
File Name : Mjølner Hammer.pre
Title : (Adobe Illustrator (R) Version 3.0 Abbreviated Prolog)
Creator : Adobe Illustrator(TM) 3.0
CreationDate : (7/22/89) ()

The Mjølner BETA System
Frigg - Interface Builder

Users Guide

Mjølner Informatics Report

MIA 97-33(1.2)

February 1997

Mjølner Informatics ApS

Copyright © 1990-97 Mjølner Informatics ApS.
All rights reserved.

No part of this document may be copied or distributed
without the prior written permission of Mjølner Informatics

1. INTRODUCTION 3

2. TUTORIAL 6

2.1 An Example Application 6

2.2 Creating the User interface 7
2.2.1 Creating the adressbookgui fragmentgroup 7
2.2.2 Creating the addressbook window 7
2.2.3 Adding items 8
2.2.4 Changing the Name 9
2.2.5 Compound items 10

2.3 Building the Application 11
2.3.1 Structure of Generated Code 11
2.3.2 Extending the Public Interface 12
2.3.3 The Application 14

3. REFERENCE MANUAL 15

3.1 How to Get Started 15

3.1 15
3.1.1 Interfacebuilder Menu 15

3.2 Graphical Editor 16
3.2.1 Creating Items 17
3.2.2 Moving and Resizing 18
3.2.3 Changing Hierarchy 18
3.2.4 File Menu 19
3.2.5 Edit Menu 19
3.2.6 Align Menu 22
3.2.7 Object Info Dialog 23

4. INDEX 27

Introduction 3

1. Introduction

Frigg is the interface builder of the Mjølner BETA System, it aims at supporting rapid
prototyping and is meant primarily for system designers and developers.

Frigg does not enforce one particular style of development on its users. In fact, Frigg
supports at least the following approaches: (1) starting with design of user interface
objects (UIOs) and building up a horizontal prototype having only minimal
functionality; (2) starting from a model, and an implemented description of the
functionality of a system, but with no UIOs implemented; (3) vertical prototyping, i.e.
implementing the functionality behind a subset of a horizontal prototype or fully
implementing a small subset of a system intended for incremental extension; (4)
simulation of functionality, i.e. adding temporary short cut or dummy computations to
a horizontal prototype to support sample data; and (5) full application development. In
addition, these different ways of using Frigg can be combined.

Frigg is integrated with the other tools of the Mjølner BETA System. It is embedded
the Mjølner BETA Sourcebrowser, and supplies a graphical editor which interacts
with the structure editor to create a prototyping environment. The graphical editor lets
its users construct the user interface via direct manipulation, while the necessary code
is generated automatically behind the scene. The generated code can be extended and
tailored using the structure editor, and this tailoring can take place at any time during
the development of the user interface, because the graphical editor can keep track of
the code even though the code has been altered in the structure editor. The developer
can therefore alternate between working on the user interface and coding the
underlying functionality.

The integration of Frigg's editors is accomplished using the Mjølner BETA System's
uniform representation of programs: abstract syntax trees (ASTs). Manipulations of
the ASTs are done through the Meta Programming System (MPS). Furthermore, all
editors working on the same AST are informed when the AST changes, thereby
allowing the editors to ensure consistency. The ASTs generated by Frigg are
decorated with special comments that are used by Frigg to recognise user interface
objects and to store links to layout information.

Frigg utilises the Mjølner BETA Fragment System to: (1) Get access to Lidskjalv, the
Mjølner BETA Graphical User Interface environment (GUIenv), (2) Create user
interface modules that are properly separated from the model modules of the program,
(3) Separate the interface part and the implementation part of the user interface
objects, to allow fine tuning of the users interface without recompiling the entire
program.

The code generated by Frigg are specialisation's of the classes in GUIenv. Figure 1
shows a FindDialog created in Frigg, as it appears at runtime.

4 Frigg Users Guide

The BETA AST that representing the FindDialog is pretty-printed in its textual form
below:

ORIGIN '~beta/guienv/v1.3.1/guienvall';
BODY 'finddialogbody'

-- guienvLib: Attributes --

findDialog: window
 (#
 onFind:< (# str: ^text; enter str[] do INNER #);
 onCancel:< (# do INNER #);

 open::<
 (#
 <<SLOT findDialogOpen:DoPart>>
 #);
 private: @<<SLOT findDialogPrivate:Descriptor>>;
 #)

The FindDialog fragment group

The first three lines are the fragment syntax, which is what makes the fragment group
a GUIenv library that can be used in any GUIenv program.

