
The Mjølner BETA System

Using BETA on the Macintosh

Mjølner Informatics Report

MIA 90-06(1.4)

April 1997

Copyright © 1990-97 Mjølner Informatics ApS.
All rights reserved.

No part of this document may be copied or distributed
without the prior written permission of Mjølner Informatics

Apple and Macintosh are registered trademarks of Apple Computer, Inc.

MPW is a trademark of Apple Computer, Inc.
UNIX is a registered trademark of AT&T.
Motorola is a trademark of Motorola, Inc.

Contents

1 The Mjølner BETA System on Macintosh..1

2 Installation Guide ..2
2.1 Contents ..2
2.2 Installation...2

2.2.1 Unpack the Distribution Floppies..2
2.2.2 Configuring ...2

2.3 Memory Requirements..3
2.3.1 Memory Requirements to MPW Shell ..3
2.3.2 BETA Application Memory Requirements.................................3

3 Using MPW—Macintosh Programmers Workshop..4
3.1 Using MPW for BETA programming...4
3.2 The ß Menu ...5

3.2.1 Application and Tool...5
3.3 Environment Variables ...5

4 A Session Using the BETA Compiler...11

5 Errors and Configuration...12
5.1 Memory Allocation Errors ..12
5.2 Virus detectors ..12
5.3 Problems with Memory...12
5.4 Directories in Fragments...13

6 Accessing the Macintosh Toolbox from BETA ..14
6.1 BETA extensions to the Toolbox..14
6.2 Adding Resources to Applications built with the BETA Compiler......14

References...21

Index ...23

i

1 The Mjølner BETA System
on Macintosh

This manual describes how to use the Mjølner BETA System release 4.0.2 on Macin-
tosh.

The current version of the BETA compiler on the Macintosh is available as a MPW
tool. To use the MPW tool compiler some additional software is required:

• MPW version 3.4 or later MPW
Requirements

• Interfaces&Libraries

• MPW PPCLink tool v1.4 or later

• MPW Rez tool

Furthermore, the compiler requires a minimum machine configuration of 40 MB of
memory and a Power Mac processor (or Performa with RISC processor), and a
harddisk with 60 - 100 mb of free space (depending on the size of the harddisk).

System
Requirements

1

2 Installation Guide

This section describes how to unpack and install the Mjølner BETA System for
Macintosh. The section also includes description of memory requirements to MPW
and to BETA applications.

2.1 Contents
The distribution contains:

• BETA Compiler v5.2

• Basic libraries with text, stream, file, persistence, concurrency, etc.

• Container libraries with collections, sets, lists, hashtables, sorting, etc.

• GuiEnv, a platform independent object oriented graphical user interface library,

• BETA demo programs, including demo programs of how to use BETA and
how to use GuiEnv.

2.2 Installation

2.2.1 Unpack the Distribution Floppies
Self-extracting
archive

This distribution is stored as a self-extracting archive. To install the Mjølner BETA
System, doubleclick the self-extracting archive.

2.2.2 Configuring the Files
UserStartup•beta
BetaStartup•Home
BetaStartup•Menu

After the beta folder is installed you need to move the file UserStartup•beta in the
beta folder to the MPW folder (the folder containing the MPW Shell).

The purpose of UserStartup•beta is to set up the environment used by The Mjølner
BETA System. When starting MPW the first time after you moved UserStartup•beta
to the MPW folder, you will be asked to select the beta folder. The position of the beta
folder will be remembered afterwards using the file BetaStartup•Home in the MPW
folder. If this file is deleted or you move or rename the beta folder you will be
prompted for the beta folder again.

During the first startup UserStartup•beta also creates the file BetaStartup•Menu.
In BetaStartup•Menu the ß menu is defined as described below. You can modify
this file to suit your specific needs. In case it is deleted a new standard Beta-
Startup•Menu is created during the next startup of the MPW Shell.

