the object. It
must be the very same pattern.

In order for this to work, it is necessary to give a new interpretation to the notion of
betaenv. This new interpretation is described in the next section. Before doing this
we will shortly discuss what it means for objects to be instances of the same pattern.

Consider the following object descriptor:

 (# T: (# c: @ integer;
 A: (# b: @integer do c->b #);
 X: @ A;
 Y: @ A
 #);
 V: @ T;
 W: @ T
 #)

The outermost object has two internal objects V and W which are instances of the
pattern T. Each of V and W has internal attributes c, A, X and Y. The attributes of V are
different from the attributes of W. This should be obvious for c, X and Y, since they
occupy different storage locations in V and W respectively. The pattern attribute A of V
is also different from the pattern attribute A of W. The reason is that an instance of V.A
is enclosed by V and may therefore refer to attributes of V -- V.A is said to have origin
in V. The pattern W.A is an attribute of W and may refer to attributes of W -- W.A has
origin in W. An instance of V.A is therefore NOT an instance of W.A.

The objects V.X and V.Y are thus instances of the same pattern V.A. Similarly the
objects W.X and W.Y are instances of the same pattern W.A.

2.2 Betaenv

Betaenv is a fragment defining a pattern that currently encloses all BETA code being
compiled and executed by the Mjølner BETA System. This means that each program
execution creates a new betaenv object. Patterns described in different programs will
thus never be identical, since they will always directly or indirectly be attributes of
the betaenv instance created by the program execution. Cf. the above discussion.

To overcome this problem, the persistentstore treats all betaenv instances as if they
were actually the same object, although in practice a new instance is created in each
program execution. For example, consider the following library fragment:

 mylib.bet

 ORIGIN 'betaenv'
 ---LIB:attributes---
 A: (# ... #);
 B: (# ... #);

If mylib.bet is included by two or more different programs, then the pattern A will
logically be the same pattern in both programs, since it is an attribute of the same
betaenv object in all the corresponding program executions. The same is of course
true for B and any other pattern declared in mylib.bet

betaenv

Enclosing object:
origin

Only one betaenv
object

Basic Definitions 3

Patterns used for generating persistent objects should
normally be defined in the lib:attributes library slot as
in mylib above.

However, by using the support for special objects as described in a later section, it is
possible to obtain the same treatment of other patterns as just described for betaenv,
i.e. treating instances of the pattern in different program executions as logically the
same object. This also allows patterns used for generating persistent objects to be
declared in attribute slots different from lib:attributes.

2.3 Fragments and Compiled Code

A BETA pattern is declared in some fragment of the BETA fragment system. The
fragment in turn is part of a fragment group, corresponding to a BETA source file.
For a description of the fragment system, see [MIA 90-2]. To identify the pattern
from which a persistent object was created, the object has a reference to the fragment
in which the pattern is declared. The fragment is unique in the sense that it is the
version used for generating the code that instantiated the object. In order to load an
object into the memory of some program execution, the program loading the object
must be compiled from and linked with the same version of the fragment from which
the object was originally created. Note that this does not prevent exchange of objects
between different platforms, since it is the fragments that must correspond, not the
compiled code2.

The current implementation does NOT check if the
fragments used for creating a persistent object has been
changed since the object was created. It is currently the
responsibility of the user to keep track of this.

It should be obvious that changes to a fragment may cause inconsistencies with
previously generated persistent objects. Neither is it allowed to change other
fragments within the same fragment group.

The fragment used for generating a persistent object is currently identified using the
name without path of the fragment group in which the pattern is declared. This means
that a BETA program using persistence cannot contain two source files with the same
name. If this restriction is violated, the program will stop with an error message as
soon as the first persistent store is opened.

Multiple equally named BETA source files are not allowed
when using persistence and distribution libraries.

The above problems related to the unique identification of patterns will be avoided in
future versions of the persistent store.

2 The current version of the persistent store does not support object exchange between little and big

endian machines.

3 The Persistentstore Pattern
The Mjølner BETA System includes a library defining a persistent store, which keeps
track of a directory of references to persistent objects. Some of these objects, the
persistent roots, may have a logical name. A BETA program using persistent objects
must include the persistent store library which is contained in the file

 ~beta/persistentstore/v1.5/persistentstore

This file is shown in section 7.

4 Persistence in BETA

3.1 Basic Operations

The basic operations of the persistent store are as follows:

create, openRead, openWrite are used for creating and opening a persistent store
in order to access its contents. The name parameter is interpreted as a
pathname relative to the current working directory of the process. When
opening a persistent store for reading, it is not possible to update the contents
of the persistent store, although the objects fetched may be changed in
memory.

put points out an object to become a persistent root. This does not affect the
contents of the persistent store, but registers the object is be saved in future
checkpoint operations. At the same time the object is given a textual name to
be used in get operations.

get retrieves an object identified by its textual name from secondary storage. If the
object is already in memory, a pointer to the in-memory version is returned
without changing the state of the object. Usually the full transitive closure of
the object is read from secondary storage at once. This default, however, may
be changed by using lazy fetch.

checkpoint saves the state of persistent objects on secondary storage. The
transitive closures of all persistent roots in process memory are traversed, and
all the objects saved. Checkpoint has no effect on stores opened by openRead.

close closes the persistent store. By default close performs a checkpoint
operation before closing the files making up the persistent store. In most uses
of the persistent store, it is therefore not necessary to call checkpoint
explicitly.

