The Mjglner BETA System

Process Library
Reference Manual

Mjglner Informatics Report
MIA 94-29(1.0)
September 1995

Copyright © 1990-95 Mjglner Informatics ApS.
All rights reserved.
No part of this document may be copied or distributed
without the prior written permission of Mjglner Informatics







Contents

1 INEFOTUCTION ... bbbttt e b e e 1
2 Manipulaling PrOCESSES........cccuveiieiieiieeieeieesieesteesteesreeseeseeeeeeseenseenseesseesseeans 2
21 Child PrOCESSES .....ccoiuiiiiiiisie sttt sttt sttt st nne s 2

2.2  ThisProcess and itS ENVIFONMENL..........ccoiieriineenienieie e 3

3 Communicating With Other PrOCESSES ........cccvevieieeriesiereesee e 4
3.1 Communication CONCEPLS.......eciveeireerieerieeseesieeseeseesseeseesreesreesreesreesseens 4

3.2  TheFragment COMMUNICALION .......cceereereeiieiieeieeieeieeseeeseeeseeeseeeneeens 5

3.21 The Two Families of SOCKELS..........cccveviiririiiieninieniesee e 5

3.2.2 The Patterns of COmMMUNICALION..........ccevererieriiereeie e 6

3.2.3 Handling Time with CommuniCation.............cccevvueviureieeereesnnnn 8

3.3  TheFragment SySteMCOMIM .......cccuviieeiieeie e e e e e neeens 9

3.3.1 The Patterns of SystemCOMM.........cccceeverieereesirse e e 10

3.3.2 Error Handling in SystemComm...........cccovevvieereesiesieesee s 12

34 Timeout ManaQEMENL ........cceccueeieeeieeieeieeieeeeeee e eeeeeeeeeeeeeeeeee s 13

A AQUIESSES..... oottt bttt b e bbbttt b bttt 15
4.1  Specification of Connection ReqUIremMents..........ccocveveerceeeiereseeseenenens 15

4.2  The ADSIraCt LEVE........cccoiiiieeeeee e 16

4.3  TheConCrete LEVEL ...t 16

5 Managing a Pool of CONNECLIONS .........c.ccccuveiueeiierie e esieesee s 18
6 ManNaging CO-TOULINES.........ccueeiueerieerreeseesseeseeseeeseesaeesseenseesseesseesseessesssesssessnnes 20
T TheDEeMO FIlES ... e 22
T 1 BOHVALE oot 22

7.2  pipeling, consumer and ProdUCEY ..........ccoeereereeseeseeseeeeeeee e seee e 22

7.3 EXChANGE......oo e 22

7.4  firstProgram and OtherProgram...........cccceeceeceeieeseeseesieesee s see s 23

7.5  aClient and theSEIVES ..o 23

7.6  aBinClient and theBiNSEIVES .......ccocviriiriniee e s 23

7.7  aRepClient and theREPSEIVEY .........cccvevveieeieereeree e 23

7.8  chatClient and ChalSEIVEr ..o 23

7.9  repChatClient and repChalSErVEr ........cccoeeevceeieceereeree e 24

7.10  idSChedUIErDEMO......cuiiiiiirieceeee e e 24

8 Known Bugs and INCONVENIENCES ..........eeueeeeeeiieeieeieesieesseesseeseeesseesseesseessessnnas 25
9 INtErface DESCIIPLION ....cveeeeecieeseeetee sttt e e eneas 27
0.1 COMMAAIESS......coititeeieeieeteeee sttt sb e nne e 27

9.2 COMIMENTON ...t 31

0.3 COMMUNICALION. .....ciueitiriieii ettt st b et 32

9.4 CONNECLIONPOOL.......cuiiiiiiiiiirie it 40

95  @rorCallDack..........cocoiiiii 42

0.6 IASCNEAUIEN.......coiiieeee e 44

0.7 OSINMLEITACE ....ueieeeie et 45

9.8 PrOCESSIMANATES ......eeieiireeeeriteeeeaieee e st eessre e e s sbee e e sssre e e s asseeesssreeeennrnees 45

9.9 SYSIEMCOMM...c ittt r e nr e enns 438
REFEIENCES......ee et b et sa e e e 61
0 5 PP PSPPSR 63






1 Introduction

This document describes the version 1.4 of the process library in the Mjginer BETA
System. This library implements support for manipulating operating system processes
and for communicating with them.

