
The Mjølner BETA System
Lidskjalv:

User Interface Framework
Tutorial

Mjølner Informatics Report

MIA 95-30(1.1)

August 1996

Copyright © 1995-96 Mjølner Informatics ApS.
All rights reserved.

No part of this document may be copied or distributed
without prior written permission from Mjølner Informatics

i

Contents

THE LIDSKJALV USER INTERFACE FRAMEWORK . 1

1 STRUCTURE OF A LIDSKJALV APPLICATION . 5

1.1 LIDSKJALV DECLARATIONS .. 5
1.2 LIDSKJALV INITIALIZATION .. 6
1.3 LIDSKJALV EVENT HANDLING... 6
1.4 APPLICATION SUSPEND, RESUME AND TERMINATE... 6
1.5 OVERVIEW OF LIDSKJALV... 7

2 ACCESS TO GLOBAL STRUCTURES . 7

2.1 ACCESS TO THE MOUSE.. 7
2.2 ACCESS TO THE CLIPBOARD ... 8
2.3 STANDARD INPUT AND OUTPUT .. 8
2.6 COORDINATE SYSTEM.. 8

3 WINDOWS . 9

3.1 EVENT HANDLING IN WINDOWS...10
3.2 CONTENTS OF WINDOWS ...11
3.4 WINDOW ITEMS ..11

4 MENU HANDLING . 12

4.1 BASIC MENU FACILITIES ...12
4.1.1 Menu Item Facilities ...13
4.1.2 Static and Dynamic Menu Items ..14

5 THE MENU BAR. 16

5.1 STANDARD MENUS ...16

6 GRAPHICS . 17

6.1 FIGURE ITEMS ..18
6.2 INTERACTIVE GRAPHICS FACILITIES...20

6.2.1 Selection of Graphics Objects...20
6.2.2 Dragging of Graphics Objects ..21

6.3 CANVAS...21
6.4 SCROLLER..22

7 CONTROLS AND DIALOG BOXES . 23

7.1 CONTROL ITEMS...24

8 SCROLL LISTS . 27

9 WINDOW FIELDS . 28

10 STANDARD DIALOGS . 30

1

The Lidskjalv User Interface
Framework

Lidskjalv is a platform independent object-oriented user interface construction
toolkit for:

• Macintosh
• X Window System (Motif Widgets)
• Windows 95
• Windows NT

Lidskjalv allows construction of portable user interfaces in such a way that the
look-and-feel of the applications, will conform to the standardized look-and-feel of
the specific platform.

The framework defines abstractions for all commonly used interface objects, such as
windows, menu bars, menus, buttons, text fields, figure items, scrolling lists, etc.

The application programmer does not have to handle user interaction at the event
level of the underlying platform, because each interface object takes care of the
interactions related to itself. It is the responsibility of the entire framework to ensure
that the user interactions (such as mouse button presses, key presses, etc.) are con-
verted internally into invocations of virtual procedures of the appropriate interface
object. The only thing the application programmer needs to do is to bind the virtual
procedures. All layout properties of interface objects can be manipulated through the
Lidskjalv framework.

Following, a realistic example of using Lidskjalv is presented. It is a small text editor
with full support for loading, editing, and saving files.

ORIGIN '~beta/guienv/v1.4/fields';
INCLUDE '~beta/guienv/v1.4/stddialogs';
INCLUDE '~beta/basiclib/v1.5/file';
-- program: descriptor --
guienv
(# theWindow: @window
 (# menubarType::
 (# fileMenu: @menu
 (# textFile: @file;
 openItem: @menuitem
 (# eventhandler::
 (# onSelect::
 (# theText: @StyledText;
 do theWindow[]->fileSelectionDialog->textFile.name;
 textFile.openRead;
 textFile.scan(# do ch->theText.put #);
 theText[]->theTextEditor.contents.contents;
 textFile.close;
 #)#);
 open:: (# do 'Open' -> name #);
 #);
 saveItem: @menuitem
 (# eventhandler::
 (# onSelect::
 (# theText: @Text;

2 Lidskjalv User Interface Framework – Tutorial

 do textFile.openWrite;
 theTextEditor.contents.contents
 ->textFile.puttext;
 textFile.close;
 #)#);
 open::< (# do 'Save' -> name #);
 #);
 quitItem: @menuitem
 (# eventhandler::
 (# onSelect:: (# do Terminate #) #);
 open::< (# do 'Quit' -> name #);
 #);
 open::<
 (#
 do 'File' -> name;
 openItem.open; openItem[] -> append;
 saveItem.open; saveItem[] -> append;
 quitItem.open; quitItem[] -> append;
 #)#);
 open:: (# do fileMenu.open; fileMenu[] -> append #);
 #);
 thetextEditor: @textEditor
 (# open::
 (#
 do theWindow.size->Size;
 True->bindBottom->bindRight
 #)#);
 open:: (# do thetextEditor.open #);
 #);
do theWindow.open;
#)

The following three screen snapshots show how this application appear on the screen
after the program has loaded its own source text for editing, and with the menu
opened.

X Window System

Macintosh
Windows 95 /
Windows NT

Introduction 3

This document contains a tutorial on the use of version 1.4 of the Lidskjalv user
interface framework.

These libraries are collectively referred to as the Lidskjalv user interface framework.
Lidskjalv consists of a number of libraries, of which guienv, controls, fields,
scrolllists and figureitems will be described in this tutorial. Most
Lidskjalv applications will only be using some of these libraries.

The controls library offers the capabilities of interface controls, such as buttons,
scrollbars, etc.

The fields library offers the capabilities for displaying bitmaps, rasters and
advanced text editing.

The figureitems library offers fairly advanced graphics capabilities, including
maintenance of graphical objects on the screen, which can be selected and dragged.

The scrolllists library offers facilities for making scrolling lists as used in e.g.
the file dialog.

Besides the basic user interface libraries, as described above, the Lidskjalv
framework contains a series of utility libraries (not described in this manual). These
utility libraries can be found in the utils subdirectory of the Lidskjalv directory
tree.

This tutorial will contain screen dumps mainly from the Windows 95 and Windows
NT platforms. All demos can be recompiled on the other supported platforms,
resulting in similar windows, just with the look-and-feel of that platform.