2

Memory Requirements 3

2.3 Memory Requirements

2.3.1 Memory Requirements to MPW Shell

To ensure proper workings of MPW and the BETA compiler, you should ensure, that
enough memory is allocated for MPW. In order to run the BETA compiler at least 15
MB of memory must be allocated to the MPW Shell. The amount of memory can be set
by selecting the MPW Shell icon and using the Show Info command in the Finder as
illustrated in the figure below:

15 MB for the
MPW Shell

More memory allocated to MPW makes the compiler and especially the linker run
faster.

2.3.2 BETA Application Memory Requirements

You may have to increase the memory requirements of a compiled BETA application.
This is done by selecting the BETA application, and then use the Show Info
command in the Finder.

1,5 MB for a
BETA application

3 Using MPW—Macintosh
Programmers Workshop

This section briefly describes how to use MPW for compiling and running BETA appli-
cations.

MPW is a program development environment for the Macintosh computers with tools
for editing, compilation and execution of e.g. BETA programs. MPW is a command
driven interface to the Macintosh operative system (analogous to the Unix shell).

MPW WorkSheet MPW is centered around the concept of a worksheet, where the commands are entered
and thereafter executed. A worksheet saves its contents from session to session and
can therefore be used to contain the most often used commands such that they can be
easily executed in later sessions. The commands in the worksheet can be edited using
the usual Macintosh editing facilities.1

Commands in
MPW

Commands can be executed from the worksheet in two different ways:

• The text cursor is placed somewhere in the command line and the Enter key2 is
pressed. The entire line will then be executed as one command.

• Some text may be selected and the Enter key is pressed. The selected text will
then be executed as one command.

3.1 Using MPW for BETA
programming

When starting MPW after installation, an environment is set up to make it easy to use
the BETA system. The BETA compiler can be executed either using the script beta
or by using the special ß menu.

Notice that you only need to activate the BETA compiler on the program fragment
that constitutes the application. If the program fragment uses other fragments
(libraries), these are automatically included by the compiler and linker. If some frag-
ments have been changed since the last compilation, these fragments will automati-
cally be recompiled.

1 Please se your Macintosh manuals for how to use your Macintosh.
2 The Enter key is located in the lower right corner of the numeric keypad. Pressing the Return key

will just insert a carriage return

4

The ß Menu 5

3.2 The ß Menu
The BETA environment defines a ß menu containing items which makes it easy to
use the BETA compiler.

The items are: ß menu items
Compile {Active} Compile the front most window
Recompile Compile the previously compiled file again
Compile File... Prompts the user for a file, and compiles the selected file
Execute Execute the last compiled file
Open Fragment Tries to open the selection. The selection is treated as a

BETA file name, e.g. ~beta/guienv/v1.4/guienv
Directory {Active} Changes directory to the location of the file shown in the

front most window
-Application Compile the BETA program as an application (default)
-Tool Compile the BETA program as an MPW Tool

In most cases, the ß menu defines the necessary interface to the BETA compiler.
However, the advanced user may prefer to use the beta script instead, please see
[MIA 90-02] for legal options etc.

beta script

When selecting Compile {Active} the beta script is invoked with the active window
as argument. The script first executes the BETA compiler and then executes the job
file generated by the compiler. The job file links the compiled application. Output
during compilation is directed to a separate MPW window.

3.2.1 Application and Tool

The options -Application and -Tool specify whether the generated application
should be a Macintosh stand-alone application or a MPW tool. The default is that the
application is linked as a Macintosh stand-alone application. If a BETA program uses
the input/output streams keyboard and screen in betaenv and is executed as a stand-
alone Macintosh application, a simple console window is opened. The input/output
stream is redirected to this window. The console also defines the standard , File,
and Edit menus. The Cut, Copy, and Paste items in the Edit menus are available.

The execution can be stopped by selecting Quit in the File menu.

Notice, that if the program is using GuiEnv, it must be compiled as a stand-alone
application. The input/output is in this case redirected to a special GuiEnv window.

3.3 Environment Variables
The following MPW environment variables are used by the Mjølner BETA System.

Warning: Except for the Verbose, Time, and BETART
you should not change these variables yourself.

