The Mjglner BETA System
Lidskjalv:
User Interface Framework
Tutorial

Mjginer Informatics Report
MIA 95-30(1.1)
August 1996

Copyright © 1995-96 Mj@lner Informatics ApS.
All rights reserved.
No part of this document may be copied or distributed
without prior written permission from Mjglner Informatics

Contents

THE LIDSKJALV USER INTERFACE FRAMEWORK ... oo 1
1 STRUCTURE OF A LIDSKJALY APPLICATION ...t 5
1.1 LIDSKJIALY DECLARATIONS ... ottt ettt et e et eneaneeneanes 5
1.2 LIDSKJIALY INITIALIZATION . otittiititi ettt ettt e et et e e e e e e et e e e et eneeneenes 6
1.3 LIDSKIALY EVENT HANDLING. ...t ittt ittt iee ettt e e e e e et s e et e e an et e et naba et s eae e e naaeeanees 6
1.4 APPLICATION SUSPEND, RESUME AND TERMINATE. ...ttt 6
L5 OVERVIEW OF LIDSKJIALY ..cuttiitiie ettt et et e e e e e e s et e e e e e e e et e ennean s e e e e eeneees 7
2ACCESSTO GLOBAL STRUCTURES ...t 7
2.1 ACCESSTO THE MOUSE. ... ittt e e e e e e e e et e e e e e e e e e e e e e ens 7
2.2 ACCESSTO THE CLIPBOARD ...utuititttte e ete et e e et e et e et e e e e e e e e e e e e e e e e e e e aneens 8
2.3 STANDARD INPUT AND OUTPUT ..ttt ie ettt ettt e st s e e e e e e e e e e s aae e ens 8
2.6 COORDINATE SY STEM .. tuitttitttieet et e e e e et e e e e e e et e e e e e e e e e ens 8
BWIND O W S ettt ettt e 9
3.LEVENT HANDLING IN WINDOWS. ... ctiitieiiiie e ee e e e e e e s e e e e e et eaae e eaae i eaaeaeaeenees 10
3.2 CONTENTS OF WINDOWS. ... ettetetie et et e e et ea et eaaeanees 11
BUAWVINDOW ITEM S ..ottt e e e e e e e e e e e e et e e e et e e e e n et e e e aneen 11
AMENU HANDLING ..ot ettt et e e eeees 12
A1 BASIC MENU FACILITIES. ittt ie et e e e e e e e e e e e e e e e eaeans 12

4.1 1 MenU EEM FACHTTIES. ...t e e 13

4.1.2 Static and DYNamiC MENU TTEMS.uuiieiii ettt e eeai e eees 14
B THE MENU BAR . . e e 16
5.1 STANDARD MENUS . ..ottt e e e e e e e e e e a e et et e e e e e et eaaeanaen 16
B G RAPHI CS . . 17
B. L FIGURE ITEM S .o it iitiie ettt e e e e e e e et e e e e e e et e et e e et e e e aees 18
6.2 INTERACTIVE GRAPHICS FACILITIES. ... eetitet ettt e ee et e eete e e e e e e e e e e ense e seanseaneeanes 20

6.2.1 Selection of GraphiCS OBJECES.......ociiiiiiieiei e 20

6.2.2 Dragging Of GraphiCS ODJECES. ciietiieiiii et 21
B.3 CANV AS. ..ttt ettt e oot e e et e b e e e e e ettt bbbt e e e e et e bbb e e e e e e eanbaanas 21
6.4 SCROLLER. ...ttt ittt sttt ettt et e et e 22
7CONTROLSAND DIALOG BOXESt ettt ettt 23
5 R 0 N 1 = T I I I 24
B S RO L LI ST S . ittt et e e 27
GWINDOW FIEL DSt ettt 28
10 STANDARD DIAL OGS . .ottt 30

The Lidskjalv User Interface
Framework

Lidskjalv is a platform independent object-oriented user interface construction
toolkit for:

* Macintosh

* X Window System (Motif Widgets)
* Windows 95

e WindowsNT

Lidskjalv alows construction of portable user interfaces in such a way that the
look-and-feel of the applications, will conform to the standardized look-and-feel of
the specific platform.

The framework defines abstractions for all commonly used interface objects, such as
windows, menu bars, menus, buttons, text fields, figureitems, scrolling lists, etc.

The application programmer does not have to handle user interaction at the event
level of the underlying platform, because each interface object takes care of the
interactions related to itself. It is the responsibility of the entire framework to ensure
that the user interactions (such as mouse button presses, key presses, etc.) are con-
verted internally into invocations of virtual procedures of the appropriate interface
object. The only thing the application programmer needs to do is to bind the virtual
procedures. All layout properties of interface objects can be manipulated through the
Lidskjalv framework.

Following, arealistic example of using Lidskjalv is presented. It is asmall text editor
with full support for loading, editing, and saving files.

ORIG@ N ' ~beta/guienv/vl. 4/fields';
I NCLUDE ' ~bet a/ gui env/ v1. 4/ st ddi al ogs' ;
| NCLUDE ' ~betal/basiclib/vl.5/file";
- program descriptor --
gui env
(# theWndow @ ndow
(# menubar Type: :
(# fil eMenu: @renu
(# textFile: @ile;
openltem @renuitem
(# event handl er::
(# onSel ect::
(# theText: @btyl edText;
do theWndow]->fil eSel ecti onDi al og->t ext Fi | e. nane;
textFi |l e. openRead,;
textFile.scan(# do ch->theText. put #);
t heText []->t heText Edi t or. contents. contents;
textFile.close;
#)#) ;
open:: (# do 'Open' -> nane #);
#),
saveltem @renuitem
(# event handl er::
(# onSel ect: :
(# theText: @ext;

1

Lidskjalv User Interface Framework — Tutorial

do textFile.openWite;
t heText Edi tor. contents. contents
->textFile. puttext;
textFil e.cl ose;
#)#)
open::< (# do 'Save' -> nane #);
#);
quititem @renuitem
(# eventhandl er:
(# onSelect:: (# do Term nate #) #);
open:: < (# do 'Qit' -> name #);
#);
open: : <

do '"File' -> nane
openl tem open; openlten{] -> append;
savel tem open; savelten{] -> append;
quitltemopen; quitliten]{] -> append;

#) #)
open:: (# do fileMenu.open; fileMenu[] -> append #);
#);
thetextEditor: @ extEditor
(# open:
(#
do t heW ndow. si ze->Si ze
Tr ue- >bi ndBot t om >bi ndRi ght
#) #) ;
open:: (# do thetextEditor.open #);
#);
do t heW ndow. open

#)

The following three screen snapshots show how this application appear on the screen
after the program has loaded its own source text for editing, and with the menu
opened.

. Windows 95/
M acintosh Windows NT

thetextEditor via

L.r..un---; |+

Open

File |

0

pen Handler::<

Save flonSelect s+
, (# theText: BStyledText:
luit do thelindowl] -> fileSelectionlia

textFile,openkead:
textFile,scan

whiler:< (# do true—>value

do ch —» theText,put

#ir
theText[1->theTextEditar, conten

X Window Systen

Introduction

This document contains a tutorial on the use of version 1.4 of the Lidskjalv user
interface framework.