Further Readings

This tutorial is accompanied with a reference manual for the Lidskjalv framework:
Mjølner BETA System: Lidskjalv: User Interface Framework - Reference Manual,
MIA 94-27. User's manuals for the Mjølner BETA System on the different platforms
are also available Furthermore, a reference manual for the BETA is available:
Mjølner BETA System: Compiler Reference, MIA 90-2. Finally, a reference manual
is available on the basic libraries: Mjølner BETA System: Basic Libraries, MIA 91-8.
The reader is advised to consult these documents (along with the other Mjølner
BETA Manuals) as well as this tutorial.

5

1 Structure of a Lidskjalv
application

A Lidskjalv application is usually structured along the following lines:

ORIGIN '~beta/guienv/v1.4/guienv'
--- program: descriptor ---
guienv
(# ... declarations ...
do ... initializations ..
#)

The ORIGIN specification informs the compiler, that this program is utilizing the
guienv library. The '~beta/guienv/v1.4/guienv' specifies that the BETA
compiler is expected to find the fragment guienv on the disk in the
subdirectory of the guienv directory, which is supposed to be located in the
directory where the Mjølner BETA System is located. v1.4 is the version number of
Lidskjalv and it must be consistent with the version of Lidskjalv installed on your
system. Please also note that the guienv fragment must be located in the specified
directory. If this is not the case, change the above directory specification.

If you want selectively to use some of the other Lidskjalv libraries (fields,
control, scrollingList or figureItem), the libraries must be specified in
INCLUDE clauses. E.g. to utilize both the fields and control libraries, the
program must look like:

ORIGIN '~beta/guienv/v1.4/guienv';
INCLUDE '~beta/guienv/v1.4/fields';
INCLUDE '~beta/guienv/v1.4/controls';
--- program: descriptor ---
guienv
(# ... declarations ...
do ... initializations ...
#)

Note that the main part of a Lidskjalv application contains an inserted instance of the
Guienv pattern (not to be confused with the Guienv library). This Guienv pattern
is taking care of all event handling of events originating from the underlying window
system (e.g. mouse button events, window refresh events, keyboard events, etc.) such
that Lidskjalv application programmers does not have to be concerned with managing
the global event loop. Each user interaction (e.g. menu selections) result in execution
of some specific actions of some BETA objects (details later).

1.1 Lidskjalv Declarations
The declarations part of a Lidskjalv application contains declaration of patterns,
objects, and declaration of specializations of user interface objects such as menus,
windows, buttons, etc. Most of the functionality of Lidskjalv applications will in fact

6 Lidskjalv User Interface Framework – Tutorial

be specified in these specializations, since activation of most of the functionality will
originate from the user manipulating items in the user interface.

1.2 Lidskjalv Initialization
The initializations part of a Lidskjalv application is primarily concerned with
initialization of objects and with the creation and initialization of the various menus,
windows, buttons, etc. The structure of Lidskjalv applications is such that the main
part of the application is normally not concerned with invoking the functionality of
the application, since that is usually the result of the user manipulating the user
interface.

1.3 Lidskjalv Event Handling
Events (e.g. window refresh events, mouse button events, keyboard events) must be
taken care of by the Lidskjalv application some way or another. The approach taken
is to handle the global event loop for the programmer. When specifying interface
objects1 in a Lidskjalv program, the underlying implementation takes care of
propagating events to the appropriate interface object. Events, (e.g. mouse button)
will be converted into invocation of virtual procedure patterns of interface objects.
These virtual procedure patterns (e.g. onMouseDown and onRefresh), must be
extended by the Lidskjalv application programmer to contain the proper response to
the specific event. That is, interface objects define various virtual procedure patterns
that specify the types of events that are relevant for this type of interface object . In
Lidskjalv programs, the programmer creates specializations of interface objects with
further bindings for the virtual procedure patterns with the proper response to those
events. During the discussion of the various types of interface objects, we will be
discussing more details of this event handling.

1.4 Application Suspend, Resume and
Terminate

Lidskjalv applications will continue to be executing until the application explicitly
specifies that it may be terminated. Termination of a Lidskjalv application is done by
executing the Guienv attribute terminate when termination is wanted. The result
hereof is that the global event handling is immediately terminated, resulting in the
termination of the execution of the entire application.

One final element of event handling needs to be presented here, namely the way in
which background computation can be specified in Lidskjalv applications.
Background computation is handled by the underlying window system by sending the
application so-called idle events if no other events are waiting to be processed. The
application can then be able to make proper background computation by responding
to these idle events. Lidskjalv handles this by offering the application programmer an
onIdle virtual event pattern which will be executed each time a idle event reaches

1Interface objects are BETA objects that represent elements on the graphical user
interface (e.g. a menu item, a button, etc.). Interface objects will be discussed in
detail later.

Structure of a Lidskjalv application 7

the application (please note, that onIdle is not implemented in v1.4 on the Windows
95 and Windows NT platforms).

1.5 Overview of Lidskjalv
Lidskjalv contain many different patterns for implementing advanced (and simple)
applications utilizing the graphical user interface system. It is impossible in this
tutorial to give all details of these patterns and the presentation here will therefore
only stress the most important patterns and the most important attributes of each
pattern, along with illustrative examples.

Since there are many patterns and a somewhat elaborate pattern hierarchy, the
following figure will show the most important classes and their super/subpattern
relations.

interfaceObject

windowItemmenubar menu window

canvas scrollListfigureItem control textField

shape line scrollbar editTextbuttontextEditor

iconButton staticText toggleButton optionButton pushButton

radioButton checkButton

...

scroller

2 Access to Global
Structures

Lidskjalv offers access to several global objects of the window system, such as the
mouse, the clipboard, the menubar, etc.

2.1 Access to the Mouse
The Mouse attribute in Guienv provides access to the physical mouse connected to
the window system. Mouse.globalPosition returns the current position of the
mouse (in screen coordinates). Mouse.buttonState returns the status of the
mouse buttons and returns 1, 2, or 3 if the corresponding mouse button is currently
pressed, and 0 otherwise.

8 Lidskjalv User Interface Framework – Tutorial

2.2 Access to the Clipboard
The clipboard attribute in Guienv gives direct access to the underlying window
system clipboard.

clipboard.hasText returns true, if the clipboard containg textual information. If
txt[] is a reference to text object, then txt[]->clipboard.textContents
places the text in txt[] onto the clipboard, and clipboard.textContents->
txt[] copies the contents of the clipboard as text into txt[]. To clear the
clipboard, you can invoke clipboard.clearContents.