Other operations on persistent stores are supported. These operations are described in
section 4 on advanced features. In addition to the persistentstore operations, the
deletePersistentStore pattern is available for deleting a persistent store.

A simple example using the persistentstore pattern is shown in section 3.3.

3.2 Restrictions

At most one program at a time should open a given persistent store in order to avoid
problems with concurrent access. A future version will support a limited form of
concurrency control. However, detailed concurrency control is out of the scope of
this persistence library. Instead concurrency control is supported by the distributed,
object oriented database being developed.

As already mentioned, application programs exploiting object persistence should not
include multiple source files with the same name.

Component objects, i.e. objects with their own execution stack, are not allowed in the
transitive closure of persistent roots. If components are met during a checkpoint
operation, the program will terminate with an error message.

3.3 Example

The fragment TextHashTable.bet defines a pattern TextHashTable whose
instances are to be made persistent.

The Persistentstore Pattern 5

 TextHashTable.bet:

 ORIGIN '~beta/basiclib/v1.5/betaenv'
 ---lib:attributes---
 TextHashTable: hashTable
 (# element::< Text;
 hashfunction::<
 (# do e.scanAll (# do ch*26+value -> value #)#);
 #);

The fragment fooprod.bet describes a program that creates a new persistent store
and saves some persistent objects:

 fooprod.bet:

 ORIGIN '~beta/basiclib/v1.5/betaenv';
 INCLUDE '~beta/persistentstore/v1.5/persistentstore';
 INCLUDE 'TextHashTable';

 ---program:descriptor---
 (# PS: @persistentstore;
 H: ^TextHashTable;
 do (* Create the persistent store *)
 'myStore' -> PS.create;

 (* Create a table of objects. *)
 &TextHashTable[] -> H[];
 H.init;
 'first' -> H.insert;
 'second' -> H.insert;
 'third' -> H.insert;

 (* Make the table a persistent root. *)
 (H[],'TextTable') -> PS.put;

 (* Checkpoint and close the store. *)
 PS.close
 #)

The fragment foocons.bet describes a program that makes use of some persistent
objects:

 foocons.bet:

 ORIGIN '~beta/basiclib/v1.5/betaenv';
 INCLUDE '~beta/persistentstore/v1.5/persistentstore';
 INCLUDE 'TextHashTable';

 ---program:descriptor---
 (# PS: @persistentstore;
 H: ^TextHashTable;
 T: ^Text;
 do 'myStore'->PS.openWrite;
 ('TextTable', TextHashTable##) -> PS.get -> H[];
 'fourth' -> H.insert;
 H.scan (# do current[] -> putLine #);
 PS.close
 #)

Other example usages of the persistent store may be found in the directory
~beta/demo/r4.0/persistentstore. These demo programs, part of the Mjølner
BETA System release 4.0, are listed below:

showregister.bet is an example of how to save a simple register in a persistent
store. The register is built in a simple interaction with the user and finally
saved. Later runs of showregister may read the saved register and perform

Demo programs

6 Persistence in BETA

simple queries. Finally the persistent store containing the register may be
deleted.

hashdemo.bet builds a simple hashtable of text strings. For each run of the
program, an extra element is inserted into the table. If the persistent store does
not already exist, it is created, and a new hashtable instance is made a
persistent root. If the store already exists, the table is read, an extra element
inserted, and the table scanned before the persistentstore is closed, implicitly
implying a checkpoint operation.

structdemo.bet is similar to hashdemo.bet, but illustrates the possibility of
saving pattern variables in a persistent store. Pattern variables cannot become
persistent roots, but as demonstrated by structdemo.bet, they are allowed in
the transitive closure of a persistent root.

largeWrite.bet and largeRead.bet illustrate the use of lazy fetch, i.e. the ability
to delay object fetch from secondary storage until the objects are actually
needed. largeWrite saves a large hashtable in a persistent store. largeRead in
turn retrieves the hashtable from the store and then scans the table, enforcing
all objects to be fetched lazily.

special.bet is an example of how to limit the part of the transitive closure of
persistents roots saved along during checkpoint operations. By registering the
program pattern as a special object , even objects with origin3 in the program
object can be made persistent roots. Furthermore, by registering the
IntegerObject pattern as a runtime type, references to all instances of
IntegerObject are saved as NONE references. Runtime types and special
objects are described in detail in the next section.

crossstore.bet illustrates the handling of references between objects in different
persistent stores. The same element is put into two different hashtables that in
turn are saved in two different persistent stores. When one table is then fetched
from its persistent store, it becomes necessary to open the persistentstore
containing the shared element. The example shows how this must be taken care
of by the programmer using the persistent store. The shared element is
modified through the second table. On second run of the crossstore executable
this modification is made visible through a scan of the first table. Details on
references between different persistent stores are described in the following
section.