These libraries are collectively referred to as the Lidskjalv user interface framework.
Lidskjalv consists of a number of libraries, of which gui env, control s, fi el ds,
scrolllists and figureitens will be described in this tutoria. Most
Lidskjalv applications will only be using some of these libraries.

The cont r ol s library offers the capabilities of interface controls, such as buttons,
scrollbars, etc.

The fiel ds library offers the capabilities for displaying bitmaps, rasters and
advanced text editing.

The figureitens library offers fairly advanced graphics capabilities, including
maintenance of graphical objects on the screen, which can be selected and dragged.

Thescrol | I'i sts library offers facilities for making scrolling lists as used in e.g.
thefile dialog.

Besides the basic user interface libraries, as described above, the Lidskjalv
framework contains a series of utility libraries (not described in this manual). These
utility libraries can be found in the util's subdirectory of the Lidskjalv directory
tree.

This tutorial will contain screen dumps mainly from the Windows 95 and Windows
NT platforms. All demos can be recompiled on the other supported platforms,
resulting in similar windows, just with the look-and-feel of that platform.

Further Readings

This tutorial is accompanied with a reference manual for the Lidskjalv framework:
Mjelner BETA System: Lidskjalv: User Interface Framework - Reference Manual,
MIA 94-27. User's manuals for the Mjeglner BETA System on the different platforms
are also available Furthermore, a reference manual for the BETA is available:
Mjelner BETA System: Compiler Reference, MIA 90-2. Finally, a reference manual
is available on the basic libraries: Mjginer BETA System: Basic Libraries, MIA 91-8.
The reader is advised to consult these documents (along with the other Mjglner
BETA Manuals) aswell asthistutorial.

1 Structure of a Lidskjalv
application

A Lidskjalv application is usually structured along the following lines:

ORI G N ' ~bet a/ gui env/ v1. 4/ gui env
- program descriptor ---

gui env

(# ... declarations ..
do ... initializations .
#)

The ORI G N specification informs the compiler, that this program is utilizing the
gui env library. The '~bet a/ gui env/ v1. 4/ gui env' specifies that the BETA
compiler is expected to find the fragment gui env on the disk in the
subdi rectory of the gui env directory, which is supposed to be located in the
directory where the Mjglner BETA Systemislocated. v1. 4 isthe version number of
Lidskjalv and it must be consistent with the version of Lidskjalv installed on your
system. Please also note that the gui env fragment must be located in the specified
directory. If thisisnot the case, change the above directory specification.

If you want selectively to use some of the other Lidskjalv libraries (fi el ds,
control, scrol lingList orfigureltemn, the libraries must be specified in
INCLUDE clauses. E.g. to utilize both the fi el ds and control libraries, the
program must look like:

ORI G N ' ~bet a/ gui env/ v1. 4/ gui env'

| NCLUDE ' ~bet a/ gui env/vl. 4/fi el ds'

I NCLUDE ' ~bet a/ gui env/vl. 4/ control s’
- program descriptor ---

gui env

(# ... declarations ..

do ... initializations ..
#)

Note that the main part of a Lidskjalv application contains an inserted instance of the
Qui env pattern (not to be confused with the Gui env library). This Gui env pattern
Is taking care of all event handling of events originating from the underlying window
system (e.g. mouse button events, window refresh events, keyboard events, etc.) such
that Lidskjalv application programmers does not have to be concerned with managing
the global event loop. Each user interaction (e.g. menu selections) result in execution
of some specific actions of some BETA objects (details later).

1.1 Lidskjalv Declarations

Thedecl ar at i ons part of aLidskjalv application contains declaration of patterns,
objects, and declaration of specializations of user interface objects such as menus,
windows, buttons, etc. Most of the functionality of Lidskjalv applications will in fact

5

Lidskjalv User Interface Framework — Tutorial

be specified in these specializations, since activation of most of the functionality will
originate from the user manipulating items in the user interface.

1.2 Lidskjalv Initialization

Theinitializations partofalLidskjav applicationis primarily concerned with
initialization of objects and with the creation and initialization of the various menus,
windows, buttons, etc. The structure of Lidskjalv applications is such that the main
part of the application is normally not concerned with invoking the functionality of
the application, since that is usually the result of the user manipulating the user
interface.

1.3 Lidskjalv Event Handling

Events (e.g. window refresh events, mouse button events, keyboard events) must be
taken care of by the Lidskjalv application some way or another. The approach taken
is to handle the global event loop for the programmer. When specifying interface
objects! in a Lidskjalv program, the underlying implementation takes care of
propagating events to the appropriate interface object. Events, (e.g. mouse button)
will be converted into invocation of virtual procedure patterns of interface objects.
These virtual procedure patterns (e.g. onMbuseDown and onRef r esh), must be
extended by the Lidskjalv application programmer to contain the proper response to
the specific event. That is, interface objects define various virtual procedure patterns
that specify the types of events that are relevant for this type of interface object . In
Lidskjalv programs, the programmer creates specializations of interface objects with
further bindings for the virtual procedure patterns with the proper response to those
events. During the discussion of the various types of interface objects, we will be
discussing more details of this event handling.

1.4 Application Suspend, Resume and
Terminate

Lidskjalv applications will continue to be executing until the application explicitly
specifiesthat it may be terminated. Termination of a Lidskjalv application is done by
executing the Gui env attribute t er m nat e when termination is wanted. The result
hereof is that the global event handling is immediately terminated, resulting in the
termination of the execution of the entire application.

One final element of event handling needs to be presented here, namely the way in
which background computation can be specified in Lidskjalv applications.
Background computation is handled by the underlying window system by sending the
application so-called idle events if no other events are waiting to be processed. The
application can then be able to make proper background computation by responding
to theseidle events. Lidskjalv handles this by offering the application programmer an
onl dl e virtua event pattern which will be executed each time a idle event reaches

linterface objects are BETA objects that represent elements on the graphical user
interface (e.g. a menu item, a button, etc.). Interface objects will be discussed in
detail later.

Structure of a Lidskjalv application

the application (please note, that onldle is not implemented in v1.4 on the Windows
95 and Windows NT platforms).

1.5 Overview of Lidskjalv

Lidskjalv contain many different patterns for implementing advanced (and simple)
applications utilizing the graphical user interface system. It is impossible in this
tutorial to give al details of these patterns and the presentation here will therefore
only stress the most important patterns and the most important attributes of each
pattern, along with illustrative examples.

Since there are many patterns and a somewhat elaborate pattern hierarchy, the
following figure will show the most important classes and their super/subpattern
relations.

interfaceObject
menubar menu window windowltem
figureltem canvas scrollList control textField

shape line textEditor scroller scrollbar button editText

2\

o iconButton staticText toggleButton optionButton pushButton
radioBdtton checkButton

2 Access to Global
Structures

Lidskjalv offers access to several global objects of the window system, such as the
mouse, the clipboard, the menubar, etc.

2.1 Access to the Mouse

The Mbuse attribute in Gui env provides access to the physical mouse connected to
the window system. Mbuse. gl obal Posi t i on returns the current position of the
mouse (in screen coordinates). Mouse. butt onSt at e returns the status of the
mouse buttons and returns 1, 2, or 3 if the corresponding mouse button is currently
pressed, and O otherwise.