2.3 Standard Input and Output
In betaenv, the standard input and output from the user is obtained through the
screen object (or through the putText, getText, etc. operations of betaenv).

Obtaining input and output through screen should however be used sparely in
Lidskjalv since the facilities for input and output through Lidskjalv will conform to
the user interface guidelines of the underlying window system and result in more
elegant and powerful user interfaces.

In window-based environments there usually are two ways to invoke applications:
either directly from some sort of console window (e.g. Xterm on UNIX platforms,
MS-DOS Box on Windows 95 and Windows NT, and MPW Shell on Macintosh
platforms), or by double-clicking on some graphical icon in the graphical user
interface. Lidskjalv behaves different in these two cases with respect to handling
standart input and outpu.

In Lidskjalv applications invoked through console windows, standard input and
output will be obtained from the console window from which the application is
invoked. In Lidskjalv applications invoked through the graphical user interface, a
console window will be created by the application, and standard input and output will
be obtained from this console window.

2.6 Coordinate System
Many aspects of the programming in Lidskjalv involves specifying positions on the
desk-top of the underlying window system (i.e. the position and size of a window).
Lidskjalv defines a point and rectangle pattern for representing such properties.

The coordinate system used in the specification of these positions etc. are having a
horizontal X-axis with X increasing to the right, and the Y-axis is vertical with Y
increasing downwards. In defining e.g. the size of a window, the terms width and
height are used along the X-axis, respectively the Y-axis.

x

y

width
h
e
i
g
h
t

horizontal
v
e
r
t
i
c
a
l

Access to Global Structures 9

The screen of the underlying window system has the (0,0) positioned at the upper left
corner of the screen. Windows on the desk-top also has the (0,0) positioned in the
upper left corner of the window. In general,, the (0,0) position is located in the upper
left corner of all interface objects.

3 Windows

The window pattern describe properties of underlying window system windows. All
Lidskjalv windows has a position on the screen, a height and width and a title (shown
in the title bar). Windows may be visible on the screen or hidden. Finally, the win-
dow may specify the particular event handling to be associated with that window.

The open attribute initializes the window according to the window attributes.
During the lifetime of a window, it may shift between being visible on the screen or
not. This is controlled by the show and hide attributes. A window may take the
control of the entire underlying window system (i.e. act as a modal window) if is is
shown using showModal instead of show.

The following creates an ordinary window. The window will be initially visible:

ORIGIN '~beta/guienv/v1.4/guienv'
--- program: descriptor ---
guienv
(# simpleWindow: @window
 (# open::
 (#
 do (100, 100)->position;
 (300, 100)->size;
 'simpleWindow'->title
 #);
 eventhandler::
 (# onAboutToClose:: (# do terminate #) #);
 #)
do simpleWindow.open
#)

Please note the onAboutToClose:: (# do terminate #) part of this small
demo program. You will see this in all following demo programs. This small piese
of code is included in these demo programs with the intent to make the demo
applications terminate, when the window is closed. In realistic applications, this form
of termination is very seldom used, since such applications often use a number of
windows, and a Quit menu item to actually terminate the application..

simple-
Window.bet

screendump
(Windows NT)

10 Lidskjalv User Interface Framework – Tutorial

3.1 Event Handling in Windows
All user activities with the mouse, keyboard, etc. are turned into events by the
underlying window system. Lidskjalv turns the window relevant events into
invocations of virtual procedure patterns, defined in the eventhandler of the
window. Eventhandler defines the following virtual patterns: onIdle,
onActivate, onDeactivate, onRefresh, onKeyDown, onMouseDown,
onMouseUp, and onAboutToClose.

These patterns are invoked when the corresponding event occurs and further bindings
of these patterns may specify actions to be executed then. OnIdle is invoked in the
active window when nothing else happens in the underlying window system and can
be used to specify some background computations, relative to this window (e.g.
repagination). OnActivate is invoked when this window is becoming the active
window and onDeactivate is invoked when another window becomes the active
window. OnRefresh is invoked when the window has been corrupted (e.g. when
the window is opened or when another window, which is obscuring parts of this
window, is moved). OnKeyDown is invoked when the user presses a key on the
keyboard. OnKeyDown takes one parameter which is the character associated with
that key. OnMouseDown is invoked when the user presses the mouse button and
onMouseUp is invoked, when the user releases the mouse button.
OnAboutToClose is invoked when the mouse button is pressed when the cursor is
located in the Close box. E.g.:

ORIGIN '~beta/guienv/v1.4/guienv'
--- program: descriptor ---
guienv
(# eventWindow: @window
 (# open::
 (#
 do (100,100)->position;
 (300,300)->size;
 'windowWithEvents'->title
 #);
 eventhandler::
 (# onAboutToClose:: (# do terminate #);
 onIdle:: (# do 'idle'->putline #);
 onRefresh:: (# do 'refresh'->putline #);
 onMouseDown:: (# do 'mouseDown'->putline #)
 #)
 #)
do eventWindow.open;
#)

window-
WithEvents.bet

 screendumps
(Windows 95)

Windows 11

The refresh and mouseDown printouts originates from user interaction with the
window.

3.2 Contents of Windows
The window pattern in Lidskjalv offers several advanced facilities for specifying the
contents of the window. These facilities are e.g. the windowItem, Canvas and
Scroller patterns. WindowItem is the basic pattern for describing items to be
displayed in a window, canvas (a subpattern of windowItem) is used to group
windowItems of a window, and scroller enables scrolling of the window items.
Several other subpatterns of windowItem exists, and will be discussed in later
sections.

canvas windowcanvaswindowItem

The window pattern defines one attribute, related to handling the window contents:
contents. Contents is an operation, returning a canvas as exit parameter.
Window displays all windowItems having window.contents as their father
(explained later) and handles everything associated with refreshing the window
contents in response to windowItems being associated with the window, and
related to exposure of previously hidden parts of the window.

3.4 Window Items
As mentioned above, instances of windowItem are the elements displayed in a win-
dow. The windowItem pattern defines attributes common to all the different types
of window items, defined in the different Lidskjalv libraries.