3 Instances of patterns nested in the program pattern.

4 Advanced Features

4.1 Lazy object fetch

When fetching an object from a persistent store using the get operation, the default is
to eagerly fetch all objects in the transitive closure of the persistent root specified.
However, since this may involve a huge number of objects not really needed by the
current program execution, the persistent store offers the possibility to fetch the
transitive closure lazily as the program goes along following references from the
persistent root.

By further binding the persistentstore.allowLazyFetch virtual to trueObject,
the default fetch strategy is changed to lazy fetch. Alternatively the fetch strategy
may be set on a per get basis by further binding the get.allowLazyFetch virtual to
trueObject.

allowLazyFetch

Advanced Features 7

In short, lazy fetch works as follows. Using the persistent store get operation, the
object graph reachable from the persistent root is always fetched in a breadth-first
manner, whether or not lazy fetch is applied. In the case of lazy fetch, instead of
fetching the full object graph, only a limited number of objects are fetched from
secondary storage and instantiated in the current process. The objects fetched are the
persistentstore.maxFetchOnDanglerHitfirst objects met during the breadth-first
traversal. The default number of objects fetched may be changed by further binding
the maxFetchOnDanglerHit virtual.

So, what about the objects not fetched? Since these objects are not instantiated, it is
impossible to setup usual in-memory references. Instead socalled dangling references
are used. Simply stated, a dangling reference is a negative number uniquely
identifying a persistent object to the current process. If a dangling reference is ever
followed4, the same mechanism that checks for NONE references will trap to the
persistent store kernel in order to transparently fetch the object needed from
secondary storage. Also in this case the objects fetched are the
maxFetchOnDanglerHit first objects met during a breadth-first traversal of the object
graph rooted in the object needed. All dangling references in the process referencing
newly fetched objects are replaced by genuine in-memory references. A more
detailed description of the implementation of lazy object fetch may be found in
[Brandt 94].

Note that the --noCheckNone (or -s 14 0)compiler
switch suppressing the generation of runtime checks for
NONE references cannot be used in programs using lazy
object fetch!

In addition to maxFetchOnDanglerHit and allowLazyFetch, the
persistentstore.OnDanglerHit and persistentstore.AfterDanglerHit
virtuals are used in conjunction with lazy object fetch. OnDanglerHit is called when
a dangling reference has been hit, but before the object is actually fetched from
secondary storage. AfterDanglerHit is called when the object has been fetched,
giving the object as parameter. When AfterDanglerHit returns, the program
continues whatever it was doing when the dangling reference was hit. The purpose of
these virtuals is to offer informative callbacks that may be used for example in
interactive programs where lazy object fetch may otherwise result in inexplicable
delays.

It should be noted that there are no semantic differences whatsoever between lazy and
eager object fetch. The practical difference lies in different efficiency/memory usage
trade-offs.

The demo programs largeWrite.bet and largeRead.bet together illustrates the
use of lazy fetch.

4.2 References between different persistent stores

References between objects saved in different persistent stores are allowed, but
beware that the support for such references is still somewhat experimental and
requires special care in order to avoid problems. This section describes how to exploit
cross store references. The crossstore.bet demo program is an example usage of
cross store references. The drawing below illustrates references between objects
saved in different persistent stores. In memory, there is no difference between cross
store references and other object references. However, on secondary storage these
references cross boundaries between persistent object stores.

4 Followed here means "accessing the state of the object referred". Usual reference assignment on

dangling references are not different from ordinary reference assignments.

8 Persistence in BETA

Process Memory

Root 1

Root 2

pstore 2

Persistent
Store Kernel

pstore 1

Persistent Store 1

Secondary Storage

Root 1

Persistent Store 2

Root 2

1

23

4
5

1

2

3

4

5

4.2.1 Where are objects saved?

When performing a checkpoint on a persistent store, either explicitly by calling the
checkpoint operation or implicitly by closing the store, the object graphs rooted in
the persistent roots of the store are traversed and the objects met saved to the
persistent store. However, if an object is met that has already been saved in another
persistent store, only the identification of that object is saved, and the graph traversal
is not continued in that particular direction. Thus, a checkpoint operation on a
persistent store only saves objects already belonging to that store, or objects that do
not yet belong to any persistent store at all. The result is that a persistent object is
saved in the store that first sees the object during a checkpoint operation.