Lidskjalv User Interface Framework — Tutorial

2.2 Access to the Clipboard

The cl i pboar d attribute in Gui env gives direct access to the underlying window
system clipboard.

cl i pboar d. hasText returnstrue, if the clipboard containg textual information. If
t xt [] is a reference to text object, then t xt []- >cl i pboar d. t ext Cont ent s
places the text in t xt [] onto the clipboard, and cl i pboar d. t ext Cont ent s- >
t xt [] copies the contents of the clipboard as text into t xt []. To clear the
clipboard, you caninvokecl i pboar d. cl ear Cont ent s.

2.3 Standard Input and Output

In bet aenv, the standard input and output from the user is obtained through the
scr een object (or through the put Text , get Text , etc. operations of bet aenv).

Obtaining input and output through scr een should however be used sparely in
Lidskjalv since the facilities for input and output through Lidskjalv will conform to
the user interface guidelines of the underlying window system and result in more
elegant and powerful user interfaces.

In window-based environments there usualy are two ways to invoke applications:
either directly from some sort of console window (e.g. Xterm on UNIX platforms,
MS-DOS Box on Windows 95 and Windows NT, and MPW Shell on Macintosh
platforms), or by double-clicking on some graphical icon in the graphical user
interface. Lidskjalv behaves different in these two cases with respect to handling
standart input and outpu.

In Lidskjalv applications invoked through console windows, standard input and
output will be obtained from the console window from which the application is
invoked. In Lidskjalv applications invoked through the graphical user interface, a
console window will be created by the application, and standard input and output will
be obtained from this console window.

2.6 Coordinate System

Many aspects of the programming in Lidskjalv involves specifying positions on the
desk-top of the underlying window system (i.e. the position and size of a window).
Lidskjalv definesapoi nt andr ect angl e pattern for representing such properties.

The coordinate system used in the specification of these positions etc. are having a
horizontal X-axis with X increasing to the right, and the Y-axis is vertica with Y
increasing downwards. In defining e.g. the size of a window, the terms wi dt h and
hei ght areused along the X-axis, respectively the Y -axis.

X width horizontal

h Y,

e e

i r

g t

h [

y t C
a

I

Access to Global Structures

The screen of the underlying window system has the (0,0) positioned at the upper left
corner of the screen. Windows on the desk-top also has the (0,0) positioned in the
upper left corner of the window. In general,, the (0,0) position is located in the upper
left corner of all interface objects.

3 Windows

The wi ndow pattern describe properties of underlying window system windows. Al
Lidskjalv windows has a position on the screen, a height and width and atitle (shown
in the title bar). Windows may be visible on the screen or hidden. Finally, the win-
dow may specify the particular event handling to be associated with that window.

The open attribute initializes the window according to the window attributes.
During the lifetime of a window, it may shift between being visible on the screen or
not. This is controlled by the show and hi de attributes. A window may take the
control of the entire underlying window system (i.e. act as a moda window) if isis
shown using showivbdal instead of show

The following creates an ordinary window. The window will beinitially visible:

ORI G N ' ~bet a/ gui env/ v1. 4/ gui env' simple-
gui_ eﬁ\r/ogram descriptor --- Win%ow.bet
(# sinpl eWndow. @ ndow
(# open::
(#
do (100, 100)->position;
(300, 100)->si ze;
"sinpl eWndow ->title
#)
event handl er: :
(# onAbout Tod ose:: (# do terminate #) #);
#)
do si npl eW ndow. open
#)

— . . screendump
simpleindow nn (Windows NT)

Please notethe onAboutToClose:: (# do terminate #) part of thissmal
demo program. You will see thisin al following demo programs. This small piese
of code is included in these demo programs with the intent to make the demo
applications terminate, when the window is closed. In realistic applications, thisform
of termination is very seldom used, since such applications often use a number of
windows, and a Quit menu item to actually terminate the application..

10

Lidskjalv User Interface Framework — Tutorial

window-
WithEvents.bet

screendumps
(Windows 95)

3.1 Event Handling in Windows

All user activities with the mouse, keyboard, etc. are turned into events by the
underlying window system. Lidskjalv turns the window relevant events into
invocations of virtual procedure patterns, defined in the event handl er of the
wi ndow. Event handl er defines the following virtual patterns: onl dl e,
onActivate, onDeactivate, onRefresh, onKeyDown, onMuseDown,
onMouseUp, and onAbout Tod ose.

These patterns are invoked when the corresponding event occurs and further bindings
of these patterns may specify actions to be executed then. Onl dl e isinvoked in the
active window when nothing else happens in the underlying window system and can
be used to specify some background computations, relative to this window (e.g.
repagination). OnAct i vat e isinvoked when this window is becoming the active
window and onDeact i vat e is invoked when another window becomes the active
window. OnRef r esh is invoked when the window has been corrupted (e.g. when
the window is opened or when another window, which is obscuring parts of this
window, is moved). OnKeyDown is invoked when the user presses a key on the
keyboard. OnKeyDown takes one parameter which is the character associated with
that key. OnMouseDown is invoked when the user presses the mouse button and
onMouseUp is invoked, when the wuser releases the mouse button.
OnAbout Tod ose isinvoked when the mouse button is pressed when the cursor is
located in the Close box. E.g.:

ORI G N ' ~bet a/ gui env/ v1. 4/ gui env'
- program descriptor ---

gui env
(# event Wndow. @i ndow
(# open::
(#
do (100, 100) - >posi tion;
(300, 300) - >si ze;
"wi ndowW t hEvents' ->title
#)
event handl er: :

(# onAbout ToCl ose:: (# do term nate #);
onldle:: (# do '"idle ->putline #);
onRefresh:: (# do 'refresh'->putline #);
onMouseDown: : (# do 'nouseDown' ->putline #)

#)

#)
do event W ndow. open;
#)

B windowwithEvent: =] E3 & windowwithevents [lj[=] E3

retresh
refresh
refresh
refresh

mouselown
mouselown
mouselown
mouselown
refresh
refresh

Windows

11

The r ef r esh and nouseDown printouts originates from user interaction with the
window.

3.2 Contents of Windows

The w ndow pattern in Lidskjalv offers severa advanced facilities for specifying the
contents of the window. These facilities are e.g. the wi ndowl t em Canvas and
Scrol | er patterns. W ndow t emis the basic pattern for describing items to be
displayed in a window, canvas (a subpattern of wi ndowl t em is used to group
wi ndow t ens of a window, and scroller enables scrolling of the window items.
Several other subpatterns of wi ndowl t em exists, and will be discussed in later
sections.

il HH window S——H=

N GRN]
a———\L——\———"{E

canvas windowltem canvas window

The wi ndow pattern defines one attribute, related to handling the window contents:
contents. Contents is an operation, returning a canvas as exit parameter.
W ndow displays al wi ndowl t ens having window.contents as their father
(explained later) and handles everything associated with refreshing the window
contents in response to wi ndow t ens being associated with the wi ndow, and
related to exposure of previously hidden parts of thew ndow.