Window items are organized in a father-child hierarchy with respect to some canvas
(or the contents canvas of a window) and all items have a father. The father defines
the coordinate system for the children (e.g. the position of each child is relative to the
position of the father, such that moving the father also moves the children). The
father attribute of a window item refers to the canvas that this window item is a
child of. WindowItem defines attributes for accessing and changing the position
and size of the item and for controlling the visibility of the window item.

All window items are able to receive events from the user, and defines an event
handler (similar to windows) to take care of these events. The enable and
disable attributes are used to control whether the item will react to these events or
not (i.e. a disabled window item will ignore e.g. onMouseDown events eventhough
an event pattern is defined for onMouseDown event in that window item). The event

12 Lidskjalv User Interface Framework – Tutorial

patterns defined in the event handler of window items are: OnFatherChanged,
ChangedFrame, OnFatherChanged, onMouseDown, onMouseUp,
onKeyDown, onEnableTarget, onDisableTarget, onRefresh,
onActivate and onDeactivate. Specific behavior for these events can be
specified by further binding the appropriate event pattern.

4 Menu Handling

Lidskjalv offers several facilities for dealing with menus. In Lidskjalv applications,
menus can be of four types, namely pulldown and pop-up menus (and both menu
types can be linear or hierarchical), where the linear and hierarchical pulldown menus
are the most often used menu types. Pulldown menus are associated with the
menubar that is located in the top of the window (or on the top of the screen on the
Macintosh platform). Each pulldown menu has a title which is shown in the
menubar. When that title is selected with the mouse, the pulldown menu is shown.

Pop-up menus are under the control of the application programmer, who at any point
in the program may specify that a particular menu must be popped up at a specific
position (e.g. inside a window).

4.1 Basic Menu Facilities
The Menu pattern defined in Lidskjalv describes the facilities of any type of menu in
Lidskjalv. Menu is a subpattern of interfaceObject. The menu handling is
fully supported by Lidskjalv in the sense that the application programmer specifies
the title and format of the menu (including layout of individual menu items,
submenus, etc.) and specifies the actions, associated with the individual menu items.

Screendump
(Windows NT)

Menu Handling 13

The menu is inserted in the menubar and Lidskjalv handles all events associated with
menus (e.g. when some menu item is selected, the proper actions are executed).

Menus may be enabled or disabled. A disabled menu is visible in the menu bar but its
title is dimmed and it is impossible to pull the menu down from the menu bar.

If theMenu be an instance of Menu, initialization of theMenu may be done by
further binding the open virtual procedure pattern attribute of Menu. In this further
binding, the individual items in the menu are defined. The individual items are in-
stances of the menuItem pattern (described below).

The menu may be used as a pull-down menu by inserting it in the menubar, e.g. by
THIS(Menu)[]->MenuBar.append, or theMenu[]->MenuBar.append. The
menu may also be used as a pop-up menu by invoking (i,p,wi[])->
THIS(menu).popUp or (i, p, wi[])->theMenu.popUp. This will show the
menu at position p with the menu element number i selected. wi is a reference to
the window item in which the menu should pop-up. Finally, the menu may be used as
a hierarchical menu. The menu can be inserted as a submenu of an item of another
menu by THIS(Menu)[]->anotherMenuItem.subMenu or theMenu[]->
anotherMenuItem.subMenu. The menu will then be a submenu of
anotherMenuItem.

4.1.1 Menu Item Facilities

Each individual item in a menu is described by the menuItem pattern, defined
locally to the Menu pattern in Guienv. Most facilities of menuItem deals with
describing the format of the menu item. Name makes it possible to specify the name
of the item. Key makes it possible to control the keyboard equivalent, and finally,
SubMenu makes it possible to control the submenu of this item. Checked is used to
control whether or not this menu item should be checked (a toggle menu item). The
position of the item in the menu is examined by position.

Items in menus may be enabled (e.g. it is possible to select this menu item) or disable
(e.g. the menu item cannot be selected and the menu item is dimmed in the menu).
Enabling and disabling of menu items are controlled by the virtual procedure pattern
onStatus. The application programmer must further bind onStatus in menu
items in order to specify dynamic changes in the selectability of menu items.

When a menu item is selected, some actions must be executed. This is specified
using the virtual event pattern onSelect. The application programmer must further
bind onSelect in order to specify the actions to be executed as the result of this
menu item being selected.

Menu items are initialized in two steps. The title of the menu item is first specified
by giving a text string as the name operation of MenuItem. This is usually done in
the open virtual in the menu item. Then the menu item is appended to the menu.

The menu items are numbered from the top of the menu, starting with 1, and menu
separators are numbered too. Menu separators are specified by using the
separator pattern, e.g.
 &separator[]->sep[]; sep.open; sep[]-
>animalMenu.append

Let us look at a small example:

ORIGIN '~beta/guienv/v1.4/guienv'
--- program: descriptor ---
guienv
(# menuWindow: @window
 (# menubarType::
 (# animalMenu: @menu
 (# iCat: @menuItem

menus.bet

14 Lidskjalv User Interface Framework – Tutorial

 (# eventhandler::
 (# onSelect:: (# do 'Cat chosen'->putline #) #);
 open:: (# do 'Cat'->name #)
 #);
 iBear: @menuItem
 (# eventhandler::
 (# onSelect:: (# do 'Bear chosen'->putline #)#);
 open:: (# do 'Bear'->name #)
 #);
 iEagle: @menuItem
 (# eventhandler::
 (# onSelect:: (# do 'Eagle chosen'->putline #);
 onStatus:: (# do false->value #)
 #);
 open:: (# do 'Eagle'->name #)
 #);
 open::
 (# sep: ^menuItem
 do 'Animals'->name;
 iCat.open; iBear.open; iEagle.open;
 iCat[]->animalMenu.append;
 iBear[]->animalMenu.append;
 &separator[]->sep[]; sep.open; sep[]->animalMenu.append;
 iEagle[]->animalMenu.append
 #)
 #);
 open:: (# do animalMenu.open; animalMenu[]->append #)
 #);
 eventhandler::
 (# onAboutToClose:: (# do terminate #) #);
 open:: (# do 'menus'->title #)
 #)
do menuWindow.open
#)

animalMenu is a menu with three items and one separator. The title of animalMenu
is Animals and the three menu items have the titles Cat, Bear, and Eagle:

When either Cat or Bear is selected, the title of the item will be printed. The
Eagle item is disabled (shown dimmed) and cannot be selected.