The FindDialog pattern is a specialisation of the GUIenv window pattern because the
FindDialog is a window and therefore inherits from the window class.

The interior of the FindDialog is hidden in the implementation file called a BODY
file. This allows the developer to change the content of the FindDialog without
recompiling the part of the program which uses the dialog. The user interface objects
in the window are declared in the private part of the FindDialog pattern as individual
singular objects.

The parts of the FindDialog that are automatically generated is the further binding of
"open" and the "private: @<<...>>" declaration. The two virtual procedures
"OnCancel" and "OnFind" are added by the developer as the interface between the
FindDialog and the application. The "OnFind" virtual procedure is called when the
user presses the "find" button in the dialog. The argument to "OnFind" is the contents
of the text field in the dialog. Below is a pretty-print of the AST representing the find-
button in the private part of the dialog:

Introduction 5

findBtn: (*$ 7*) @pushButton
 (#
 open::< (# do (* initialize *) #);
 eventHandler::<
 (# onMouseUp::< (# do searchFld.contents -> onFind; #) #)
 #)

The find button of the dialog.

The only part of the FindBtn singular object which is added by the developer, is the
dopart of the OnMouseUp virtual. The OnMouseUp virtual procedure is automatically
called by the GUIenv system, when the user presses the button. Here the developer
has programmed the button to call the "OnFind" virtual procedure in the interface of
the FindDialog.

2. Tutorial

2.1 An Example Application
This tutorial will demonstrate how to use Frigg to make a small address book
application. The application is structured into three parts:

addressbook The classes that defines the data objects in the application.

addressbookgui The classes that defines the graphical user interface.

addressbookappl The controlling application that ties the data model to the
graphical user interface.

The data model is created in Freja (Mjølner BETA CASE tool). The following
diagram describes the data model for the addressbook application:

The Freja manual can be consulted to get an explanation of the graphical notation
used in the diagram.

Here is a short description of the classes in the diagram:

addressbook Has a list of persons.

person Has a number of simple attributes: name, CPR etc., a
reference to the current address, and a list of occupations.

Tutorial 7

occupation Can be teacher, student and employee. This part of the
model is left out of the application for simplicity.

The addressbook model does not have visibility to the addressbookgui (i.e. it does not
INCLUDE the addressbookgui fragmentgroup). This ensures that the addressbook
data objects can be made persistent objects.

The addressbookgui does not know about the addressbook data model. This allows
the addressbook user interface to be reused in other applications.

The addressbookappl includes both the data model and the user interface, and ties the
two together.

The following sections will explain how to create the user interface and the
application.

2.2 Creating the User interface

2.2.1 Creating the adressbookgui fragmentgroup

The sourcebrowser that are part of Frigg are activated by writing

frigg

in the command line (UNIX) or by double-clicking the Frigg icon (Macintosh).

Activating Frigg, the sourcebrowser window will appear:

Here the addressbookgui fragmentgroup is already created. This was done by using
the New Window Library command in the Interfacebuilder menu. This
fragmentgroup has ORIGIN in guienvall and contains a GUIenvLib fragmentform.
The GUIenvLib fragmentform can contain specializations of the window class in
Lidskjalv (The Mjølner BETA user interface framework).

2.2.2 Creating the addressbook window

The addressbook window are created as a specialization of window via the Create

8 Frigg Users Guide

In the create dialog the name of the window are entered and the inherits from popup
menu are set to window. Pressing OK in the dialog the graphical editor window
appears:

The empty area with a border is the content area of the window. This area has been
resized to the desired size by dragging the border.

The two palette objects to the right of the content area contains the standard Lidskjalv
window items. The iconic palette contains simple items such as push-button and text
field. The other palette contains compound items.

2.2.3 Adding items

The first items that will be added to the window, is simple text label and text fields.
This is the fourth and the fifth item on the simple item palette. The items are added by
dragging the items from the palette to the content area of the window.

Tutorial 9

Here the items are added, and the text in the labels are changed to “Name:”, “Phone:”
and “CPR:”. These changes are made via the “Object Info Dialog” that are invoked
by selecting an item and then choosing the “Object Info” in the “Edit” menu:

The items are arranged in the window by using the alignment commands in the
“Align” menu.