3.4 Window ltems

As mentioned above, instances of Wi ndowl t emare the elements displayed in awin-
dow. Thew ndow t empattern defines attributes common to all the different types
of window items, defined in the different Lidskjalv libraries.

Window items are organized in a father-child hierarchy with respect to some canvas
(or the contents canvas of a window) and all items have a father. The father defines
the coordinate system for the children (e.g. the position of each child isrelative to the
position of the father, such that moving the father also moves the children). The
f at her attribute of a window item refers to the canvas that this window item is a
child of. W ndow t emdefines attributes for accessing and changing the position
and size of the item and for controlling the visibility of the window item.

All window items are able to receive events from the user, and defines an event
handler (smilar to windows) to take care of these events. The enabl e and
di sabl e attributes are used to control whether the item will react to these events or
not (i.e. a disabled window item will ignore e.g. onMbuseDown events eventhough
an event pattern is defined for onMbuseDown event in that window item). The event

12

Lidskjalv User Interface Framework — Tutorial

Screendump
(Windows NT)

patterns defined in the event handler of window items are: OnFat her Changed,
ChangedFr ane, OnFat her Changed, onMouseDown, onMouseUp,
onKeyDown, onEnabl eTar get , onDi sabl eTar get onRef resh,
onActivate and onDeacti vate. Specific behavior for these events can be
specified by further binding the appropriate event pattern.

4 Menu Handling

Lidskjalv offers severa facilities for dealing with menus. In Lidskjalv applications,
menus can be of four types, namely pulldown and pop-up menus (and both menu
types can be linear or hierarchical), where the linear and hierarchical pulldown menus
are the most often used menu types. Pulldown menus are associated with the
menubar that is located in the top of the window (or on the top of the screen on the
Macintosh platform). Each pulldown menu has a title which is shown in the
menubar. When that title is selected with the mouse, the pulldown menu is shown.

Sif: Mjolner BETA Source Browser and Editor
File Project Group Edit RYIE"E S10Ts Fragment Tools History Windows
| Projects -Gro| Abstract [DbI-CIK]
Std. Libraries/+ 1 B Astract Recursively guieny’ t
~f ovd Overview Ctrl+0 1. Afigureitem
P | |1 Detail (DbI-CIK) Ctrl+D R
rDLTE Detail Recursively
scl Search... Ctrl+5
sim Replace... Ctrl+R
+| [te +
— Follow Semantic Link [DbI-CIK]
peliel Follow Link To Fragment [DbI-CIK)
PO Follow Link To SLOT *
avindow: @window #go: @q Zoom In Ctrl+1
do avVindow. open Zoom Out Ctrl+2
i Zoom To Full Editor Ctrl+3 +
+ *
Location: . aval Hepre.tlyprlnt . Cirl+P
Info: Adaptive prettyprinting
Show AST Dump

Pop-up menus are under the control of the application programmer, who at any point
in the program may specify that a particular menu must be popped up at a specific
position (e.g. inside awindow).

4.1 Basic Menu Facillities

The Menu pattern defined in Lidskjalv describes the facilities of any type of menu in
Lidskjalv. Menu is a subpattern of i nt erf aceCoj ect. The menu handling is
fully supported by Lidskjalv in the sense that the application programmer specifies
the title and format of the menu (including layout of individual menu items,
submenus, etc.) and specifies the actions, associated with the individual menu items.

Menu Handling

13

The menu isinserted in the menubar and Lidskjalv handles all events associated with
menus (e.g. when some menu item is selected, the proper actions are executed).

Menus may be enabled or disabled. A disabled menu isvisible in the menu bar but its
titleisdimmed and it isimpossible to pull the menu down from the menu bar.

If t heMenu be an instance of Menu, initialization of t heMenu may be done by
further binding the open virtual procedure pattern attribute of Menu. In this further
binding, the individua items in the menu are defined. The individual items are in-
stances of the menul t empattern (described below).

The menu may be used as a pull-down menu by inserting it in the menubar, e.g. by
THI S(Menu) []- >MenuBar . append, or t heMenu[]- >MenuBar . append. The
menu may also be used as a pop-up menu by invoking (i,p,w]|])->
THI S(menu) . popUp or (i, p, wi[])->t heMenu. popUp. Thiswill show the
menu at position p with the menu element number i selected. wi is a reference to
the window item in which the menu should pop-up. Finally, the menu may be used as
a hierarchical menu. The menu can be inserted as a submenu of an item of another
menu by THI S(Menu) []- >anot her Menul t em subMenu or t heMenu[]- >
anot her Menul t em subMenu. The menu will then be a submenu of
anot her Menul t em

4.1.1 Menu ltem Facilities

Each individual item in a menu is described by the nmenul t em pattern, defined
locally to the Menu pattern in Gui env. Most facilities of menul t emdeas with
describing the format of the menu item. Nanme makes it possible to specify the name
of the item. Key makes it possible to control the keyboard equivalent, and finaly,
SubMenu makes it possible to control the submenu of thisitem. Checked is used to
control whether or not this menu item should be checked (a toggle menu item). The
position of the item in the menu is examined by posi ti on.

Items in menus may be enabled (e.g. it is possible to select this menu item) or disable
(e.g. the menu item cannot be selected and the menu item is dimmed in the menu).
Enabling and disabling of menu items are controlled by the virtual procedure pattern
onSt at us. The application programmer must further bind onSt at us in menu
itemsin order to specify dynamic changesin the selectability of menu items.

When a menu item is selected, some actions must be executed. This is specified
using the virtual event pattern onSel ect . The application programmer must further
bind onSel ect in order to specify the actions to be executed as the result of this
menu item being selected.

Menu items are initialized in two steps. The title of the menu item is first specified
by giving atext string as the nane operation of Menul t em Thisis usually donein
the open virtual in the menu item. Then the menu item is appended to the menu.

The menu items are numbered from the top of the menu, starting with 1, and menu
separators are numbered too. Menu separators are specified by using the
separ at or pattern, e.g.

&separator[]->sep[]; sep.open; sep[1-
>animalMenu.append

Let uslook at asmall example:

ORI G N ' ~bet a/ gui env/ v1. 4/ gui env'
- program descriptor ---
gui env
(# menuW ndow. @ ndow
(# nenubar Type: :
(# ani mal Menu: @renu
(# i Cat: @enultem

menus.bet

14 Lidskjalv User Interface Framework — Tutorial

(# event handl er::
(# onSelect:: (# do 'Cat chosen'->putline #) #);
open:: (# do 'Cat'->nane #)
#)
i Bear: @renultem
(# event handl er::
(# onSelect:: (# do 'Bear chosen'->putline #)#);
open:: (# do 'Bear'->nane #)
#)
i Eagl e: @renultem
(# eventhandl er::
(# onSelect:: (# do 'Eagle chosen'->putline #);
onStatus:: (# do fal se->val ue #)

open:: (# do 'Eagle'->nanme #)

(# sep: “nmenultem
do ' Ani mal s' - >nane;
i Cat.open; iBear.open; iEagle.open;
i Cat[]->ani nal Menu. append;
i Bear[]->ani mal Menu. append,;
&separator[]->sep[]; sep.open; sep[]->ani mal Menu. apg
i Eagl e[] - >ani nal Menu. append
#)
#);
open:: (# do ani mal Menu. open; ani mal Menu[] - >append #)
#),;
event handl er : :
(# onAbout ToCl ose:: (# do termnate #) #);
open:: (# do 'nmenus'->title #)
#)
do nenuW ndow. open
#)

ani mal Menu is amenu with three items and one separator. Thetitle of animalMenu
isAni mal s and the three menu items have thetitles Cat , Bear , and Eagl e:

Animals

screendumps
(Windows NT)

MENUS.exXe | ™ | =~

chosen
Cat chosen
Bear chosen

Cat
Bear

Eagle

When either Cat or Bear is selected, the title of the item will be printed. The
Eagl e item is disabled (shown dimmed) and cannot be selected.