The fragments dealing with the manipulation of processes are pr ocessnmanager and
osi nterface. Processmanager supports starting a child process, stopping it, and
similar things. Gsi nterface supports getting information about the run-time envi-
ronment of the processitself, such as the name of the host on which it runs.

The fragments dealing with communication between processes are conmuni cat i on
and syst enConm They are very much alike the interface, but they are constructed to
run in different environments:

Syst emConmdemands that the program uses the BETA simulated concurrency, i.e. the
slot pr ogr am descri pt or must be a specialization of syst enenv. In return, one does
not have to explicitly transfer the thread of control by suspending when a syst em

Commoperation is about to block - the syst emenv scheduler and syst emConmcooper-
ate to make it look like implicit scheduling. This ensures that co-routines which can
proceed with their work will never be prevented from this because of a blocking
communication operation in some other co-routine.

Cormuni cat i on Will work independently of syst emenv, but here any communication
which cannot be carried out at once will block the program by default. There are no-
tification hooks, which make it possible for the programmer to cancel operations
which are about to block, and other hooks (i dl e hooks) which make it possible to
keep the program alive while alengthy operation is proceeding.

Cormmuni cat i on is simpler to use for basic tasks, but for more complicated tasks,
syst emConmprovides a considerably stronger and more flexible base.

Some aspects of support for the communication between processes have been sepa-
rated into the fragments conmEr r or, conmAddr ess and err or Cal | back. ConmrEr r or
simply defines a number of constants. Cormaddr ess defines a hierarchy of patterns,
which model addresses (destinations for communications) in a platform independent
way. Error Cal | back defines afew patterns used for error handling in thislibrary.

On top of the support for single communication connections, connect i onPool im-
plements support for holding a set of connections, and providing concurrency-secure
access to these connections by means of platform independent addresses, i.e. in-
stances of patterns in commddr ess. This abstracts away the need to open and close
these connections: if connections to the required destination is available, one of them
will be used, otherwise a new connection will automatically be opened. If the process
hits a maximum limit for the number of open connections, a least recently used (and
currently unused) connection will be closed.

Thelast part of the process library extends the syst enenv framework for concurrency
within one BETA process. | dSchedul er implements support for sub-contracting the
job of the scheduler: Client co-routines can suspend themselves, identifying what they
are waiting for by means of an integer i d; later, a managing co-routine can wake up
clients selectively, using suchi ds.

Pr ocessnanag
er and
OSinterface

Communication
and
SystemComm

Connections

Extending
syst enenv



2 Manipulating Processes

First, abit of terminology. A binary fileisadiskfile, from which the operating system
is able to create a process, which is then called an instance of the binary. A processis
a dynamic entity within a computer which has an internal state and may interact with
other processes. So there may be more than one process which is instantiated from
any given binary file, and these processes are by no means the same thing. Here, each
BETA object which is an instance of the pattern pr ocess, models one process. If you
want to manipulate more than one instantiation of a given binary, use more than one
process object.

2.1 Child Processes

The fragment pr ocessmanager is concerned with child processes. An instance of the
process pattern in this fragment is attached to a binary file by initializing it with a
file specification, like

"/ bin/someApplication' -> aProcess.init;

Process In the following, aProcess denotes an instance of the pattern process, which has
been attached to a binary file.

Arguments and One has the option to set up arguments for an instantiation of the binary, using aPr o-

instantiating cess. ar gument . append, once for each argument. Afterwards, the process can be in-
stantiated with aProcess. st art . In the following, this instantiation is referred to as
the child process. When it has been started, it is possible to change itslife cycle and to
adjust to it: aProcess.stop causes the child process to be killed, aPro-
cess. awai t St opped causes this process to sleep until the child process terminates,
and aProcess. sti |l | Runni ng is a predicate which returns true if the child process
has not yet terminated.

The onstart virtual is a hook, into which one can put code to be executed immedi-
ately after the child process has been started, and the onSt op virtual is a hook which
is executed when st op has stopped the process. Please notice that onSt op will NOT
be executed in the (typical) case when the child process terminates for any other rea-
son, e.g. when it terminates normally.