The description above of course demands that we are able to recognize objects that
“belong to” other persistent stores. However, when a persistent store is closed,
objects that belonged to the store before the close operation will, after the close
operation, semantically turn into copies of the objects belonging to the store. Thus, in
order to maintain references between objects in different persistent stores, it is
necessary to make explicit checkpoint operations and avoid the implicit checkpoint
done by the close. The latter is done by further binding the doCheckpoint virtual:

PS.close (# doCheckpoint:: (# do false -> value #)#);

When exploiting cross store references, avoid the implicit
checkpoint operation by furtherbinding the doCheckpoint
virtual on close operations. Instead explicit checkpoint
operations should be executed on all stores before closing
any store.

4.2.2 Following references between persistent stores

If a persistent root is fetched whose transitive closure contains references to objects in
other persistent stores, these persistent stores must be open in order to fetch the
objects referenced. However, if the store referred is not already open, the persistent
store containing the reference is not able to open the store automatically since it has
no idea whether it should be opened for reading or writing. Instead it calls the
persistentstore.openpstore virtual with the full pathname of the store needed,
and expects the further binding to open and return the store.

Checkpointing

Advanced Features 9

4.3 Limiting reachability based persistence

4.3.1 Special objects

For the primary intended usage, a special object is an object that is thought of as a
single logical object that is always present in program executions using some
persistent store. Support for special objects may thus be thought of as generic support
for pointing out patterns that to some extend have only a single instance shared
between all program executions using the pattern.

The state of special objects is never saved persistently. However, references to these
objects should be saved so that they may be setup correctly when saved objects
referencing a special object are re-instantiated in another process. Typical examples
or special objects are application framework objects that are known to be present in
the program executions exchanging persistent objects, but should not be saved
themselves. Examples of application framework objects are instances of XtEnv,
systemenv and shellenv. These application framework objects, of which there
should be at most one in each program execution, are not to be saved persistently, but
instances of patterns nested inside the application frameworks should be allowed to
persist. As already mentioned, betaenv is always treated as a special object.

Special objects are registered once in the lifetime of a persistent store by supplying
name and type of the object to the persistentstore.registerSpecialObject
method. The type is saved in the persistent store in order to be used for type checking
when registering special object instances as described below.

In addition to the initial registration, an instance of the special object must be
supplied by each process using the persistent store by calling the
persistentstore.registerSpecialInstance method when the persistent store
has been opened, but before any get operations are made. The instance given to the
registerSpecialInstance method must be a subtype5 of the type given to the
registerSpecialObject operation.

The demo program special.bet contains an example usage of special objects.

4.3.2 Runtime types

Runtime types are patterns whose instances are used at runtime, but should not persist
across program executions. As mentioned in section 2, an example of this is interface
objects such as windows. Another example is objects used for caching purposes at
runtime and referenced from persistent objects although the cache objects themselves
should not be saved across program executions. By registering the pattern p as a
runtime type, instances of p are not saved during checkpoint operations even though
they are found in the transitive closure of a persistent root. Instead references to these
objects are saved as NONE references.

Runtime types are registered by calling persistentstore.registerRuntimeType.
As runtime types registered using registerRuntimeType are not saved persistently
in the store, registerRuntimeType must be called for each runtime type in each
session using the persistent store in question. If needed, it is of course possible to
save a table of runtime types in a persistent store. The demo program
structdemo.bet is an example of how a table of pattern variables may be saved in a
persistent store.

The demo program special.bet contains an example usage of runtime types.

4.3.3 Combining runtime types and special objects

Since references to special object instances are treated differently than references to
instances of runtime types, it is a contradiction to register the same pattern as a
special object and as a runtime type in the same persistent store. Doing so will result
in a runtime error.

5 The subtype relation is reflexive, i.e. any pattern is a subtype of itself.

10 Persistence in BETA

Furthermore, since it is not allowed to save an object without the knowledge that all
its origins will be available when the object is to be reinstantiated, instances of
runtime types should not be origins of objects saved. If an instance of a runtime type
is needed as origin for some other object to be saved, the runtime type instance is
saved anyway, disregarding the fact that it is an instance of a runtime type.

Different persistent stores used in the same program execution may have different
sets of special objects and runtime types registered.

4.4 Files used for storing objects

The name parameter to the create, openRead and openWrite operations in the
persistentstore pattern is interpreted as a directory name relative to the current
directory of the process. When creating a new persistent store, this directory is
created along with the files locg, oinx and data. Thus, for a persistent store created
by:

 'myStore' -> PS.open

the directory myStore and the files

...myStore/locg, myStore/oinx, myStore/data

are created. For deleting the files making up a persistent store, the
deletePersistentStore pattern is available.

5 Known Bugs and Inconveniences

5.1 Garbage collection and persistence

With respect to garbage collection and persistence, there are two separate issues to
consider, namely the usual in-memory garbage collection and garbage collection of
the persistent store on secondary storage. These are considered in turn below.

5.1.1 In-memory garbage collection

The persistent store kernel keeps track of persistent objects loaded into the current
process by maintaining a table of references to these objects. This table is shared by
all persistent stores in a program execution. As long as a persistent store is open, no
objects from that store can thus become garbage, since they are at least referenced
from the internal object table. Currently the only way to delete objects from the
internal table is to close the store. Thus, to allow in-memory garbage collection of
persistent objects, the persistent store in which these objects are saved must be
closed.