2.2.4 Changing the Name

The items are given default names in the source code that looks like “editText1” and
“staticText2”, but since these items needs to be referred to in the application (in order
to tie the user interface to the data model) it is a good idea to change the names. This
is done by choosing the “Edit Name” command in the “Edit” menu:

10 Frigg Users Guide

Here the name of one of the text fields are changed to “nameField”, which will be
easier to remember later.

2.2.5 Compound items

The address part of the addressbook window are going to be a canvas, which is a
compound item. A canvas contains other items in its local coordinate system. Initially
the canvas is empty, and then items can be added to the canvas. These objects move
when the canvas are moved.

Here the address canvas has been added. The object info dialog has been used to give
the canvas an “etched in” border. The “Address:” label are not part of the canvas, but
are added to the window.

The address fields “street” and “city” can now be added to the canvas by dragging
from the palette to the canvas. When dragging, the border of the canvas will be
changed temporarily to show where the items will end up.

Tutorial 11

Now the address fields are added. At the bottom of the window three push-buttons are
added. They perform the main functions in the addressbook window. The other
functions can be put in the menubar.

NOTE: The menubar can not be specified in the graphical editor. It will have to
be coded in Sif, see the Lidskjalv manual for information about doing
this.

Furthermore a separator is placed between the buttons and the “address” canvas.

Now the user interface is complete. In the next section one way to tie the user
interface and the data model together in an application, will be explained.

2.3 Building the Application

2.3.1 Structure of Generated Code

The code generated by Frigg is divided into two different files:

addressbookgui The public accessible portion of the window i.e. the
declaration of the addressbook window.

addressbookguibody The private attributes of the window.

The addressbookgui fragmentgroup are named by the user when choosing the “New
Window Library” command. The body file is created by Frigg. A Sif editor is opened
on the declaration of the addressbook window by selecting the content area of the
window and choosing “Open Subeditor” in the “Edit” menu:

12 Frigg Users Guide

All the items of the window are hidden in the private attributes of the window. These
attributes can be edited in Sif by double-clicking

<<SLOT addressBookWindowPrivate: descriptor>>

The addressBookWindowPrivate fragment is located in “addressbookguibody". Here
is a portion of this fragmentgroup:

ORIGIN 'addressbookgui'
-- addressBookWindowPrivate: Descriptor --
(# ...
 nameField: @editText
 (# open::<
 (#
 do (346,30)->size;
 (54,14)->position;
 #)
 #);
 addressGroup: @canvas
 (# streetField: @editText
 (# ... #);
 ...
 #);
 ...
#)

2.3.2 Extending the Public Interface

The interface of the addressBookWindow needs to be extended to allow the
application to access certain parts of the implementation of the window.

In this example two principles will be used:

Text Fields: For each text field in the addressBookWindow a simple
attribute is added to the interface of addressBookWindow that
changes the content of the text field.

Push buttons: For each push-button, a virtual procedure is added that is called

Tutorial 13

addressBookWindow: window
 (#
 nameField:
 (* Changes the content of the textfield “NameField” *)
 (# theName: ^text
 enter theName[]
 <<SLOT enterNameField:DoPart>>
 #);

 onFind:<
 (* Is called when the user presses the “Find” button *)
 (# do INNER #);
 ...
 #)

The implementation of <<SLOT enterNameField:DoPart>>, must be placed in the
“addressbookguibody”. The implementation looks like this:

-- enterNameField:DoPart --
do theName[] -> private.nameField.contents

The “find” button needs to call the “onFind” virtual. This is done by selecting the
“find” button in the graphical editor and choosing “Edit Virtuals” in the “Edit” menu.

The invoked dialog presents the available event types of the push-button. “onFind”
should be called in the “onMouseUp” event. Selecting “onMouseUp” and pressing
“edit” will open a Sif editor on a furtherbinding of “onMouseUp”.

Here “onMouseUp” is furtherbound to call “onFind”.

14 Frigg Users Guide

2.3.3 The Application

The application module, “addressbookAppl” includes both the user interface and the
data model.