4.1.2 Static and Dynamic Menu Items

Menu items are either constantly associated with the same actions during the entire
execution of the program as described above (i.e. static menu items), or they may be
associated with different actions during the execution of the program (i.e. dynamic
menu items). For that reason, Lidskjalv contains two different menu item patterns:
menul t emand dynam cMenul t em Menul t em (described above) describes the
static menu items and dynam cMenul t em (a subpattern of menul t en) describes
the dynamic menu items. Since static menu items were the subject of the previous

Menu Handling

15

section, we will here concentrate on the additional properties of dynam
I cMenul t ens.

Dynam cMenul t emis a subpattern of menultem, and the dynamics of dynamic
menu items is controlled by attaching and detaching so-called menuAct i ons to the
menu item during the execution of the program. MenuAct i on isa pattern defined in
the menu pattern and defines two attributes. noSt at us and onSel ect with the
same purpose as the onSt at us and onSel ect attributes of a static menu item.
That is, by specializing the onSel ect attribute, the actions of the nenuAct i on are
specified, and the noSt at us attribute controls whether themenuAct i on isenabled
or not.

Dynam cMenul t em defines only two new attributes: attach and det ach.
At t ach takes a nenuAct i on as enter parameter and attaches it to the menu item.
The result hereof is that then the noSt at us attribute of the menu item is invoked,
the onSt at us attribute of the attached action is invoked instead, and invocation of
theonSel ect attribute of the menu item will result in invocation of the onSel ect

attribute of the attached action. The attached action is in this way becoming the
behavior of the dynamic menu item. By changing the action associated with a
dynamic menu item during the execution of the program, different behaviors may be
associated with one particular dynamic menu item. If the dynamic menu item
executes adet ach, the action is detached and the menu item becomes disabl ed.

E.g.

ORI G N ' ~bet a/ gui env/ v1. 4/ gui env'
--- program descriptor ---
gui env
(# rul erWndow. @\ ndow
(# nenubar Type: :
(# rul er Menu: @renu
(# i H deRul er: @ynam cMenul t em
(# open:: (# do 'Hide ruler'->nanme #) #);
i ShowRul er: @ynam cMenultem
(# open:: (# do 'Show ruler'->nane #) #);
hi deRul er: @renuActi on
(# onSel ect::
(#
do 'Hiding...'->puttext;
i H deRul er. det ach;
showRul er[] - >i ShowRul er. attach
#)
#);
showRul er: @renuActi on
(# onSel ect ::
(# do ' Showing...'->puttext;
i ShowRul er. det ach;
hi deRul er[] ->i Hi deRul er. attach
#)
#);
open: :
(#
do 'Rul ers' ->nane;
i H deRul er. open; i HideRul er[]->rul er Menu. append;
hi deRul er[] ->i Hi deRul er. att ach;
i ShowRul er . open; i ShowRul er[]->rul er Menu. append;
#)
#);
open:: (# do rul erMenu. open; rul erMenu[]->append #)
#) ;
event handl er : :
(# onAbout ToC ose:: (# do term nate #) #);
open:: (# do 'rulerMenu' ->title #)
#)

rulerMenu.bet

16 Lidskjalv User Interface Framework — Tutorial
do rul er Wndow. open
#)
Caindows o) i rulerbenu IS[E] E3|
(Windows 95) I rulerMenu P[=] E3 "4 rulerM enu
Hide ruler
Skt e

5 The Menu Bar

The menuBar attribute of Gui env isthe interface to the underlying window system
menubar. menuBar . Cl ear removes all menus from the menubar. If t heMenu is
a menu (discussed earlier), t heMenu[] - >menuBar . append insertst heMenu as
the last menu in the menubar and menus are removed from the menubar by
t heMenu[] - >menuBar . del et e.

5.1 Standard Menus

Most window systems have user interface guidelines that defines that the two first
menus of any applications must be: File and Edit. It is aso often the case that the
File menu contains a least New, Open, Close, Save, Save As, Revert,
Print, , Page Setup and Quit, and that the Edit menu contains at least Undo,
Cut, Copy, Paste and Clear.

To make it easy to create such menus, Lidskjalv contains a pattern
standardMenuBar, containing two menu definitions: standardFi leMenu and
standardEditMenu, with exactly those menu item described above (as dynamic
meny items).

These menu items are realized by instances of dynam cMenul t em with related

names (e.g. saveMenul t emfor the Save item). The actions to be associated with
the individual items are specified by attaching an nenuAct i on to the menu item in
guestion, e.g.

Introduction

anMenuAct i on[]->t heFi | eMenu. saveMenul t em att ach

E.g.:
ORI G N ' ~bet a/ gui env/ v1. 4/ gui env' fileMenu.bet
--- program descriptor ---
gui env
(# fil eMenuW ndow. @u ndow
(# menubar Type:: standardMenubar
(# fileMenu:: standardFileMenu
(# newMenuActi on: @enuAction
(# onSelect:: (# do 'New...'->putline #) #);
saveMenuActi on: @renuActi on
(# onSelect:: (# do 'Saving...'->putline #) #);
saveAsMenuAction: @enuAction
(# onSelect:: (# do 'Saving As...'->putline #) #);
open: :
(#
do newMenuAction[]->newMenultem attach;
saveMenuAction[]->saveMenultem att ach;
saveAsMenuAction[]->saveAsMenul tem attach
#)
#) ;
edi t Menu: : st andar dEdi t Menu
#)
event handl er: :
(# onAbout ToCl ose:: (# do terminate #) #);
open:: (# do '"fileMenu' ->title #)
#)
do fil eMenuW ndow. open
#)
Note that the open attribute, further bound in fi | eMenu is automatically invoked
onthet heFi | eMenu instance during the initialization of Qui env.
Screendumps
i fileMenu M= (Windows 95)
= SN Edit
"4 Filemenu
[[T
[IEm...
Hew. . . [Hfmze
Saving...
Saving fAs...
Hew. . . Save as...
Hevert
Fitat
Faae setim
[yt

6 Graphics

As described above, the contents of windows (including ordinary graphics) are
controlled by attaching instances of (subpatterns of) wi ndowl t ens to the window
(or to some canvas attached to the window). This section will describe the simple
figureitems.