4.1.2 Static and Dynamic Menu Items

Menu items are either constantly associated with the same actions during the entire
execution of the program as described above (i.e. static menu items), or they may be
associated with different actions during the execution of the program (i.e. dynamic
menu items). For that reason, Lidskjalv contains two different menu item patterns:
menuItem and dynamicMenuItem. MenuItem (described above) describes the
static menu items and dynamicMenuItem (a subpattern of menuItem) describes
the dynamic menu items. Since static menu items were the subject of the previous

screendumps
(Windows NT)

Menu Handling 15

section, we will here concentrate on the additional properties of dynam-
icMenuItems.

DynamicMenuItem is a subpattern of menuItem, and the dynamics of dynamic
menu items is controlled by attaching and detaching so-called menuActions to the
menu item during the execution of the program. MenuAction is a pattern defined in
the menu pattern and defines two attributes: noStatus and onSelect with the
same purpose as the onStatus and onSelect attributes of a static menu item.
That is, by specializing the onSelect attribute, the actions of the menuAction are
specified, and the noStatus attribute controls whether the menuAction is enabled
or not.

DynamicMenuItem defines only two new attributes: attach and detach.
Attach takes a menuAction as enter parameter and attaches it to the menu item.
The result hereof is that then the noStatus attribute of the menu item is invoked,
the onStatus attribute of the attached action is invoked instead, and invocation of
the onSelect attribute of the menu item will result in invocation of the onSelect
attribute of the attached action. The attached action is in this way becoming the
behavior of the dynamic menu item. By changing the action associated with a
dynamic menu item during the execution of the program, different behaviors may be
associated with one particular dynamic menu item. If the dynamic menu item
executes a detach, the action is detached and the menu item becomes disabled.

E.g.:

ORIGIN '~beta/guienv/v1.4/guienv'
--- program: descriptor ---
guienv
(# rulerWindow: @window
 (# menubarType::
 (# rulerMenu: @menu
 (# iHideRuler: @dynamicMenuItem
 (# open:: (# do 'Hide ruler'->name #) #);
 iShowRuler: @dynamicMenuItem
 (# open:: (# do 'Show ruler'->name #) #);
 hideRuler: @menuAction
 (# onSelect::
 (#
 do 'Hiding...'->puttext;
 iHideRuler.detach;
 showRuler[]->iShowRuler.attach
 #)
 #);
 showRuler: @menuAction
 (# onSelect::
 (# do 'Showing...'->puttext;
 iShowRuler.detach;
 hideRuler[]->iHideRuler.attach
 #)
 #);
 open::
 (#
 do 'Rulers'->name;
 iHideRuler.open; iHideRuler[]->rulerMenu.append;
 hideRuler[]->iHideRuler.attach;
 iShowRuler.open; iShowRuler[]->rulerMenu.append;
 #)
 #);
 open:: (# do rulerMenu.open; rulerMenu[]->append #)
 #);
 eventhandler::
 (# onAboutToClose:: (# do terminate #) #);
 open:: (# do 'rulerMenu'->title #)
 #)

rulerMenu.bet

16 Lidskjalv User Interface Framework – Tutorial

do rulerWindow.open
#)

5 The Menu Bar

The menuBar attribute of Guienv is the interface to the underlying window system
menubar. menuBar.Clear removes all menus from the menubar. If theMenu is
a menu (discussed earlier), theMenu[]->menuBar.append inserts theMenu as
the last menu in the menubar and menus are removed from the menubar by
theMenu[]->menuBar.delete.

5.1 Standard Menus
Most window systems have user interface guidelines that defines that the two first
menus of any applications must be: File and Edit. It is also often the case that the
File menu contains at least New, Open, Close, Save, Save As, Revert,
Print, , Page Setup and Quit, and that the Edit menu contains at least Undo,
Cut, Copy, Paste and Clear.

To make it easy to create such menus, Lidskjalv contains a pattern
standardMenuBar, containing two menu definitions: standardFileMenu and
standardEditMenu, with exactly those menu item described above (as dynamic
meny items).

These menu items are realized by instances of dynamicMenuItem with related
names (e.g. saveMenuItem for the Save item). The actions to be associated with
the individual items are specified by attaching an menuAction to the menu item in
question, e.g.

screendumps
(Windows 95)

Introduction 17

 anMenuAction[]->theFileMenu.saveMenuItem.attach
E.g.:

ORIGIN '~beta/guienv/v1.4/guienv'
--- program: descriptor ---
guienv
(# fileMenuWindow: @window
 (# menubarType:: standardMenubar
 (# fileMenu:: standardFileMenu
 (# newMenuAction: @menuAction
 (# onSelect:: (# do 'New...'->putline #) #);
 saveMenuAction: @menuAction
 (# onSelect:: (# do 'Saving...'->putline #) #);
 saveAsMenuAction: @menuAction
 (# onSelect:: (# do 'Saving As...'->putline #) #);
 open::
 (#
 do newMenuAction[]->newMenuItem.attach;
 saveMenuAction[]->saveMenuItem.attach;
 saveAsMenuAction[]->saveAsMenuItem.attach
 #)
 #);
 editMenu:: standardEditMenu
 #);
 eventhandler::
 (# onAboutToClose:: (# do terminate #) #);
 open:: (# do 'fileMenu'->title #)
 #)
do fileMenuWindow.open
#)

Note that the open attribute, further bound in fileMenu is automatically invoked
on the theFileMenu instance during the initialization of Guienv.

6 Graphics

As described above, the contents of windows (including ordinary graphics) are
controlled by attaching instances of (subpatterns of) windowItems to the window
(or to some canvas attached to the window). This section will describe the simple
figure items.

fileMenu.bet

Screendumps
(Windows 95)

18 Lidskjalv User Interface Framework – Tutorial

6.1 Figure Items
As described above, the responsibility for the contents of an instance of window relies
on the programmer. To aid the programmer in making graphics, Guienv defines a
number of patterns for drawing lines, rectangles (with sharp or round corners), ovals,
wedges and polygons.

figureItem

shape

rect roundRect oval wedge polygon

line

windowItem

FigureItem is a subpattern of windowItem and inherits as such all its
functionality (including the event handling possibilities) and defines the basic
properties that are shared by all figure items. A figure item have a pen to be used for
drawing the item. The pen defines attributes for defining the drawing pattern, the
foreground and background colors, and the size of the pen (a rectangle).