Inter-process The remaining pattern attributes of process are concerned with inter-process com-

communication munication. The network of inter-process communication must be defined before the
child processes are started. Connect ToPr ocess and connect | nPi pe enter areference
to another process object and connect the referred child processes in a pipeline.
redi rect FronFi | e arranges for the child process to take standard input from the
specified file, and redi rect ToFi | e makes it redirect standard output to the given
file.

Finally, r edi r ect Fr onChannel enters the writeEnd of api pe and makes the child
process accept standard input from that pipe, and redi rect ToChannel enters the
readEnd of a pi pe and makes the child process send standard output to it. The en-
tered parameter is declared to be a (speciaization of a) stream. The reason for thisis
that a future release may accept a broader range of types of objects entered; it should,
for instance, be possible to use sockets.



Manipulating Processes

2.2 This Process and its Environment

The fragment osi nt er f ace contains the pattern osi nt er f ace, which supports access
to the run-time environment of this process. To use it, create an instance and initialize
itwithinit.

Then host Machi ne will return a text characterizing the combination of the type of
machine and operating system on which this process runs, such as “sun4s’ on a Sun
SparcStation Classic running SunOS 5.3 (Solaris). Thisis the same as the name of the
architecture dependent directories in the BETA directory hierarchy. Host Narre returns
the name of this host; get Host Addr returns the internet address of this host, in afor-
mat like “130.225.16.15”. Finally, t hi sProcess is an instance of process referring
to this process. It is kept around for backwards compatibility but otherwise obsolete:
Scanning the command line arguments to this process is now supported in bet aenv,
and the other operations are not relevant on this process, as they must be executed be-
fore the processis actually instantiated.



Pipes

Sockets

3 Communicating with
other Processes

Two quite similar libraries are available for exploiting inter-process communication.
This section presents the basic concepts, which apply to both libraries. Two subse-
guent sections describe them in greater detail. At that level, differences exist.

3.1 Communication Concepts

Inter-process communication is usualy described as “message based” or as
“connection based”. In both cases, any primitive communication act has a number of
participants, playing roles as the receiving or the transmitting end. In this context,
there will always be exactly one transmitting party and one receiving party. There is
support for specifying a group address, but there is not currently any ready-made im-
plementation of agroup communication protocol.

For a message based communication, each message is sent to an explicitly specified
receiver. For a connection based communication, at first a connection between two
parties is established. From that point, messages can be transmitted via this connec-
tion without any explicit reference to their destination. Here, the model of communi-
cation is connection oriented.

For operating systems that support a notion of standard channels for receiving input
and delivering output and possibly other things, it is possible for the communicating
processes to be unaware (i.e. independent) of the fact that standard input comes from
another process or that standard output goes to another process: It all looks the same
as if the data came from a keyboard and went to a display or whatever. On the other
hand, this level of abstraction implies that the connection lifetime will be the lifetime
of the process and that there cannot be more connections than standard channels. Like
standard output and standard input, each connection only supports sending datain one
direction. Pipes establish this kind of connections. Use the pattern pi pe.

To implement more elaborate patterns of communication, one must be able to create
and destroy connections during the execution of a process, and to explicitly choose
with whom to communicate. Sockets are used for this, and with sockets, every con-
nection is two-way. Sockets come in two main variants. passive and active. A passive
socket is used to define a name, which may be used by active sockets when establish-
ing an actual connection. Theinterplay islike:



Communicating with other Processes

Passive: "Here | aml My nane is Bob"

Act ive-1: "I want to speak with Bob"
Passi ve(Bob): "OK, here's a connection”

Active-2: "I want to speak with Bob"
Passi ve(Bob): "OK, here's a connection"

Aéiive-S: "I want to speak with G ndy"
(Error: Here's no such thing as "C ndy")

|.e. active sockets connect by name, and more than one connection may be established
by means of one passive socket. The “name” is actually a pair whose first part is an
identification of the host (its IP address) and whose second part is an integer (the port
number). This pair is unique for each passive socket, at least from the time where the
operating system accepts registration of the name until the passive socket is closed.
After that, the pair may be reused, that is: the port number may be reused on the given
host, if the operating system wishes to do so.

In thislibrary, sockets are also divided along another axis, namely into stream sockets
and binary sockets. Stream sockets are speciaizations of the basic st r eam pattern,
and support textual communication. Binary sockets support transfers of blocks of data
with awell-known size.