{Verbose}

To analyse the BETA compiler memory usage is could be useful to set the
Verbose option by issuing the following command in the MPW WorkSheet:

6 Using on Macintosh

Set Verbose 1
Export Verbose

Output from the garbage collector of the BETA compiler will then be directed
to a special window. The following command will turn off the garbage
collector output:

Unset Verbose
Export Verbose

{Time}

To analyse the time used by the BETA compiler and the linker set the Time
option by:

Set Time 1
Export Time

Time usage of the compiler and the linker will be printed in the compiler output
window. The following command will turn off the time usage output:

Unset Time
Export Time

{betalib}
Specifies the location of the BETA folder (~beta). It is used by many tools in
the Mjølner BETA System. It is set in the MPW startup sequence
(UserStartup•beta).

{betaopts}

Specifies options that the beta compiler should be invoked with by default.

{betart}

Is used to set various characteristics of the BETA runtime system. The specifi-
cation consists of a list of entries, separated by ':' (colon). Colon in the begin-
ning and at the end of the BETART value is optional. The specification ignores
case, except for the case of string-entry values.

Entries may appear more than once in BETART. The last specification will in
this case be used. The semantics of the different BETART entries are given
below.

There are three types of entries: boolean , integer, and string entries:

Boolean entries: The default value for all boolean entries is false. Mentioning
the boolean entries in BETART sets its value to true. Boolean entries have the
form <entry>, where <entry> is one of:

Info

Print information about heap sizes etc. at startup.

The following is an example of the output produced when Info is set:

#(Heap info: IOA=2*200Kb, AOABlock=200Kb, LVRABlock=200Kb,
CBFABlock=1Kb)

which reports the sizes of the two Infant Object Area (scavenging) heaps,
the size of each Adult Object Area block, the minimum size of each Large
Value Repetition Area block, and the size of each Call Back Function
Area block.

InfoIOA

Print information on garbage collection in the infant object area during
execution.

If set, then after each IOA garbage collection, a line like the following
will be printed:

Environment Variables 7

#(IOA-7 12? 4%)

which tells that this was the seventh IOA garbage collection, that it was
triggered by a request to allocate an object of size 12 long words (48
bytes), and that after the garbage collection, the IOA heap is 4% filled. In
special situations, other information may be printed if InfoIOA is set.
These will also be marked #(IOA.

InfoAOA

Print information on garbage collection in the adult object area during ex-
ecution.

If set, then after each AOA garbage collection, a line like the following
will be printed:

#(AOA-3 1024Kb in 2 blocks, 23% free)

which tells that this was the third AOA garbage collection, that 1024 Kb
is used by 2 AOA blocks, and that after the garbage collection 23% of
AOA is unused.

Another message that may be printed if InfoAOA is set is

#(AOA: new block allocated 200Kb)

which tells that an object was moved to the AOA heap, and that there was
not enough room for it. In this case the best solution was to allocate a new
block. Other times this situation may trigger an AOA garbage collection.
The heuristics for this may be controlled by some of the other properties
mentioned in this section.

In special situations other messages may be printed if InfoAOA is set,
these will also be marked #(AOA.

InfoLVRA

Print Information on garbage collection in the large value repetition area
during execution.

If set, then after each LVRA garbage collection, a line like the following
will be printed:

#(LVRA-2 1536Kb in 2 blocks, 17% free)

which tells that this was the second LVRA garbage collection, that 1536
Kb is used by 2 LVRA blocks, and the after the garbage collection 17% of
LVRA is unused.

Another message that is often printed if InfoLVRA is set is

#(LVRA: make free list 1024Kb in 2 blocks, 243Kb free)

which tells that a large value repetition object was attempted allocated in
the LVRA heap, and that there was not enough room for it. In this case the
best solution was to rebuild an internal free-list. The numbers reported tell
that there was currently two blocks allocated, after the rebuilding of the
free list, 243Kb was found free.