Line is a straight line and defines the attributes start and end for accessing and
changing the end-points of the line.

Shape is used as superpattern to all figure items that are defined by means of a
rectangle and can be filled. Shape contains a fill attribute which defines the
facilities for filling the shape (i.e. the tile pattern and the foreground and
background colors to be used for the fill).

Rect is a real figure item in the sense that it
is extending all figureItem procedures
such that an instance of rect can be properly
drawn in a window. RW

RH

× (x.y)

RoundRect is like rect, except that it also
defines roundness to takes two integers,
defining the round corners by defining the
width and height of the oval in the corners. If
R is an instance of roundRect, then

(OW, OH) -> R.roundness

defines the rectangle seen here.

ow
oh

RW

RH

× (x.y)

Oval is also like rect except that an oval is
drawn.

OW

OH

× (x.y)

Graphics 19

Wedge is like oval, except that it also
defines startAngle and endAngle which
takes one integers, defining the start and end
angles of the arc. If A is an instance of
wedge, then

SW -> A.startAngle
EW -> A.endAngle

defines the wedge seen here.

OW

EW SW

× (x.y)

OH

Polygon is a figure item that consists of a
collection of connected line segments. The
points defining the polygon is specified by:
 p: [6] ^point
do &point[]->p[1][]; (3,3) ->p[1];
 &point[]->p[2][]; (5,7) ->p[2];
 &point[]->p[3][]; (4,45) ->p[3];
 &point[]->p[4][]; (30,45)->p[4];
 &point[]->p[5][]; (44,3) ->p[5];
 &point[]->p[6][]; (1,55) ->p[6];
 go.open;
 p[]->go.points

PW

PH

× (x.y)

Drawing using figure items is as simple as:

ORIGIN '~beta/guienv/v1.4/guienv';
INCLUDE '~beta/guienv/v1.4/figureitems'
--- program: descriptor ---
guienv
(# aWindow: @window
 (# go: @oval
 (# open::
 (#
 do (100, 100)->position;
 (50, 100)->size;
 7->pen.size
 #)
 #);
 eventhandler::
 (# onAboutToClose:: (# do terminate #) #);
 open::
 (#
 do (100, 100)->position;
 (300, 300)->size;
 'oval'->title;
 go.open
 #)
 #)
do aWindow.open
#)

This creates a window with an oval, positioned in (100, 100) and with the
oval drawn using a 7x7 sized pen.

oval.bet

Screendump
(Windows NT)

20 Lidskjalv User Interface Framework – Tutorial

6.2 Interactive Graphics Facilities
Interactive graphics in window is handled through the definition of event handlers of
the windowItems attached with the window. The actual event handling of the
window items (realizing that they are clicked, the mouse is entering them, etc) is
handled entirely by Lidskjalv. The refresh of window items are also handled entirely
by Lidskjalv. Please note, that these interactive facilities applies for all subpatterns of
windowItem (i.e. not only for subpatterns of figureItem). Figure items are
merely used here for demonstrative purposes.

6.2.1 Selection of Graphics Objects

Selection of a windowItem is realized by specializing the onMouseDown event
pattern in the appropriate windowItem. E.g.

ORIGIN '~beta/guienv/v1.4/guienv';
INCLUDE '~beta/guienv/v1.4/figureitems'
--- program: descriptor ---
guienv
(# selectWindow: @window
 (# go: @oval
 (# open::
 (#
 do (100, 100)->position;
 (50, 100)->size;
 #);
 eventhandler::
 (# onMouseDown:: (# do 'Selected...'->puttext #) #)
 #);
 eventhandler::
 (# onAboutToClose:: (# do terminate #) #);
 open::
 (#
 do (100, 100)->position;
 (300, 300)->size;
 'ovalSelect'->title;
 go.open
 #)
 #)
do selectWindow.open
#)

ovalSelect.bet

Graphics 21

6.2.2 Dragging of Graphics Objects

Dragging is specified using the drag pattern of windowItem. Dragging of e.g. a
oval can specified as follows:

ORIGIN '~beta/guienv/v1.4/guienv';
INCLUDE '~beta/guienv/v1.4/figureitems'
--- program: descriptor ---
guienv
(# dragWindow: @window
 (# go: @oval
 (# open::
 (#
 do (100, 100)->position;
 (50, 100)->size;
 7->pen.size
 #);
 eventhandler::
 (# onMouseDown:: (# do drag #) #)
 #);
 eventhandler::
 (# onAboutToClose:: (# do terminate #) #);
 open::
 (#
 do (100, 100)->position;
 (300, 300)->size;
 'ovalDrag'->title;
 go.open
 #)
 #)
do dragWindow.open
#)

6.3 Canvas
Canvasses are used for grouping other window items together to form a single unit
such that e.g. moving the canvas inside the window moves all the window items
attached to the canvas. Canvas is a subpattern to windowItem.

screendumps
(Windows 95)

ovalDrag.bet

22 Lidskjalv User Interface Framework – Tutorial

6.4 Scroller
A scroller is a special kind of windowItem that has scrollbars associated with it. The
purpose of the scroller is to act as a viewport, restricting the visibility of the window
items attached to the scroller. The purpose of the scrollbars is to enable this viewport
to be scrolled to another position:

before scroll after scroll

scroller windowItem canvas or window

Scrolling is realized through three patterns: abstractScroller, textEditor
and scroller. AbstractScroller implements the general scrolling facilities with
scrollbars etc. It defines a virtual pattern, contentsType, which defines the type of
windowItem to be controlled by the abstractScroller. The two other
scrollers then further bind this virtual to text and canvas, respectively.