ORIGIN 'addressbookgui';
INCLUDE '~beta/persistentstore/v1.5/persistentstore';
INCLUDE 'addressbook';
-- program: Descriptor --
GUIenv
(# PS: @persistentStore;
 (* Use persistentstore to store the data objects *)
 theAddressBook: ^addressBook;
 theAddressBookWindow: @addressBookWindow
 (# currentInx: @integer;

 showPerson:
 (# thePerson: ^addressBook.person;
 enter thePerson[]
 do (*
 * Change the content of the name field etc.
 *)

 thePerson.name[] -> nameField;
 ...;
 #);

 onFind::
 (# do (* Invoke a find dialog *) #);

 open::
 (#
 do (*
 * Fetch the first person
 *)

 1 -> currentInx
 -> theAddressBook.inxGet -> showPerson;
 #);
 #)
do (*
 * Get the addressbook data in “uni”
 *)

 'uni' -> PS.openWrite;
 ('AddressBook', addressBook##)
 -> PS.get -> theAddressBook[];

 (*
 * Open the addressbook window
 *)

 theAddressBookWindow.open;
#)

Here the extended interface of the addressBookWindow are used to make the data
model and the graphical user interface work together. The interface to the text fields
in the window are used to show a person in the address book window. The virtual
procedure “onFind” are furtherbound to invoke a “find” dialog. Persistentstore is used
to retrieve the addressbook data objects.

3. Reference Manual

3.1 How to Get Started
Frigg is fully integrated with the sourcebrowser and structure editor. When Frigg is
started, the sourcebrowser window is presented to the user. The “Interfacebuilder”
menu contains commands to create windows that can be edited in a graphical editor.

3.1.1 Interfacebuilder Menu

New Window Library
This command creates a new fragmentgroup that are setup to contain window
definitions. The ORIGIN of the fragmentgroup are the “guienvall”
fragmentgroup, which includes all of GUIenv (Lidskjalv), the Mjølner BETA
user interface framework. The fragmentgroup has a “GUIenvLib: attributes”
fragment, which therefore can contain specializations of the window pattern
from Lidskjalv. Furthermore a BODY fragmentgroup is automatically created.
This fragmentgroup will contain the private attributes of the window
definitions.
A file dialog prompts for a filename which will be the name of the new
fragment group.
Assuming the name “foo” is used, the BODY group will have the name
“foobody”.

16 Frigg Users Guide

This command does almost the same as the “New Window Library” command.
The created fragmentgroup will have a “windowLib: attributes” fragment,
which can contain canvas specialisations of the window pattern from Lidskjalv.

Edit
Selecting "edit" will open a graphical editor on the window pattern that are
currently selected in the structure-editor. The whole pattern definition must be
selected. It is not sufficient to just select the name.
NOTE: If the fragmentgroup is not checked, it is not always possible for Frigg

to recognize the selected pattern as a user interface object. If the “Edit”
command is disabled, the fragmentgroup should be checked via the
“Check” command in the “Tools” menu.

Create
A specialization of window or canvas is generated in the currently selected lib
fragment, dependent of the name of the fragment. If the current fragment is a
GUIenvLib fragment, a window will be generated. If it is a windowLib
fragment, a canvas will be generated. The following dialog are popped up:

In the “name” field the name of the new window (or canvas) should be typed
in. The name are expected to be a proper BETA identifier, since this is the
name the pattern will given in the source code.
The “super pattern” popup menu allows the user to choose what pattern to
inherit from.
A graphical editor is opened on the newly created object.

3.2 Graphical Editor
The graphical editor is the part of interface builder which allows the user interface to
be constructed interactively by direct manipulation of Lidskjalv objects. The figure
below shows the graphical editor on a newly created object.

Reference 17

Tools Simple Items

Compound Items

Contents

The menubar consists of three menus: File, Edit and Align. There are four areas
inside the graphical editor: The tools palette, the “simple items” palette, the
“compound items” palette, and the contents area.

3.2.1 Creating Items

Items are added to the window by utilizing the two item palettes. An instance of some
item on a palette is created by dragging the item and placing it in the contents area.
The items are in an aggregation hierarchy. The canvas pattern has a border and
contains other items in its local coordinate system.

When an item is dragged from the palette, the border of the receiving canvas is
highlighted to indicate in which canvas the item will belong.

The figure below explains which pattern in Lidskjalv each item on the simple item
palette corresponds to.

18 Frigg Users Guide

Pushbutton

Horizontal separator

Vertical Separator

Vertical scrollbar

Horizontal scrollbar

Optionbutton

Iconbutton

Edittext

Statictext

Radiobutton

Checkbox

These different patterns are described in the Lidskjalv reference manual.

The items on the compound object palette correspond to the patterns in Lidskjalv with
the same name.

3.2.2 Moving and Resizing

The items in the graphical editor can be moved and resized simply by dragging with
the mouse. If the item is grabbed in the interior the item is moved, if it is grabbed near
the border it is resized.