18

Lidskjalv User Interface Framework — Tutorial

6.1 Figure ltems

As described above, the responsibility for the contents of an instance of window relies
on the programmer. To aid the programmer in making graphics, Qui env defines a
number of patterns for drawing lines, rectangles (with sharp or round corners), ovals,
wedges and polygons.

windowltem

figureltem

shape line

rect roundRect oval wedge polygon

Fi gureltem is a subpattern of windowltem and inherits as such all its
functionality (including the event handling possibilities) and defines the basic
properties that are shared by all figureitems. A figureitem have a pen to be used for
drawing the item. The pen defines attributes for defining the drawing pattern, the
foreground and background colors, and the size of the pen (arectangle).

Li ne is a straight line and defines the attributes st art and end for accessing and
changing the end-points of theline.

Shape is used as superpattern to al figure items that are defined by means of a
rectangle and can be filled. Shape contains afi | | attribute which defines the
facilities for filling the shape (i.e. the tile pattern and the foreground and
background colors to be used for the fill).

Rect isareal figure item in the sense that it |
is extending all figureltem procedures
such that an instance of r ect can be properly
drawn in awindow. R

RoundRect islikerect, except that it dso ‘2—
defines r oundness to takes two integers, —ow—l—>
defining the round corners by defining the
width and height of the oval in the corners. If
Risaninstance of r oundRect , then

(OW OH) -> R roundness

defines the rectangle seen here.

/—x
L

Oval isasoliker ect except that an ova is
drawn.

Graphics

18

Wedge is like oval, except that it also
defines st art Angl e and endAngl e which

takes one integers, defining the start and end &
angles of the arc. If A is an instance of ou
wedge, then

SW-> A startAngl e
EW-> A endAngl e

defines the wedge seen here.

Pol ygon is a figure item that consists of a |

points defining the polygon is specified by:
p: [6] “point

collection of connected line segments. The 7 l

do &point[]->p[1] (3,3) ->p[1]; /

&poi nt [] ->p[2] (5.7) ->p[2];

&poi nt [] ->p[3] (4,45) ->p[3];

&point[]->p[5] (44,3) ->p[5];
&point[]->p[6] (1,55) ->p[6];
go. open;

p[]->go. points

Drawing using figure itemsis as simple as.

[]

0
&point[]->p[4]H; (30, 45) - >p[4] :

[

ORI G N ' ~bet a/ gui env/ v1. 4/ gui env'
I NCLUDE ' ~bet a/ gui env/v1. 4/figureitens'
- program descriptor ---
gui env
(# aW ndow. @i ndow
(# go: @val
(# open:
(#
do (100, 100)->position;
(50, 100)->size;
7->pen. si ze
#)
#) ;
event handl er : :
(# onAbout ToC ose:: (# do term nate #) #);
open: :
(#
do (100, 100)->position;
(300, 300)->si ze;
"oval ' ->title;
go. open
#)
#)
do aW ndow. open
#)

This creates a wi ndow with an oval , positioned in (100, 100) and with the

oval drawnusing a7x7 sized pen.

oval.bet

Screendump
(Windows NT)

20

Lidskjalv User Interface Framework — Tutorial

ovalSelect.bet

.. B8

6.2 Interactive Graphics Facilities

Interactive graphics in wi ndow is handled through the definition of event handlers of
the wi ndow t ens attached with the window. The actual event handling of the
window items (realizing that they are clicked, the mouse is entering them, etc) is
handled entirely by Lidskjalv. The refresh of window items are also handled entirely
by Lidskjalv. Please note, that these interactive facilities applies for all subpatterns of
wi ndow t em (i.e. not only for subpatterns of fi gureltem. Figure items are
merely used here for demonstrative purposes.

6.2.1 Selection of Graphics Objects

Selection of a windowltem is realized by specializing the onMbuseDown event
pattern in the appropriate windowltem. E.g.

ORI G N ' ~bet a/ gui env/ v1. 4/ gui env' ;
| NCLUDE ' ~bet a/ gui env/v1.4/figureitens'
- program descriptor ---
gui env
(# sel ect Wndow. @ ndow
(# go: @val
(# open::
(#
do (100, 100)->position;
(50, 100)->si ze;
#)
event handl er: :
(# onMouseDown:: (# do 'Selected...'->puttext #) #)
#);
event handl er: :
(# onAbout ToCl ose:: (# do termnate #) #);
open: :
(#
do (100, 100)->position;
(300, 300)->si ze;
"oval Select' ->title;
go. open
#)
#)
do sel ect Wndow. open
#)

Graphics

21

B ovalSelect =]

6.2.2 Dragging of Graphics Objects

Dragging is specified using the dr ag pattern of wi ndowl t em Dragging of eg. a
oval can specified asfollows:

ORI G N ' ~bet a/ gui env/v1. 4/ gui env';
I NCLUDE ' ~bet a/ gui env/vl1. 4/figureitens’
--- program descriptor ---
gui env
(# dragW ndow. @ ndow
(# go: @va
(# open:
(#
do (100, 100)->position;
(50, 100)->size;
7->pen. si ze
#);
event handl er: :
(# onMouseDown:: (# do drag #) #)
#);
event handl er: :
(# onAbout Tod ose:: (# do terminate #) #);
open: :
(#
do (100, 100)->position;
(300, 300)->si ze;
"oval Drag' ->title;
go. open
#)
#)
do dragW ndow. open
#)

6.3 Canvas

Canvasses are used for grouping other window items together to form a single unit
such that e.g. moving the canvas inside the window moves al the window items
attached to the canvas. Canvas isasubpatternto wi ndowl t em

screendumps
(Windows 95)

ovalDrag.bet

22

Lidskjalv User Interface Framework — Tutorial

ovalScroll.bet

6.4 Scroller

A scroller is a special kind of windowltem that has scrollbars associated with it. The
purpose of the scroller is to act as a viewport, restricting the visibility of the window
items attached to the scroller. The purpose of the scrollbarsis to enable this viewport
to be scrolled to another position:

before scroll after scroll

Yoo |30¢

scroller\ \Wlndowltem canvas or window

Scrolling is realized through three patterns: abst ract Scrol | er, t ext Edi t or
and scrol | er. AbstractScroller implements the general scrolling facilities with
scrollbars etc. It definesavirtual pattern, cont ent sType, which defines the type of
wi ndow t em to be controlled by the abstract Scroller. The two other
scrollers then further bind thisvirtual tot ext and canvas, respectively.

The following is the previous example with an associated scroller:

ORI G N ' ~bet a/ gui env/ v1. 4/ gui env’
| NCLUDE ' ~bet a/ gui env/vl. 4/figureitens';
| NCLUDE ' ~bet a/ gui env/v1. 4/fields
--- program descriptor ---
gui env
(# scrol |l Wndow. @i ndow
(# scroll: @croller
(# contentsType:
(# go: @val
(# open:
(#
do (100, 100)->position
(350, 450) - >si ze;
7->pen. si ze
#)
event handl er:
(# onMouseDown:: (# do drag #) #)
#);
open:: (# do go.open #)
#);
open: :
(# do true->bi ndBottom >bi ndRi ght #)
#)
event handl er:
(# onAbout ToCl ose:: (# do terminate #) #);
open: :
(#
do (100, 100)->position
(300, 300)->si ze;
"oval Scroll'->title;
scrol | . open;
si ze->scroll . size
#)
#)

Graphics

23

do scrol | Wndow. open
#)

= ovalScroll

Please note the use of
true -> bindBottom -> bi ndRi ght

in the definition of scrol | . This informs Lidskjalv that scr ol | should extend
towards the bottom and right if its enclosing window is resized. This facility is
availablefor all Wi ndowl t ens.