Another message that may be printed if InfoLVRA is set is

#(LVRA: new block allocated 200Kb)

which tells that a large value repetition object was attempted allocated in
the LVRA heap, and in this case the best solution was to allocate a new
block. Other times this situation may trigger rebuilding of the internal
free-list or an LVRA garbage collection. The heuristics for this may be
controlled by some of the other properties mentioned in this section.

8 Using on Macintosh

InfoLVRAAlloc

Print information on allocation in the large value repetition area during
execution.

If set, then when a large value repetition is attempted allocated in LVRA,
a line like the following will be printed:

#(LVRAAlloc integer repetition, range=300, size=1216)

which tells that it is an integer repetition of range 300 which is requested,
and that it occupies 1216 bytes in the LVRA heap.

InfoCBFA

Print information about the callback function area during execution.

If set, then when enough new callbacks have been installed that a new
block is needed in the CBFA area, a line like the following will be
printed:

#(CBFA: new block allocated 1Kb)

which tells that a new block 1 kilobyte in size was allocated to extend the
CBFA heap.

In special situations other messages may be printed if InfoCBFA is set,
these will also be marked #(CBFA.

InfoAll

Sets all Info entries: Info, InfoIOA, InfoAOA, InfoLVRA, InfoCBFA, and
InfoLVRAAlloc.

QuaCont

Continue execution after runtime detection of qualification error in refer-
ence assignments.

Integer entries: These have the form <entry>=<value>, where <entry> is one of
the following, and <value> is any positive integer. The default values are noted
in parenthesis below:

IOA

The size in Kb of the infant object area (Default: 200).

IOAPercentage

The minimum free fraction in percent of the infant object area. If less than
this fraction is free in IOA after an IOA garbage collection, then, in the
current version of the runtime system, the execution of the program is
terminated. This limitation will be eliminated in a future version of the
runtime system. (Legal range: 3 to 40, default: 10).

AOA

The size in Kb of one block in the adult object area (Default: 200).

AOAMinFree

The minimum free area in Kb in the adult object area. If less than this size
is free after an AOA garbage collection, then the next allocation in AOA
will cause a new block to be allocated. Please note that it is only meaning-
ful to specify one of AOAMinFree and AOAPercentage (below), because
they specify conflicting behavior for allocation in AOA. (Default: 50).

AOAPercentage

The minimum free fraction in percent of the adult object area. If less than
this fraction is free after an AOA garbage collection, then the next alloca-
tion in AOA will cause a new block to be allocated. Please note that it is
only meaningful to specify one of AOAMinFree (above) and AOAPer-

Environment Variables 9

centage, because they specify conflicting behavior for allocation in AOA.
(Legal range: 3 to 97, default: 0, i.e., AOAMinFree is used).

LVRA

The default size in Kb of one block in the large value repetition area
(Default: 200).

LVRAMinFree

The minimum free area in Kb in the large value repetition area. If less
than this size is free after an LVRA garbage collection, then the next allo-
cation in LVRA will cause a new block to be allocated. Please note that it
is only meaningful to specify one of LVRAMinFree and LVRAPercent-
age (below), because they specify conflicting behavior for allocation in
LVRA. (Default: 50).

LVRAPercentage

The minimum free fraction in percent of the large value repetition area. If
less than this fraction is free after an LVRA garbage collection, then the
next allocation in LVRA will cause a new block to be allocated. Please
note that it is only meaningful to specify one of LVRAMinFree (above)
and LVRAPercentage, because they specify conflicting behavior for allo-
cation in LVRA. (Legal range: 3 to 97, default: 0, i.e., LVRAMinFree is
used).

CBFA

The size in Kb of one block in the callback function area (Default: 1).

String entries: These have the form <entry>=<value>, or <entry># <value>,
where <entry> is one of the following, and <value> is any string. The default
values are noted in parenthesis below:

InfoFile

Name of file on which to write all this information (Default: standard er-
ror file stderr).