A side-effect of deleting objects from the object table is is course that the persistence
kernel no longer knows that these objects are persistent, and thus semantically these
objects turn into in-memory copies of the real persistent objects, now only available
on secondary storage.

5.1.2 Secondary storage garbage collection

Currently there is no built-in support for garbage collection of persistent stores. Thus,
once saved in a store, an object stays there until the store is deleted, even though the
object may no longer be reachable from any persistent root.

However, for small persistent stores whose objects fit into virtual memory of the
computer at once, and that are not referenced from other persistent stores, it is
possible to perform a simple garbage collection using the basic operations of the
persistentstore pattern. This is illustrated by the PersistentGC.bet demo
fragment. PersistentGC simply reads the transitive closures of all persistence roots

Known Bugs and Inconveniences 11

into memory, deletes the store, and then saves the persistence roots in a new store
with the same name as the old store.

Note, however, that the fragments used to generate the objects saved in the store must
be linked with the executable performing the collection.

The demo program gc.bet illustrates how to first delete a number of elements from
the persistent table generated by largeWrite.bet, and then perform a garbage
collection on the store, using PersistentGC.

5.2 Persistent store identification and cross store references

The persistent store identifies objects using a two-part object id, each part being a 32
bit integer. The first part identifies the persistent store in which the object is saved,
and the second part is a unique identification of the object within that store. Currently
the persistent store id is simply the system time (in seconds) when the store was
created. A persistent store containing references to other persistent store thus
maintains a mapping from these creation times to the full pathname of the persistent
stores, in order to be able to call the openpstore virtual with the correct pathname.

Unfortunately this identification is not entirely unique. The persistent store kernel
ensures that no two stores created by the same process gets the same creationtime, but
there is currently no way to ensure that different processes do not create persistent
stores with the same creation time. A process simultaneously opening two persistent
stores with the same creation time will therefore in the best case receive wrong
alreadyOpen exceptions, and in the worst case wrong in-memory object graphs may
be created.

In future versions of the persistent store, this problem will be solved by using an
alternative identification scheme.

Object ID

12

6 Interface Description
ORIGIN '~beta/basiclib/v1.5/betaenv';
(*
 * $RCSfile: persistentstore.bet,v $ $Revision: 1.7 $ $Date:
1996/06/12 13:49:04 $
 *
 * COPYRIGHT
 * Copyright Mjolner Informatics, 1992-94
 * All rights reserved.
 *)
BODY 'private/persistentstoreBody';

---- lib: attributes ----

persistentstore:
 (#
 (* OPENREAD
 * ========
 *
 * Opens THIS(persistentstore) for reading, i.e. it
 * is not allowed to write objects to the store.
 * Checkpoint operations will be ignored.
 *
 * The name parameter is the name of the directory
 * containing the store and is interpreted as a path
 * relative to the current directory of the process.
 *)

 openRead:
 (# alreadyOpen:< PSexception
 (#
 do 'persistentstore.openRead: "'
 -> msg.putText; fullName[] -> msg.putText;
 '" already open' -> msg.putText;
 INNER
 #);
 notFound:< PSexception
 (#
 do 'persistentstore.openRead: "'
 -> msg.putText; fullName[] -> msg.putText;
 '" not found' -> msg.putText;
 INNER
 #);
 accessError:< PSexception
 (#
 do 'persistentstore.openRead: No access to "'
 -> msg.putText; fullName[] -> msg.putText;
 '" ' -> msg.putText;
 INNER
 #);
 name: ^Text;
 enter name[]
 do ...;
 #);

 (* OPENWRITE
 * =========
 *
 * Opens THIS(persistentstore) for writing, i.e. it
 * is allowed to update the objects saved in the

Interface Description 13

 * store.
 *
 * The name parameter is the name of the directory
 * containing the store and is interpreted as a path
 * relative to the current directory of the process.
 *)

 openWrite:
 (# alreadyOpen:< PSexception
 (#
 do 'persistentstore.openWrite: "'
 -> msg.putText; fullName[] -> msg.putText;
 '" already open' -> msg.putText;
 INNER
 #);
 notFound:< PSexception
 (#
 do 'persistentstore.openWrite: "'
 -> msg.putText; fullName[] -> msg.putText;
 '" not found' -> msg.putText;
 INNER
 #);
 accessError:< PSexception
 (#
 do 'persistentstore.openWrite: No access to"'
 -> msg.putText; fullName[] -> msg.putText;
 '"' -> msg.putText;
 INNER
 #);
 name: ^Text;
 enter name[]
 do ...;
 #);