The patterns related to these concepts are: activeStreanSocket, activeBi na-
rySocket, passi veSt r eanSocket, passi veBi narySocket and socket Gener at or.
Socket Gener at or S make it possible to establish more than one connection to one
passive socket. Passi veSt reanSocket and passi veBi narySocket are abit simpler
to use, but support only one connection per BETA object.

3.2 The Fragment Communication

3.2.1 The Two Families of Sockets

Basically, comuni cat i on supports two families of sockets: stream sockets and bi-
nary sockets.

A stream socket is suitable for transferring data which is readable for human beings,
such as the data transferred in a UNIX “talk” session, or the more formal communica-
tion between a mail program and an SMTP mail server. A streanBSocket iS a
st ream SO you may “put”, “get” etc. However, do not rely on this kind of socket to
transfer data which contains zero-valued bytes, as arbitrary binary data may very well
do.

A binary socket is guaranteed to transfer any given block of arbitrary bytes unmodi-
fied, but you must always specify the length of the data block, both for sending and
receiving.

Both stream sockets and binary sockets come in active and passive versions, and then
there are socket generators which are used to generate (stream or binary) sockets
whenever somebody tries to connect. These are the main patterns of the fragment, but
there are a couple of others as well.

In general, you must have away of choosing either a binary or a stream variant of a
connection to be established, because it is not possible to change a st r eanSocket

Into a bi nar ySocket on the same connection, or vice versa. And each socket object
models one connection, so it is not possible to use the same socket object for several
different connections - use a fresh object each time instead. For socket Gener at or , Of
course, this one-shot-restriction does not apply. See below.

Stream socket

Binary socket



Process Library

Pipe

StreamSocket
and
bi nar ySocket

In the following, all the top level patternsin the fragment are described in the order of
appearance. After that there is a discussion of how to handle blocking conditions,
which appliesto al kinds of socket objects.

3.2.2 The Patterns of Communication

Vi t For | Ois used to make this process slegp until some socket “known by communi -

cati on” has data ready for reading, or aformerly full output buffer is no longer full,
such that some socket can now be written to. Any OS level socket created by means
of comuni cati on patterns is known, but if you create other sockets, e.g. by using
external patterns or by linking with a C-library which creates sockets, they will be un-
known. In this case, wai t For | O may block the process, even though some communi-
cation could have taken place.

Assi gnGuar d is used to detect wrong usage of other patterns, and pr opagat eExcep-
tion isusedin error handling. They have no conceptual significance.

A pi pe must be initialized with i ni t before usage. Then giving a reference to its
readEnd (witeEnd) as enter parameter to redirect FronChannel
(r edi r ect ToChannel ) of anot yet started pr ocess object will attach this pi pe to an-
other (not yet created) process. If only one end of the pi pe is attached to another pro-
cess, the current process may read from (write to) the other end of the pi pe, when the
other process has been created.

St reanSocket and bi narySocket are semi-abstract patterns: It is of no use to create
instances of them, but some operations may exit such instances. This is because these
patterns implement all of the functionality used during a connection, but they have no
means for establishing a connection. To establish a connection, one must choose be-
tween playing the passive role or the active role, as described in the preceding section.
This concerns the patterns act i veSt r eanSocket etc. described below. In the follow-
ing paragraph the st r eanSocket operations are described in order of declaration.

A streanSocket connection may be closed by cl ose. After this point, the st ream
Socket cannot be used for communication, so you can discard it. Fl ush ensures that
al datain internal buffers of the st r eanSocket actually gets sent. Put , get and peek
work as with other streams. Eos returns true if no data can be read right now from the
connection. Thisisradically different from the semantics of (say) t ext , because with
astreantocket , eos may be true, and still, at some later point when more data has
arrived, become “spontaneously” false. Put Text , get Li ne and get At omwork like in
other st r eans.

NonBl ocki ngScope is used to handle blocking conditions, and is discussed below.

Error handling in st r eanSocket only discovers that something went wrong, and then
terminates the application. To be able to intercept, retry etc. when something goes
wrong in ast r eanSocket , Use syst emConminstead of communi cat i on.