3.2.3 Changing Hierarchy

The items in the window are arranged in a hierarchy. The canvas item is a compound
item, that contains other items (including other canvas items). The items are
positioned in the local coordinate system of the canvas it belongs to. The window
itself is a kind of canvas in this respect.

The "Change Hierarchy" tool on the tools palette are used to change the hierarchy of a
group of items.

Reference 19

Selection

Change Hierarchy

After the "Change Hierarchy" tool is chosen, a selection of items can be dragged to
another canvas. When a selection of items is dragged, the border of the receiving
canvas is highlighted to indicate in which canvas the items will end up.

3.2.4 File Menu

Close
Closes the graphical editor.

Save
Saves the fragmentgroups that are connected to the graphical editor.

3.2.5 Edit Menu

Undo
All the operations in the graphical editor can be undone by choosing the "Undo"
command in the edit menu. The undo is multilevel, which means that all
changes can be undone all the way back to when the window was opened for
editing in the session.

Redo
A sequence of undo-commands can be redone by invoking the redo command
in the edit menu - as long as no other operation has been performed after the
undoing.

Cut
A copy of the selected objects is placed on the clipboard along with the
underlying BETA code, and then deleted from the window. The objects can
then be pasted into the window again. It is possible to copy and paste between
graphical editors.

Copy
A copy of the selected objects is placed on the clipboard along with the
underlying BETA code. The objects can the be pasted into the window again. It
is possible to copy and paste between graphical editors.

Paste
A copy of the selected objects is placed on the clipboard along with the
underlying BETA code. The objects can the be pasted into the window again. It
is possible to copy and paste between graphical editors.

Delete
The selected objects along with the underlying BETA code are deleted without
affecting the clipboard.

Edit Name

20 Frigg Users Guide

This command will invoke a dialog in which the name (in the source code) of
the selected object can be entered. The name is required to be a legal name in
BETA.

Edit Virtuals

Invokes a dialog in which the different event types of the selected object are
listed. When the user clicks on an object, the virtual procedure "onMouseUp"
are executed in that object. There is a virtual procedure for each event that the
object may receive. The "edit" command in the dialog opens a structure editor
(sif editor) on the virtual procedure corresponding to the selected event type. If
the specialization of the virtual procedure does not yet exist, it is first be
created.

Reference 21

Opens a structure editor (sif editor) on the code that corresponds to the selected
object.

Object Info
The object info dialog allows the layout properties of the objects in the
graphical editor to be edited in a dialog form in contrast to direct manipulation.
Most properties can only be changed via the dialog. The content of the dialog
depends on the selected object. The basic info dialog has the properties that are
common to all objects.

Position and Size: The position and the size are most easily changed via direct
manipulation, but sometimes it may be easier to enter the precise values
via the dialog

Border: All objects have a border. The visibility of the border can be controlled
via the "visible" check box. There is different kinds of shaded border
types, that can be selected in the "style" popup menu.

Constraints: The constraints control how the object reacts when the
surrounding object are resized. If the bindleft is false and bindRight is
true, the object will follow the right edge of the surrounding object
without stretching. If bindLeft is true and bindRight is true, the object
will stretch etc.

See the "Object Info Dialog" section for more details.

Fit to Contents
Frequently, there is a natural size of an object, dependent of the content of the
object. For example a StaticText object would have the extent of the text as the
natural size. The "Fit to Contents" command in the edit menu will adjust the
size of the selected object to its natural size. Not all objects have natural sizes.

22 Frigg Users Guide

3.2.6 Align Menu

The alignment commands in the alignment menu supply facilities to align objects in a
row or centered underneath each other etc. The alignment commands work on the
current selection. The first object selected will stay where it is.

These alignment commands are available:

Align left side
Aligns the left sides of the selected objects to the first selected object.

Align right side
Aligns the right sides of the selected objects to the first selected object.

Align top edge
Aligns the top edges of the selected objects to the first selected object.

Align bottom edge
Aligns the bottom edges of the selected objects to the first selected object.

Align vertical center
Aligns the vertical centers of the selected objects to the first selected object.

Align horizontal center
Aligns the horizontal centers of the selected objects to the first selected object.

Spacing...
This command will present a dialog that allows a group of objects to be given
the same size or the objects to be arranged, so the distance between any two
adjacent objects are the same.