 (* CREATE
 * ======
 *
 * Creates a new persistentstore. The name entered
 * is interpreted as a path relative to the current
 * directory of the process. The new store is opened
 * with write permission. *)

 create:
 (# alreadyOpen:< PSexception
 (#
 do 'persistentstore.create: "'
 -> msg.putText; fullName[] -> msg.putText;
 '" already open' -> msg.putText;
 INNER
 #);
 exists:< PSexception
 (* The old store is deleted if exists returns.
 *)
 (#
 do 'persistentstore.create: "'
 -> msg.putText; fullName[] -> msg.putText;
 '" already exists' -> msg.putText;
 INNER
 #);
 creationError:< PSexception
 (#
 do 'persistentstore.create: Failed creating "'
 -> msg.putText; fullName[] -> msg.putText;
 '"' -> msg.putText;
 INNER

14 Persistence in BETA

 #);
 name: ^Text;
 enter name[]
 do ...
 #);

 (* CHECKPOINT
 * ==========
 *
 * Saves the state of all objects in the transitive
 * closure of objects made persistent roots or
 * fetched from this persistentStore since open.
 * Checkpoint has no effect if the store was opened
 * by openRead. *)

 checkpoint: (#...#);

 (* CLOSE
 * =====
 *
 * Performs a checkpoint, unless the doCheckpoint
 * virtual returns false, and then closes
 * THIS(persistentStore). Objects fetched from
 * THIS(persistentStore) will now turn into copies
 * of the objects saved in the store. This means that
 * the fact that the objects originally came from
 * this store, is forgotten.
 *
 * If allowLazyFetch is TRUE, dangling references
 * may exist to objects not yet fetched from this
 * persistentstore. If this is the case, the
 * danglersExists virtual is called. Default action
 * is to kill the process, but other possibilities
 * are to either fetch the missing objects before
 * closing, or simply ignore the warning and close
 * the store anyway. In the latter case, usage of
 * the objects mfetched could be fatal when trying
 * to access an object that was newer fetched from
 * the store. Ignoring should thus only be done if
 * you are not going to access the object (copies)
 * fetched during the "transaction" about to end. *)

 close:
 (# danglersExists:<
 (# todo : @Integer;
 kill: (# exit 0 #);
 (* Kill the process. Default action. *)
 fetch: (# exit 1 #);
 (* Fetch the missing objects. *)
 ignore: (# exit 2 #);
 (* Ignore the dangling references. *)
 do kill -> todo ; INNER
 exit todo #);
 doCheckpoint:< BooleanValue
 (# do true -> value; INNER #);
 do ...
 #);

 (* GET
 * ===
 *
 * Reads the persistent root named "name" into memory
 * and returns a reference. If the object is already
 * in memory, a reference to the in-memory object is
 * returned. In that case, the state of the object

Interface Description 15

 * is left untouched. *)

 get:
 (# quaError:< Exception
 (#
 do 'persistentstore.get: Qua error getting "'
 -> msg.putText; name[] -> msg.putText;
 '"' -> msg.putText;
 INNER
 #);
 notFound:< Exception
 (#
 do 'persistentstore.get: "' -> msg.putText;
 name[] -> msg.putText;
 '" not found' -> msg.putText;
 INNER
 #);
 allowLazyFetch:< BooleanValue
 (#
 do THIS(persistentstore).allowLazyFetch
 -> value;
 INNER
 #);
 name: ^Text; type: ##Object;
 theObject: ^Object;
 enter (name[],type##)
 do ...;
 exit theObject[]
 #);

 (* PUT
 * ===
 *
 * Turns obj into a persistent root with textual name
 * "name". The state of obj is not saved until a checkpoint
 * operation is performed. *)

 put:
 (# obj: ^Object; name: ^text;
 enter (obj[],name[])
 do ...
 #);

 (* SCANROOTNAMES
 * =============
 *
 * Iterates over the names of the persistent roots
 * in this persistent store. *)

 scanRootNames:
 (# current: ^Text;
 do ...
 #);

 (* CLOSURE CONTROL
 * ===============
 *
 * These attributes are used to limit the part of the
 * object graph saved during the checkpoint operation.
 * On the interface level of a persistentstore, there
 * is currently two ways of limiting the object graph:
 *
 * 1. Special objects.
 *
 * Special objects are objects whose state is