The operations on a bi nar ySocket are quite different. These operations are primarily
oriented towards transmitting blocks of various kinds of data. In order of declaration:

A bi narySocket may be cl osed, and is of no use after that. The wri t eData and
readDat a operations are used for transferring a block of data given as its starting
memory address and the length of the block in bytes. This constitutes the lowest level
interface, and as always when using raw addresses: If it is the address of a BETA ob-
ject, it must be ensured that no garbage collection (GC) can happen from the point at
which the address was taken until the point where it is used. Thisis abit tricky to en-
sure because GC happens implicitly. However, only an act of allocation can trigger a
GC, so you will be safe as long as no objects are created during the critical period.
This means that every object involved in the transfer must be instantiated, and only
after that can the address of the BETA object be taken and wri t eDat a Or r eadDat a
executed. Wit eDat a and r eadDat a are already instances in every instance of bi na-

rySocket .

endOf Dat a returnstrueif no dataisimmediately available for reading.



Communicating with other Processes

The operations get Bl ock and put Bl ock provide support for a very simple, binary  getBlock and
data transfer protocol. It supports transfers of blocks of arbitrary length, because the putBlock
block length is transmitted along with the block itself for the receiver to read. In this

protocol, all dataistransferred in blocks with the following layout:

| en header dat a

Thel en field isafour byte integer value, given in big-endian byte order format. The
header field isalso afour byte big-endian integer, and it identifies which kind of data
Isinthe dat a field, what purpose the transfer has, or whatever. The dat a field length
IS4*1 en bytes long. The sender and the recipient must agree on the interpretation of
the header and dat a fields, which isleft unspecified by thislevel of the protocol.

Operations get Bl ockLen and get Bl ockRest are supplied to make it possible for the
receiver to read the length of the block to be received, then alocate space for it, and
then to receive the block into this space. These two operations will only work mean-
ingfully when used together and in this order.

For al of the operations get Bl ock, put Bl ock, and get Bl ockRest , raw memory ad-
dresses are involved, so the same warnings aswith wr i t eDat a and r eadDat a apply.

Rising to a more civilized level, the operations put Rep and get Rep are used to send  Extended-
and receive instances of the pattern Ext endedRepst ream Thisis a generic container ~ Repstream
for arbitrary blocks of data, in particular it is possible to put texts and integers into it

and read them out again. When receiving data into an Ext endedRepst r eamwith ge-

t Rep, the Ext endedRepst r eam will automatically be extended in case the received

amount of data exceeds its current capacity.

About nonBI ocki ngScope, see below.

Error handling in bi narySocket comes in two levels. At the socket level, you may
extend the ot her Error virtual. This virtual will be executed in response to any error
detected during the execution of an operation on the socket, and it is possible to inter-
cept the error by means of al eave imperative in the extending of ot her Err or . Please
note that it is not safe to leave from a nonBl ocki ngScope with | eave. For this, use
| eaveNBScope. AS ot her Error IS an exception, it will terminate the application
unlessitisleaved or itscont i nue is assigned the value true.

At the operation level, you may extend err or in any operation to take care of errors
occurring during the execution of that specific operation. This is the normal way to
intercept errors, because it is easy to know which operation went wrong, and this
normally influences what is relevant recovery. If error isextended to bel eaved, the
socket level ot her Error will not be invoked. One may think of this as a matter of
precedence: The operation level error handling has higher priority than the socket
level error handling. By default, every communication error terminates the applica-
tion. By extending, this default may be overridden on each of the two levels.

ActiveSt reanSocket must have assigned valuestoitshost and port. Thehost must  ActiveStream-
be given in a format like “quercus.daimi.aau.dk” or “130.225.16.15". Depending on  Socket

the network topologi and the whereabouts of this process, some prefixes of the first

format may also suffice, notably aformat like “ quercus’. The port must be an integer.

By convention, port numbers below 5000 are reserved for system administration pur-

poses and for special, well-known services like e-mail and ftp. On the other hand, do

not expect to be able to use more than a 16-bit unsigned value.

Having initialized host and port, the acti veSt reanSocket may connect to some
existing passive socket, which has been initialized with that port on that host. When
connected, it uses the operations of its superpattern st r eanSocket to communicate,
as already described. Act i veBi nar ySocket isused analogoudly.