/ Controls and Dialog Boxes

One of the most efficient ways to obtain structured information from the user is by
presenting him with a dialog box in which he may enter text, select items from a list,
check choices, etc. Lidskjalv enables the construction of such dialog boxes through
the w ndow pattern. Dialogs may be either modal or modeless. A modal dialog box
will take over the entire control of the underlying window system, restricting the user
only to interact with the dialog box until it is removed from the screen. A modeless
dialog box, on the other hand, allows the user to choose also to interact with the other
windows and menus on the screen while the dialog box is on the screen. Dialogs are
constructed by awi ndow, and either shown using either showbdal or show.

Diaog boxes consists of the dialog box window and a number of control itemsin that
window. Control items are either static text, editable text, buttons, check boxes, radio
boxes or icons, along possibly with other graphics (e.g. figure items). The control
items are used to specify the various options, that the user has to choose among in
order to fill-in the requested information.

LaserlWriter Page Setup 70 |m|
Paper: @ US Letter) A4 Letter _ " '
CIUS Legal () BS Letter ‘| _Tabloid hdl
Reduce or [l Printer Effects:
Enlarge: [Font Substitution?
Orientation [] Text Smoothing?
(<] Graphics Smoothing?
(< Faster Bitmap Printing?

screendump
(Windows NT)

screendump
(Macintosh)

24

Lidskjalv User Interface Framework — Tutorial

7.1 Control Items

Control items are the bread and butter of dialogs. Control items exists in seven
different forms (al subpatterns of wi ndowl t em), namely text labels, text fields
(editable), buttons, check boxes, radio boxes, icons and pictures. These control items

are defined as subpatterns of the cont r ol pattern.
The hierarchy of cont r ol itemsare:

windowltem

™~

control

editText button

scrollbar

pushButton staticText iconButton optionButton toggleButton

checkBox radioButton

Control pattern name| I mage (Macintosh)

Description

scrol | bar Used for various scrolling
purposes.

staticText Used to specify permanent text in
the dialog (usually explanatory
text).

edi t Text Used to allow the user to enter

some text.

pushBut t on

A button is used to specify some
actions to be taken.

opti onButton

Tabloid -

Used to specify a button with
associated pop-up menu.

checkBox

(<] Font Substitution?
[]Text Smoothing?

A check box is usualy used
together with other check boxes
to present the user with a group
of non-exclusive options.

r adi oButton

fm US Letter
(_» Us Legal

A radio box is usualy used
together with other radio boxes to
present the user with a group of
exclusive options.

i conBut t on T@

A icon is used to show a minor
picturein the dialog.

The cont rol pattern is a subpattern of wi ndowl t emand inherits as such al its
facilities (size, position, event handling, etc.). The actions to be associated with a
control must be specified in further bindings of e.g. the virtual event pattern
onMouseDown. Control defines some other facilities that can be ignored for most

Lidskjalv applications.

Controls and Dialogs

25

Scrol | bar defines various attributes for controlling the scrollbar
(scrol I Amount , maxVal ue and val ue). Besides the event handl er, a new
event patterns are defined: onThunbMoved. OnThunbMoved isinvoked when the
user moved the scroll thumb. The orientation (vertical or horizontal) is controlled
through the vertical attribute, such that true->vertical specifies the
scrollbar to be vertical (horizontal for f al se). Finaly, the length of the scrollbar is
controlled by thel engt h attribute.

But t on is also a subpattern of cont r ol and is the superpattern for the rest of the
controls. The attributes of button are controlling the label (text and text style),
associated with al buttons.

PushBut t on and st at i cText are ssmple subpatterns of but t on. | conBut t on
is another simple subpattern of button, only defining one new attribute
showLabel for controlling whether the label should be shown or not.

Edi t Text is implementing a one-line text editor to be used for simple text
specifications (file names etc.) The text style of the text is controlled by the st yl e
attribute, and the contents of the edit Text can be manipulated through the
contents atribute. That is, if T isatext, and ET isaedit Text, then T[]- >
ET. cont ent s sets the text shown in the edi t Text control to the contents of T
(i.e. setting the initial contents), and ET. cont ent s- >T[] copies the contents of the
edi t Text control into T (i.e. reading the user input).

Opt i onBut t on defines a field which will pop-up a menu in response to the user
pressing the mouse button on top of the field. The attributes of opti onButt on
controls the associated menu and the currently selected menu item (shown inside the
field).

Toggl eBut t on isthe common superpattern for the Radi oBut t on and CheckBox
controls. Toggl eBut t on controls a binary state. A series of Radi oBut t ons are
used for specifying a set of exclusive options, and one or more checkBoxes are used
for specifying a set of non-exclusive options.

Finally, one of the buttons in the window can be specified to function as a default
button (i.e. be activated by pressing carriage return) by entering a reference to it to
def aul t But t on.

The following example illustrates the use of controls:

ORI G N ' ~bet a/ gui env/ v1. 4/ gui env';
I NCLUDE ' ~bet a/ gui env/vl. 4/ control s’
- program descriptor ---

gui env
(# aut hor Nane: @ ext;

i sSReport: @ool ean;

t heDi al og: @\ ndow

(# cTitleLabel: @taticText

(# open::
(#
do (10, 10)->position; (95, 25)->size;
"Title: '->|abel
#) #);
cTitle: @ditText
(# open::
(# do (115, 10)->position; (150, 25)->size #)
#);
cAut hor Label : @taticText
(# open::
(#
do (10, 40)->position; (95, 25)->size;
"Aut hor: ' ->l abel
#) #);

cAut hor: @dit Text

dialog.bet

26 Lidskjalv User Interface Framework — Tutorial

(# open::
(# do (115, 40)->position; (150, 25)->size #)
#)
cReport: @heckBox
(# open::
(#
do (10, 70)->position; (100, 25)->size;
"Report' - >l abel
#)
event handl er: :
(# onMouseUp:: (# do not state->state #) #);
#) |
cCancel : @ushButton
(# open::
(#
do (115, 70)->position; (80, 25)->size;
' Cancel ' - >| abel
#);
event handl er: :
(# onMouseUp:: (# do theDi al og.cl ose #) #)
#)
cCk: @ushButton
(# open::
(#
do (115+150-30, 70)->position; (30,25)->size;
"K' - >| abel
#)
event handl er: :
(# onMouseUp: :
(#
do (* store val ues, then *)
t heDi al og. cl ose
#) #)
#);
event handl er: :
(# onAbout ToCl ose:: (# do termnate #) #);
open::
(#
do (40, 40)->position; (275, 100)->si ze;
"dialog' ->title;
cCk. open; cCancel . open;
cTitl eLabel . open; cTitle. open;
cAut hor Label . open; cAut hor. open;
cReport. open;
cCK[]->def aul t Button
#)
#)
do thebDi al og. open;
t heDi al og. showivbdal
#)

screendump

(Windows NT)

Title:

ALthar:

L] Repart Cancel

This defines a dialog with two buttons, two editable text fields, two static text fields,
and one check box (all enabled).