16 Persistence in BETA

 * NEVER saved persistently. However, references
 * to these objects should be saved so that they
 * may be setup correctly when saved objects
 * referencing special objects are reinstantiated
 * in another process. Typical examples or special
 * objects are application framework objects that
 * are known to be present in the program
 * executions exchanging persistent objects, but
 * should not be saved themselves. Examples of
 * application framework objects are instances of
 * UIenv, systemEnv and shellEnv. (betaEnv is
 * always treated as a special object.)
 *
 * Special objects are registered once in the
 * lifetime of a persistent store by supplying
 * name and type of the object to the
 * "registerSpecialObject" method. The type is
 * saved in this persistentstore to be used for
 * type checking when registering special object
 * instances as described below.
 *
 * In addition to the initial registration, an
 * instance of the special object must be supplied
 * by each process using the persistent store by
 * calling the "registerSpecialInstance" method
 * when the persistentstore has been opened, but
 * before any get operations are made. The instance
 * given to the registerSpecialInstance method must
 * be a subtype of the type given to the
 * registerSpecialObject operation.
 *
 * 2. Runtime types.
 *
 * Runtime types types of objects that are used at
 * runtime, but should not persist across program
 * executions. An example of this is user interface
 * objects such as windows. Registering a
 * runtimeType means that instances of subtypes
 * are not saved, and the corresponding references
 * saved as NONE references. As runtime types
 * registered using registerRuntimeType are not
 * saved persistently in the store,
 * 'registerRuntimeType' must be called for each
 * runtime type in each session. It is of course
 * possible to save a table of runtime types in a
 * persistent store if needed.
 *
 * It is a selfcontradiction to register the type of
 * a special object as a runtime type or vice versa.
 * Doing so results in a runtime error.
 *
 * Furthermore it is necessary to ensure that
 * instances of runtime types are not origins of
 * other objects saved. This is because it is not
 * possible to save an object without the knowledge
 * that all its origins will be available when the
 * object is to be reinstantiated.
 *
 * Although it probably makes no sense, different
 * instances of persistentstore may have different
 * sets of specialObjects and runtimeTypes registered.
 *)

 (* REGISTERSPECIALOBJECT
 * ===================== *)

Interface Description 17

 registerSpecialObject:
 (# alreadyThere:< Exception
 (#
 do 'registerSpecialObject: Special object "'
 -> msg.putText; name[] -> msg.putText;
 '" already exists: ' -> msg.putText;
 INNER;
 false -> continue;
 #);
 name: ^Text; type: ##Object;
 enter (name[],type##)
 do ...
 #);

 (* REGISTERSPECIALINSTANCE
 * ======================= *)

 registerSpecialInstance:
 (# quaError:< Exception
 (#
 do 'registerSpecialInstance: Qua error on "'
 -> msg.putText; name[] -> msg.putText;
 '" instance' -> msg.putText;
 INNER;
 false -> continue;
 #);
 notFound:< Exception
 (#
 do 'registerSpecialInstance: Special object "'
 -> msg.putText; name[] -> msg.putText;
 '" not registered.' -> msg.putText;
 INNER;
 false -> continue;
 #);
 o: ^Object; name: ^Text;
 enter (o[],name[])
 do ...
 #);

 (* REGISTERRUNTIMETYPE
 * =================== *)

 registerRuntimeType:
 (# type: ##Object
 enter type##
 do ...
 #);

 (* LAZY OPTIONS
 * ============
 *
 * Attributes in this section are concerned with the
 * lazy fetch of persistent objects. If used, object
 * fetch from secondary storage may be delayed until
 * the objects are actually needed. By using a trap
 * mechanism, fetching takes place transparently
 * without applications being aware of it. *)

 (* ALLOWLAZYFETCH
 * ==============
 *
 * If not further specified, all objects in the
 * transitive closure of an object requested in a
 * get operation are always fetched at once. This

18 Persistence in BETA

 * default may be changed by furtherbinding
 * "allowLazyFetch" and setting "value" to "true".
 * Default may be overridden "per get" by using the
 * allowLazyFetch virtual of get. *)

 allowLazyFetch:< BooleanValue;

 (* MAXCOUNTONDANGLERHIT
 * ====================
 *
 * When a reference to an object not yet fetched
 * from secondary storage is encountered, some
 * number of objects reachable from the object
 * referred are fetched too. The objects fetched
 * are the 'value' first unfetched objects
 * encountered during a breadth-first traversal of
 * the object graph, using the object referred by
 * the original dangling reference as a root.
 *
 * Object fetch continues until:
 *
 * 1: No more unfetched objects are reachable from
 * the root object.
 * or 2: maxCountOnDanglerHit objects have been
 * fetched.
 *)

 maxCountOnDanglerHit:< IntegerValue
 (# do 100 -> value; INNER #);

 (* ONDANGLERHIT, AFTERDANGLERHIT
 * =============================
 *
 * OnDanglerHit is called when a dangling reference
 * is hit. When the object referred has been fetched,
 * AfterDanglerHit is called with the newly fetched
 * object as parameter. *)

 OnDanglerHit:< Object;
 AfterDanglerHit:<
 (# theObject: ^Object;
 enter theObject[]
 do INNER
 #);

 (* OPENPSTORE
 * ==========
 *
 * If this persistentstore contains references to
 * objects in other persistent stores, it may be
 * necessary to open the stores to be able to follow
 * these references. When this happens, the
 * openpstore virtual is called. If the persistent
 * store named is not opened and returned in ps, the
 * program will terminate. *)

 openpstore:<
 (# psname: ^Text;
 ps: ^persistentstore;
 enter psname[]
 do INNER
 exit ps[]
 #);

 pspriv: @...;