Example (for a MPW tool):

set BETART "InfoIOA:IOA=512:InfoFile=info.dump"
export BETART

Example (for an application):

For applications the BETART environment variable is read from the
resource of type 'STR ' with number 129 and name BETART. To change
this resource use a resource editor, e.g. ResEdit. Specify the value as The
String:

10 Using on Macintosh

The specify the number and name using the Resource Info dialog.

{betaLinkLibs}
Internal linking variable. Specifies the linker libraries to be used by the BETA
compiler when linking (using standard MPW linker). If set, it totally overwrites
the default link options, the compiler would have used otherwise.

{betaLinkOptions}
Internal linking variable. Specifies the linker options to be used by the BETA
compiler when linking (using standard MPW linker). If set, it totally overwrites
the default link options, the compiler would have used otherwise.

{BetaLinkCreator}
Specifies the application creator, default “BETA”

{BetaLinkType}
Specifies the application type, default “APPL”

By using the -Application and -Tool items in the ß menu BetaLinkCreator and
BetaLinkType is changed to “MPS ” and “MPST”, respectively.

4 A Session Using the
BETA Compiler

The following steps are usually performed when handling BETA programs under
MPW:

1. MPW is started by double clicking the MPW Shell icon or on a BETA source file
(.bet). This opens MPW with the worksheet document in a window.

2. We now edit the BETA program text. This may be initiated in two different
ways:

a) We open an existing BETA file by selecting the Open entry in the File
menu.

b) We create a new file for the BETA program by selecting the New entry in
the File menu. The file name must end with .bet.

3. Now edit the file using the ordinary Macintosh editing facilities in the window
containing the program.

4. Save the changed BETA program using the Save entry in the File menu.

5. Select Compile {Active} in the ß menu.

6. Messages will now be written in the {MPW}:compilerOutput window. These
messages informs about the progress of the compilation, and eventually about
syntactic and semantic errors.

7. The program may now be executed by selecting Execute in the ß menu.

8. Close MPW using the Quit entry in the File menu.

Steps 3, 4, 5 and 7 may be repeated over and over, while making changes to the same
program.

11

5 Errors and Configuration

5.1 Memory Allocation Errors
When compiling programs or running BETA applications, memory is allocated when
needed. During compilation memory is allocated in the MPW heap and during execu-
tion of BETA applications memory is allocated in the application heap. In case the
execution runs out of memory, one of the following messages can appear:

Possibly memory
error messages

• IOA heapspace full

• Couldn't allocate ToSpace

• Couldn't allocate IOA

You will then have to increase the memory heap as described in section 2.3.

5.2 Virus detectors
Some virus detectors (e.g. Vaccine and Gatekeeper) do not allow MPW to operate cor-
rectly. Gatekeeper complains during compilation of a BETA program. Vaccine does
not complain; but causes MPW to run erroneously, typically to hang. Therefore Vaccine
and Gatekeeper must be configured to accept MPW.

5.3 Problems with Memory
In case the system is unable to launch an application from MPW, the problem might be
lack of memory. A solution could be to exit MPW and activate the application from the
Finder by double-clicking on the application icon.

12

Directories in Fragments 13

5.4 Directories in Fragments
Please notice, that directories in ORIGIN, INCLUDE etc. in fragments must be spec-
ified using the Unix directory syntax. That is, the Macintosh file:

{betalib}guienv:v1.4:guienv Unix directory
syntax

must e.g. in an ORIGIN property of a fragment be specified as:

ORIGIN '~beta/guienv/v1.4/guienv'

Please also note, that ~beta/ is used instead of {betalib}.

6 Accessing the Macintosh
Toolbox from BETA

Programming the Macintosh is done through the Toolbox. The Toolbox includes a
large number of routines and they are all documented in Inside Macintosh. There
exists a BETA interface to most of these routines such that they can be used in a
BETA program.

The fragment maclib in file {betalib}maclib:v3.0:maclib contains this toolbox
interface.