8 Scroll Lists

Scroll lists are used to display an interface object in which the user is able to select
elements from alist of elements (e.g. file names).

A scrol | Li st maintainsthe list of elements and the user is allowed to scroll in the
list or to select elementsin thelist by clicking onthem. Scrol | Li st has operations
for inserting, deleting and scanning the elements in the list. Furthermore,
scrol I Li st maintainsalist of the currently selected elementsin the list.

Text Scrol | Li st is a subpattern of scrol | Li st for maintaining a list of text
strings. Text Scr ol | Li st defines additional operations for manipulating the text
strings and for manipulation the text style of the elementsin the list.

The following isan example of at ext Scr ol | Li st for selectingin alist of items:

ORI A N ' ~bet a/ gui env/ v1l. 4/ gui env' ;
I NCLUDE ' ~bet a/ gui env/vl1. 4/ scrolllists'
--- program descriptor ---
gui env
(# scrollLi st Wndow. @\ ndow
(# scrollList: @extScrollList
(# open::
(# tnpText: @ ext;
W ndowSi ze: @oi nt
do (5, 20)->position;
20- >append,;
(for inx: 20 repeat
"I'tem '->tnpText,;
i nx->tmpText . putint;
(inx,tnmpText[])->set Text
for);
thi s(scrollLi st Wndow). si ze->w ndowSi ze;
posi tion->w ndowSi ze. subtract;
(0, 15) - >wi ndowSi ze. subtract;
wi ndowSi ze- >si ze;
t r ue- >bi ndRi ght - >bi ndBot t om
#);
event handl er: :
(# onSel ect::
(# do item >gettext->putline #)
#)
#);
event handl er: :
(# onAbout Tod ose:: (# do term nate #) #);
open: :
(#
do 'scrollingList'->title;
scrol | Li st. open
#)
#)
do scrollLi st Wndow. open
#)

27

scrollinglist.bet

28

Lidskjalv User Interface Framework — Tutorial

screendumps
(Windows 95)

textField.bet

B zcrollingList =] B3 "4 gerollinglist
P

ltern:
lterm:
lterm:
lterm:
lterm:

P R R R |

lterm: 11
ltem: 12
ltern: 13 x

O Window Filelds

Lidskjalv offersfacilities for defining more advanced fields than the above mentioned
controls. These facilities include window items as two different text editing fields
(text Fi el d andt ext Edi t or). These patterns are subpatterns of wi ndow t em
and inherits as such all itsfacilities.

Text Fi el d andt ext Edi t or are both advanced text editors offering the usual text
editing facilities, such as fonts, cut/copy/paste, selections, etc. along with simple text
manipulation functions. All event handling is automatically taken care of by the pat-
terns. Text Edi t or isonly specia by offering scrolling facilities.

Text Fi el d handles text selection through the sel ecti on attribute. Sel ec-
tion.start contains the character position of the first character in the selection
and sel ecti on. end contains the character position of the last character in the
selection. If sel ection.start = sel ecti on. end, then nothing is selected,
and selection.start identifies the position of the text cursor.
Sel ecti on. cont ent s returns the text in the selection. Scr ol | | nt oVi ewwill
make sure that the current selection isvisible.

The text editing facilities are cut, copy and past e, that implements the usual
cut/copy/paste functionality. | nsert takes a text as parameter, and inserts it
immediately before the current selection, and del et e deletes the text of the current
selection.

To enable scanning the entire text in the text field, the scanText operation is
defined. ScanText isacontrol pattern that takes two positions as parameters, and
iterates over the characters in the text editor between the two positions. During the
scan, ch will contain the current character in the text.

The text contents of the text field is accessed through the cont ent s attribute that
can be used for getting a copy of the current text in the text field.

The simplest possible 'Hello World' t ext Fi el d can be specified as follows:

ORI G N ' ~bet a/ gui env/ v1. 4/ gui env' ;
| NCLUDE ' ~bet a/ gui env/v1l. 4/fields’
- program descriptor ---
gui env
(# text Wndow. @\ ndow
(# txtField: @QextField
(# open::

Index

29

(# t: @&tyl edText;
do (0, 0)->position;
(300, 100)->si ze;
"Hello World!'->t;
t[]->contents
#)
#);
event handl er: :
(# onAbout Tod ose:: (# do terminate #) #);
open: :
(#
do (20, 100)->position;
(300, 100)->si ze;
"textField ->title;
t xt Fi el d. open
#)
#);
do text Wndow. open
#)

This will create at ext Fi el d at position (20, 100) and with size (300, 100). The
initial contents of thetextField is' Hell o Worl d!'. All usua text editing
facilitieswill be available in the editor:

screendump
(Windows NT)

textField

Hello Yvakld!

By replacing t ext Fi el d by t ext Edi t or and subtracting (15,15) from the size of
the my Text Fi el d will result in awindow with at text editor with scrolling facilities.
The reason for subtracting (15, 15) from the size of the editor field is to make room
for the scrollbars at the right and bottom of the window.
ORI G N ' ~bet a/ gui env/ v1. 4/ gui env'; textEditor.bet
I NCLUDE ' ~bet a/ gui env/vl. 4/fields
--- program descriptor ---
gui env
(# text Wndow. @ ndow
(# txtEdit: @extEditor
(# open:
(# t: @tyl edText;
do (-1, -1)->position;
(287, 87)->size;
"Hello World!'->t;
t[]->contents.contents;
true -> bindRi ght;
true -> bindBottom
#)
#);
event handl er: :
(# onAbout Tod ose:: (# do terminate #) #);
open: :
(#
do (20, 100)->position;
(285, 85)->size;
"textEditor' ->title;
t xt Edi t. open

30

Lidskjalv User Interface Framework — Tutorial

screendump
(Windows NT)

fileDialog.bet

screendump
(Windows NT)

#)
#);
do text Wndow. open
#)

= P it ||

Hello Warld! r

u +

Note, that the only visible difference, compared with the previous textField example
isthat atext editor automatically has both vertical and horizontal scroll bars.

10 Standard Dialogs

Lidskjalv contains a number of standard dialogs, including file selection dialogs. The
attribute FileSelectionDialog will activate the standard file dialog and return
the path name of the selected file:

ORI G N ' ~bet a/ gui env/ v1. 4/ gui env' ;

I NCLUDE ' ~bet a/ gui env/ v1. 4/ st ddi al ogs' ;

--- program descriptor ---

gui env

(# nane: ~text;

do fileSelectionDialog(# do "fileDi alog' ->Title[] #)->nane[];
(i f nanme[] =NONE t hen

'Sel ected Cancel' -> putline;
el se

name[] -> putline;
i)
term nat e;

#)

= fileDialog

File Hame: Directones:

dialog.astL [=r e\ +

dialog_bet = users
dialog.exe B ilk

filedialog. astL 1)
fileDialog. bet = TutonalDemos
fileDialog.exe] CWS
filemenu.astl £ nti
hileMenu_bet

e:hwuzershjlkitutorialdemos

Cancel

&

|£I| Metwork._. I

List Files of Type: Drives:
Al Files 2] |[= e beta