The following is the previous example with an associated scroller:

ORIGIN '~beta/guienv/v1.4/guienv';
INCLUDE '~beta/guienv/v1.4/figureitems';
INCLUDE '~beta/guienv/v1.4/fields'
--- program: descriptor ---
guienv
(# scrollWindow: @window
 (# scroll: @scroller
 (# contentsType::
 (# go: @oval
 (# open::
 (#
 do (100, 100)->position;
 (350, 450)->size;
 7->pen.size
 #);
 eventhandler::
 (# onMouseDown:: (# do drag #) #)
 #);
 open:: (# do go.open #)
 #);
 open::
 (# do true->bindBottom->bindRight #)
 #);
 eventhandler::
 (# onAboutToClose:: (# do terminate #) #);
 open::
 (#
 do (100, 100)->position;
 (300, 300)->size;
 'ovalScroll'->title;
 scroll.open;
 size->scroll.size
 #)
 #)

ovalScroll.bet

Graphics 23

do scrollWindow.open
#)

Please note the use of
 true -> bindBottom -> bindRight

in the definition of scroll. This informs Lidskjalv that scroll should extend
towards the bottom and right if its enclosing window is resized. This facility is
available for all windowItems.

7 Controls and Dialog Boxes

One of the most efficient ways to obtain structured information from the user is by
presenting him with a dialog box in which he may enter text, select items from a list,
check choices, etc. Lidskjalv enables the construction of such dialog boxes through
the window pattern. Dialogs may be either modal or modeless. A modal dialog box
will take over the entire control of the underlying window system, restricting the user
only to interact with the dialog box until it is removed from the screen. A modeless
dialog box, on the other hand, allows the user to choose also to interact with the other
windows and menus on the screen while the dialog box is on the screen. Dialogs are
constructed by a window, and either shown using either showModal or show.

Dialog boxes consists of the dialog box window and a number of control items in that
window. Control items are either static text, editable text, buttons, check boxes, radio
boxes or icons, along possibly with other graphics (e.g. figure items). The control
items are used to specify the various options, that the user has to choose among in
order to fill-in the requested information.

screendump
(Windows NT)

screendump
(Macintosh)

24 Lidskjalv User Interface Framework – Tutorial

7.1 Control Items
Control items are the bread and butter of dialogs. Control items exists in seven
different forms (all subpatterns of windowItem), namely text labels, text fields
(editable), buttons, check boxes, radio boxes, icons and pictures. These control items
are defined as subpatterns of the control pattern.

The hierarchy of control items are:

control

button

pushButton staticText iconButton optionButton toggleButton

scrollbar

windowItem

editText

checkBox radioButton

Control pattern name Image (Macintosh) Description

scrollbar Used for various scrolling
purposes.

staticText Used to specify permanent text in
the dialog (usually explanatory
text).

editText Used to allow the user to enter
some text.

pushButton A button is used to specify some
actions to be taken.

optionButton Used to specify a button with
associated pop-up menu.

checkBox A check box is usually used
together with other check boxes
to present the user with a group
of non-exclusive options.

radioButton A radio box is usually used
together with other radio boxes to
present the user with a group of
exclusive options.

iconButton A icon is used to show a minor
picture in the dialog.

The control pattern is a subpattern of windowItem and inherits as such all its
facilities (size, position, event handling, etc.). The actions to be associated with a
control must be specified in further bindings of e.g. the virtual event pattern
onMouseDown. Control defines some other facilities that can be ignored for most
Lidskjalv applications.

Controls and Dialogs 25

Scrollbar defines various attributes for controlling the scrollbar
(scrollAmount, maxValue and value). Besides the eventhandler, a new
event patterns are defined: onThumbMoved. OnThumbMoved is invoked when the
user moved the scroll thumb. The orientation (vertical or horizontal) is controlled
through the vertical attribute, such that true->vertical specifies the
scrollbar to be vertical (horizontal for false). Finally, the length of the scrollbar is
controlled by the length attribute.

Button is also a subpattern of control and is the superpattern for the rest of the
controls. The attributes of button are controlling the label (text and text style),
associated with all buttons.

PushButton and staticText are simple subpatterns of button. IconButton
is another simple subpattern of button, only defining one new attribute
showLabel for controlling whether the label should be shown or not.

EditText is implementing a one-line text editor to be used for simple text
specifications (file names etc.) The text style of the text is controlled by the style
attribute, and the contents of the editText can be manipulated through the
contents attribute. That is, if T is a text, and ET is a editText, then T[]->
ET.contents sets the text shown in the editText control to the contents of T
(i.e. setting the initial contents), and ET.contents->T[] copies the contents of the
editText control into T (i.e. reading the user input).

OptionButton defines a field which will pop-up a menu in response to the user
pressing the mouse button on top of the field. The attributes of optionButton
controls the associated menu and the currently selected menu item (shown inside the
field).

ToggleButton is the common superpattern for the RadioButton and CheckBox
controls. ToggleButton controls a binary state. A series of RadioButtons are
used for specifying a set of exclusive options, and one or more checkBoxes are used
for specifying a set of non-exclusive options.

Finally, one of the buttons in the window can be specified to function as a default
button (i.e. be activated by pressing carriage return) by entering a reference to it to
defaultButton.

The following example illustrates the use of controls:

ORIGIN '~beta/guienv/v1.4/guienv';
INCLUDE '~beta/guienv/v1.4/controls'
--- program: descriptor ---
guienv
(# authorName: @text;
 isReport: @boolean;
 theDialog: @window
 (# cTitleLabel: @staticText
 (# open::
 (#
 do (10, 10)->position; (95,25)->size;
 'Title: '->label
 #) #);
 cTitle: @editText
 (# open::
 (# do (115, 10)->position; (150,25)->size #)
 #);
 cAuthorLabel: @staticText
 (# open::
 (#
 do (10, 40)->position; (95,25)->size;
 'Author: '->label
 #) #);
 cAuthor: @editText

dialog.bet

26 Lidskjalv User Interface Framework – Tutorial

 (# open::
 (# do (115, 40)->position; (150,25)->size #)
 #);
 cReport: @checkBox
 (# open::
 (#
 do (10, 70)->position; (100,25)->size;
 'Report'->label
 #);
 eventhandler::
 (# onMouseUp:: (# do not state->state #) #);
 #);
 cCancel: @pushButton
 (# open::
 (#
 do (115, 70)->position; (80,25)->size;
 'Cancel'->label
 #);
 eventhandler::
 (# onMouseUp:: (# do theDialog.close #) #)
 #);
 cOk: @pushButton
 (# open::
 (#
 do (115+150-30, 70)->position; (30,25)->size;
 'OK'->label
 #);
 eventhandler::
 (# onMouseUp::
 (#
 do (* store values, then *)
 theDialog.close
 #) #)
 #);
 eventhandler::
 (# onAboutToClose:: (# do terminate #) #);
 open::
 (#
 do (40,40)->position; (275,100)->size;
 'dialog'->title;
 cOk.open; cCancel.open;
 cTitleLabel.open; cTitle.open;
 cAuthorLabel.open; cAuthor.open;
 cReport.open;
 cOk[]->defaultButton
 #)
 #)
do theDialog.open;
 theDialog.showModal
#)

This defines a dialog with two buttons, two editable text fields, two static text fields,
and one check box (all enabled).

screendump
(Windows NT)

27

8 Scroll Lists

Scroll lists are used to display an interface object in which the user is able to select
elements from a list of elements (e.g. file names).