To give a group of objects the same vertical distance do the following:

1) Select the objects that should be given the same vertical distance

2) Choose the Spacing... command

3) Check the "Vertical distance" check box and make sure the other
check boxes are unchecked

4) Type the desired distance into the field next to the check box

5) Press OK
NOTE: The objects will keep their vertical and horizontal order in the window

Reference 23

3.2.7 Object Info Dialog
The object info dialog allows the layout properties of the objects in the
graphical editor to be edited in a dialog form in contrast to direct manipulation.
Most properties can only be changed via the dialog. The content of the dialog
depends on the selected object.

3.2.7.1 Basic Dialog
The basic info dialog has the properties that are common to all objects.

Position and Size: The position and the size are most easily changed via direct
manipulation, but sometimes it may be easier to enter the precise values
via the dialog

Border: All objects have a border. The visibility of the border can be controlled
via the "visible" check box. There is different kinds of shaded border
types, that can be selected in the "style" popup menu.

Constraints: The constraints control how the object reacts when the
surrounding object are resized. If the bindleft is false and bindRight is
true, the object will follow the right edge of the surrounding object
without stretching. If bindLeft is true and bindRight is true, the object
will stretch etc.

3.2.7.2 Window Dialog

The object info dialog for "window" has a "title" property:

The title of the window is shown in the titlebar.

24 Frigg Users Guide

3.2.7.3 Button Dialog

The dialog for Button and specializations of Button: PushButton, CheckBox,
RadioButton, OptionButton, StaticText and IconButton, has a "label" property:

The label is a text that are visible on the screen. e.g. a PushButton is a text surrounded
by a shaded border (Shadow out).

3.2.7.4 IconButton Dialog

The IconButton dialog has, in addition to the “label” field, the following portion:

The pixmap file contains the pixmap that are shown in the iconbutton. The format of
the pixmap file are:

Unix: Xpm. Must have the extension “.xpm”.

Windows: BMP. Must have the extension “.bmp”.

Macintosh: PICT. Must have the extension “.pict”.

The application, xv version 3, can convert between various pixmap formats on UNIX.
And “GraphicConverter” can be used on the Macintosh.

NOTE: The pixmap files for the application are required to be in a directory
“pixmap”, which must be in the same directory as the main program.

Pressing the “select” button will invoke a pixmap selection dialog.

This dialog lists the content of the “pixmap” directory.

Here the “find” pixmap is selected.

Reference 25

3.2.7.6 Scrollbar Dialog

The scrollbar dialog contains various scrolling parameters. See the Lidskjalv manual
for more details.

4. Index

—A—
Adding items, 8
Align bottom edge, 22
Align horizontal center, 22
Align left side, 22
Align Menu, 22
Align right, 22
Align top edge, 22
Align vertical center, 22
alignment, 22
application module, 14

—B—
Basic Dialog, 23
BETA code, 19
Border, 21

—C—
canvas, 10
Change Hierarchy, 19
Changing Name, 9
Changing Hierarchy, 18
checked, 16
Close, 19
Compound items, 10; 17
Constraints, 21
content area, 8
Copy, 19
Create, 16
Create Window, 7
Creating Items, 17
Cut, 19

—D—
data model, 6; 7; 14
Delete, 19
diagram, 6
dragging items, 8

—E—
Edit, 16
Edit Menu, 19
Edit Name, 9; 19
Edit Virtuals, 20
event types, 13; 20
Extending the Public Interface, 12

—F—
Fit to Contents, 21

—G—
Get Started, 15
graphical editor, 16

—H—
horizontal prototype, 3

—I—
implementation, 13
incremental extension, 3
Interfacebuilder Menu, 15

—L—
label, 24

—M—
Moving and Resizing, 18

—N—
name, 16
natural size, 21
New Canvas Library, 15
new fragmentgroup, 15
New Window Library, 7; 15

—O—
Object Info, 21
object info dialog, 10; 21; 23
onMouseUp, 13; 20
Open Subeditor, 20

—P—
Paste, 19
persistent objects, 7
pixmap, 24
pixmap directory, 24
Position and Size, 21

—R—
Redo, 19

—S—
scrolling parameters, 25
select pixmap, 24

28 Frigg Users Guide

simple items, 17
sourcebrowser, 15
Spacing, 22
specialization of window, 16
structure editor, 15
Structure of Generated Code, 11

—T—
tools palette, 17

—U—
Undo, 19

—V—
vertical prototyping, 3
virtual procedure, 20

—W—
Window title, 23