Interface Description 19

 do INNER;
 #);

(* DELETEPERSISTENTSTORE
 * =====================
 *
 * Deletes an existing persistentstore. It is not possible to delete a
 * persistentstore that is open in this program execution. If tried
 * anyway,
 * the "alreadyOpen" exception is raised. In case the process does not
 * have
 * sufficient access priviliges to delete the store, the "accessError"
 * exception is raised. *)

deletePersistentStore:
 (# alreadyOpen:< PSexception
 (#
 do 'persistentstore.delete: "' -> msg.putText;
 fullName[] -> msg.putText;
 '" is currently open' -> msg.putText;
 INNER;
 #);
 accessError:< PSexception
 (#
 do 'persistetstore.delete: Unable to delete "' -> msg.putText;
 fullName[] -> msg.putText; '"' -> msg.putText;
 INNER;
 #);
 notFound:< PSexception
 (#
 do 'persistetstore.delete: "' -> msg.putText;
 fullName[] -> msg.putText; '" not found' -> msg.putText;
 INNER;
 #);
 name: ^Text;
 enter name[]
 do ...
 #);

(* PSEXCEPTION
 * ===========
 *
 * PSexception is used in several exceptional situations where the
 * files
 * making up an persistent store are not accessable. The fullName
 * parameter
 * is the full path of the directory expected to be a persistent
 * store. *)

PSexception: exception
 (# fullName: ^Text;
 enter fullName[]
 do INNER
 #)

21

Bibliography

[Agesen 89] Ole Agesen, Svend Frølund, Michael Hoffmann Olsen:
Persistent and Shared Objects in BETA, Computer
Science Department, Aarhus University, DAIMI IR-89,
April 1989.

[Madsen 93] O. L. Madsen, B. Møller-Pedersen, K. Nygaard: Object-
Oriented Programming in the BETA Programming
Language, Addison-Wesley, 1993, ISBN 0-201-62430-3

[Brandt 94] Søren Brandt: Implementing Persistent and Shared Object
in BETA. Progress report. Technical Report, Computer
Science Department, Aarhus University, May 1994.

[MIA 90-2] Mjølner Informatics: The Mjølner BETA System: BETA
Compiler Reference Manual Mjølner Informatics Report
MIA 90-2.

23

Index

The entries in the index with italic pagenumbers are the identifiers defined in
the public interface of the libraries:

The minor level entries refer to identifiers defined local to the identifier of the
major level entry. For those index entries referring to patterns with super- or
subpatterns within the library, these patterns are specified in special sections of
the minor level index for that identifier.

Entries with plain pagenumbers refer to the text of this manual.

!!!Externally defined
. IntegerValue
. . !subpatterns
. . . maxCountOnDanglerHit 18
. PSexception
. . !subpatterns
. . . accessError 19
. . . alreadyOpen 19
. . . notFound 19
accessError 19
AfterDanglerHit 18
allowLazyFetch 18
alreadyOpen 19
application framework objects 9
betaenv 2
checkpoint 1, 4, 8, 14
close 4, 14
Component objects 4
component stacks 1
concurrency control 4
create 4, 13
creationtime 11
cross store references 8
dangling references 7
deletePersistentStore 4, 19
. accessError 19
. . !!superpattern
. . . PSexception 19
. alreadyOpen 19
. . !!superpattern
. . . PSexception 19
. name 19
. notFound 19
. . !!superpattern
. . . PSexception 19
exception
. !subpatterns
. . PSexception 19
fragment 3
fragment group 3
fullName 19

Garbage collection 10
get 4, 15
hashdemo.bet 6
largeRead.bet 6
largeWrite.bet 6
lazy object fetch 1, 7
maxCountOnDanglerHit 18
name 19
notFound 19
object id 11
object persistence 1
OnDanglerHit 18
openpstore 18
openRead 4, 12
openWrite 4, 13
pattern 3
persistent object 1
persistent root 1
persistent store 1
PersistentGC.bet 11
persistentstore 9, 12
. AfterDanglerHit 7, 18
. allowLazyFetch 7, 18
. checkpoint 14
. close 14
. create 13
. get 15
. maxCountOnDanglerHit 18
. . !!superpattern
. . . IntegerValue 19
. maxFetchOnDanglerHit 7
. OnDanglerHit 7, 18
. openpstore 18
. openRead 12
. openWrite 13
. pspriv 18
. put 15
. registerRuntimeType 10, 17
. registerSpecialInstance 9, 17
. registerSpecialObject 9, 17
. scanRootNames 15

24 Persistence in BETA

PSexception 19
. !!superpattern
. . exception 19
. fullName 19
pspriv 18
put 4, 15
reachability model 1
registerRuntimeType 17
registerSpecialInstance 17
registerSpecialObject 17
runtime type, 6
Runtime types 9
scanRootNames 15
showregister.bet 6
special objects 6, 9
special.bet 6
structdemo.bet 6
transitive closure 1