A scrollList maintains the list of elements and the user is allowed to scroll in the
list or to select elements in the list by clicking on them. ScrollList has operations
for inserting, deleting and scanning the elements in the list. Furthermore,
scrollList maintains a list of the currently selected elements in the list.

TextScrollList is a subpattern of scrollList for maintaining a list of text
strings. TextScrollList defines additional operations for manipulating the text
strings and for manipulation the text style of the elements in the list.

The following is an example of a textScrollList for selecting in a list of items:

ORIGIN '~beta/guienv/v1.4/guienv';
INCLUDE '~beta/guienv/v1.4/scrolllists'
--- program: descriptor ---
guienv
(# scrollListWindow: @window
 (# scrollList: @textScrollList
 (# open::
 (# tmpText: @text;
 windowSize: @point
 do (5,20)->position;
 20->append;
 (for inx: 20 repeat
 'Item: '->tmpText;
 inx->tmpText.putint;
 (inx,tmpText[])->setText
 for);
 this(scrollListWindow).size->windowSize;
 position->windowSize.subtract;
 (0,15)->windowSize.subtract;
 windowSize->size;
 true->bindRight->bindBottom
 #);
 eventhandler::
 (# onSelect::
 (# do item->gettext->putline #)
 #)
 #);
 eventhandler::
 (# onAboutToClose:: (# do terminate #) #);
 open::
 (#
 do 'scrollingList'->title;
 scrollList.open
 #)
 #)
do scrollListWindow.open
#)

scrollinglist.bet

28 Lidskjalv User Interface Framework – Tutorial

9 Window Fields

Lidskjalv offers facilities for defining more advanced fields than the above mentioned
controls. These facilities include window items as two different text editing fields
(textField and textEditor). These patterns are subpatterns of windowItem
and inherits as such all its facilities.

TextField and textEditor are both advanced text editors offering the usual text
editing facilities, such as fonts, cut/copy/paste, selections, etc. along with simple text
manipulation functions. All event handling is automatically taken care of by the pat-
terns. TextEditor is only special by offering scrolling facilities.

TextField handles text selection through the selection attribute. Selec-
tion.start contains the character position of the first character in the selection
and selection.end contains the character position of the last character in the
selection. If selection.start = selection.end, then nothing is selected,
and selection.start identifies the position of the text cursor.
Selection.contents returns the text in the selection. ScrollIntoView will
make sure that the current selection is visible.

The text editing facilities are cut, copy and paste, that implements the usual
cut/copy/paste functionality. Insert takes a text as parameter, and inserts it
immediately before the current selection, and delete deletes the text of the current
selection.

To enable scanning the entire text in the text field, the scanText operation is
defined. ScanText is a control pattern that takes two positions as parameters, and
iterates over the characters in the text editor between the two positions. During the
scan, ch will contain the current character in the text.

The text contents of the text field is accessed through the contents attribute that
can be used for getting a copy of the current text in the text field.

The simplest possible 'Hello World' textField can be specified as follows:

ORIGIN '~beta/guienv/v1.4/guienv';
INCLUDE '~beta/guienv/v1.4/fields'
--- program: descriptor ---
guienv
(# textWindow: @window
 (# txtField: @textField
 (# open::

screendumps
(Windows 95)

textField.bet

Index 29

 (# t: @styledText;
 do (0, 0)->position;
 (300, 100)->size;
 'Hello World!'->t;
 t[]->contents
 #)
 #);
 eventhandler::
 (# onAboutToClose:: (# do terminate #) #);
 open::
 (#
 do (20, 100)->position;
 (300, 100)->size;
 'textField'->title;
 txtField.open
 #)
 #);
do textWindow.open
#)

This will create a textField at position (20, 100) and with size (300, 100). The
initial contents of the textField is 'Hello World!'. All usual text editing
facilities will be available in the editor:

By replacing textField by textEditor and subtracting (15,15) from the size of
the myTextField will result in a window with at text editor with scrolling facilities.
The reason for subtracting (15, 15) from the size of the editor field is to make room
for the scrollbars at the right and bottom of the window.

ORIGIN '~beta/guienv/v1.4/guienv';
INCLUDE '~beta/guienv/v1.4/fields'
--- program: descriptor ---
guienv
(# textWindow: @window
 (# txtEdit: @textEditor
 (# open::
 (# t: @styledText;
 do (-1, -1)->position;
 (287, 87)->size;
 'Hello World!'->t;
 t[]->contents.contents;
 true -> bindRight;
 true -> bindBottom;
 #)
 #);
 eventhandler::
 (# onAboutToClose:: (# do terminate #) #);
 open::
 (#
 do (20, 100)->position;
 (285, 85)->size;
 'textEditor'->title;
 txtEdit.open

screendump
(Windows NT)

textEditor.bet

30 Lidskjalv User Interface Framework – Tutorial

 #)
 #);
do textWindow.open
#)

Note, that the only visible difference, compared with the previous textField example
is that a text editor automatically has both vertical and horizontal scroll bars.

10 Standard Dialogs

Lidskjalv contains a number of standard dialogs, including file selection dialogs. The
attribute fileSelectionDialog will activate the standard file dialog and return
the path name of the selected file:

ORIGIN '~beta/guienv/v1.4/guienv';
INCLUDE '~beta/guienv/v1.4/stddialogs';
--- program: descriptor ---
guienv
(# name: ^text;
do fileSelectionDialog(# do 'fileDialog'->Title[] #)->name[];
 (if name[]=NONE then
 'Selected Cancel' -> putline;
 else
 name[] -> putline;
 if);
 terminate;
#)

screendump
(Windows NT)

fileDialog.bet

screendump
(Windows NT)