6.1 BETA extensions to the Toolbox
Object oriented extensions to the interface to the Macintosh Toolbox have been built
in order to make it possible to program the Macintosh in “the BETA way.” Using
purely Toolbox interface routines from BETA forces you to program in a Pascal-like
fashion.

The fragments in the folder {betalib}guienv:v1.4: contain an environment
(GuiEnv) where windows, text editors, dialogs, menus, etc. have been lifted to “real”
BETA patterns with an object oriented interface.

The GuiEnv environment are documented in The Mjølner BETA System—
Lidskjalv: User Interface Framework, Mjølner Informatics Report MIA-95-30.

The Toolbox interface is documented in The Mjølner BETA System—Macintosh
Libraries, Mjølner Informatics Report MIA-90-10.

The folder {betalib}demo:maclib: contain demo programs using the Toolbox in-
terface and the folder {betalib}demo:guienv: contain demo programs using the
object oriented extensions.

6.2 Adding Resources to Applications
built with the BETA Compiler

You may use macintosh resource files in your application. You do this by specifying
a RESOURCE property, e.g.

ORIGIN '~beta/basiclib/v1.5/betaenv';
RESOURCE ppcmac 'foo.r;
-- program: descriptor --
(# do ... #)

The BETA compiler will automatically compile all the resources in "foo.r" into the
application. The extension '.r' tells the system that the resource file is a textual

14

Adding Resources to Applications built with the BETA Compiler 15

description that must be compiled using the MPW Rez tool. If the extension is
'.rsrc' the system knows that the resource is a compiled resource file, and it will
include the compiled resources without calling the Rez tool.

You may need to use the lowlevel Toolbox interface to utilize these resource in the
current version of the libraries.

References

[Madsen 93] O. L. Madsen, B. Møller-Pedersen, K. Nygaard: Object-
Oriented Programming in the BETA Programming Lan-
guage, Addison-Wesley, 1993, ISBN 0-201-62430-3

[MIA 90-2] Mjølner Informatics: The Mjølner BETA System: BETA
Compiler Reference Manual Mjølner Informatics Report
MIA 90-2.

[MIA 90-10] Mjølner Informatics: The Mjølner BETA System – The
Macintosh Libraries, MjølnerInformatics Report MIA 90-
10.

[MIA 94-27] Mjølner Informatics: The Mjølner BETA System –
Lidskjalv User Interface Framework, Reference Manual,
MjølnerInformatics Report MIA 94-27.

17

Index
Adult Object Area 6 MPW tool 5
AOA 7, 8 Open Fragment 5
AOAMinFree 8 QuaCont 8
AOAPercentage 8 qualification error 8
Application 5 Recompile 5
betalib 6 ResEdit 9
BetaLinkCreator 10 RESOURCE property 14
betaLinkLibs 10 Rez 15
betaLinkOptions 10 rsrc 15
BetaLinkType 10 scavenging 6
betaopts 6 ß Menu 5
betart 6 stand-alone application 5
BetaStartup•Home 2 stderr 9
BetaStartup•Menu 2 String entries 9
Boolean entries 6 Time 6
Call Back Function Area 6 Tool 5
CBFA 8, 9 Toolbox 14
Compile File... 5 UserStartup•beta 2
Compile {Active} 5 Verbose 6
Configuring 2 Virus detectors 12
Couldn't allocate IOA 12 worksheet 4
Couldn't allocate ToSpace 12
directory syntax 13
Directory {Active} 5
Enter key 4
Execute 5
free-list 7
GuiEnv 5, 14
heap sizes 6
Infant Object Area 6
Info 6
InfoAll 8
InfoAOA 7
InfoCBFA 8
InfoFile 9
InfoIOA 6
InfoLVRA 7
InfoLVRAAlloc 8
Inside Macintosh 14
Installation 2
Installation Guide 2
Integer entries 8
IOA 6, 8
IOA heapspace full 12
IOAPercentage 8
Large Value Repetition Area 6
LVRA 7, 8, 9
LVRAMinFree 9
LVRAPercentage 9
Memory Requirements 3
MPW 4

19