For passi veSt reantocket, only port must be assigned. Then bi nd must be exe- PassiveStream-
cuted to establish (<this host>,port) as a passive socket identifier, to which active Socket
sockets may connect. Finally, a connection can be accepted by executing awai t Con-

nection. Again, passi veBi nar ySocket works analogously. Please note that a pas-



Process Library

SocketGenerator

Idle

NonBlock-
ingScope

sive. .. Socket can only be used for establishing one connection. If you need to es-
tablish more than one connection on some (host,port), use asocket Gener at or .

The last pattern supplied in conmuni cati on IS socket Gener at or. This is a factory
from which instances of st r eanSocket and of bi nar ySocket can be obtained, in re-
sponse to active sockets connecting to the socket Gener at or’Sport .

As with the passive socket patterns, the port must have some value assigned, and
then bi nd must be executed. To obtain a st reanSocket on the next connection re-
guested, execute get StreanConnecti on, and to obtain a bi narySocket , execute
get Bi nar yConnect i on. As usual, when you are done, execute cl ose on the socket -
Cener at or.

3.2.3 Handling Time with Communication

Often when different processes communicate, it is not possible to predict when data
will be available for reading. When writing, a buffer full condition may arise in the
kernel of the operating system. Also, accepting a connection from an active socket
may happen anytime or never. This means that in most cases, the naive usage of the
functionality described in the previous section leads to blocking conditions: The ap-
plication sits waiting for something to happen, and it cannot do any sensible work in
the meantime.

To remedy this situation, the operations which do not depend on raw memory ad-
dresses have an i dl e virtual, which may be extended to keep the application alive
during (possibly) lenghty operations. Thei di e may be executed one or more times if
the operation cannot finish right away. This, however, is not guaranteed to happen so
do not rely on i di e being executed even once. Do not execute operations on the en-
closing socket object within the extending of ani di e; this might compromise its in-
ternal consistency. Do not stop the operation from within a extending of i dl e - the
operation is unfinished; you may for instance have received half a block, in which
case stopping breaks the protocol. Use nonBl ocki ngScope and Bl ocki ng for this
purpose.

The nonBl ocki ngScope pattern is used for specifying non-blocking communication.
This means that operations which cannot begin right away are discontinued. An ex-
ampleis. We try to read from a socket, but no data at all is available to read. If, on the
other hand, any irreversible actions have been taken in an operation (e.g. reading a
few bytes), it will not be interrupted by the nonBl ocki ngScope mechanism. This
means it Is aways safe to interrupt an operation by enclosing it in a nonBl ock-
i ngScope, and then later to retry it. It also means that the granularity of scheduling by
means of nonBl ocki ngScope iS one communication operation; e.g. if the communi-
cation partner sends half a block and then takes a break, this process can only execute
ani di e in the mean time, it cannot switch forth and back between several such ongo-
ing transfers.

With each | di e pattern comes a Bl ocki ng virtual. Thisis executed if the current op-
eration is blocking, i.e. if nothing can be done right away and nothing has been done
yet. You may extend this virtual to take some action in response to the operation be-
ing blocked. If the operation is enclosed in anonBl ocki ngScope, Bl ocki ng gets exe-
cuted immediately before the operation is interrupted. If you do not want to interrupt
the operation, execute cont i nue in aextending of Bl ocki ng.

As default, the communication will be blocking. But if you enclose an operation in a
specialization of nonBl ocki ngScope, We | eave the nonBl ocki ngScope at the first
blocking condition. Please notice that it is unsafe to execute al eave statement which
leaves a nonBl ocki ngScope. If you need to explicitly leave it, execute | eaveNB-
Scope. The normal usage without and with nonBI ocki ngScope looks like this:



Communicating with other Processes

(* BLOCKI NG STYLE *)

nmySt reanSocket . getLine (* waits until data has arrived *)
-> react Onl nput ; (* always executed *)

react SomeMor e; (* al ways executed *)

doQx her Thi ngs;

(* NONBLOCKI NG STYLE *)
nmy St r eanSocket . nonBl ocki ngScope

(#

do

nySt reantocket . getLine (* if no data: |eave scope at once *)
-> react Onl nput ; (* only executed if data avail able *)
react SonmeMor e; (* only executed if data avail able *)

#)

doQt her Thi ngs;

With some operations such aswr i t eDat a and the like it is not possible to have a vir-
tual Bl ocki ng or | dl e pattern, because they depend on raw memory addresses. How-
ever, enclosing such operations in a nonBl ocki ngScope does indeed cause them to
behave in a non-blocking manner. Having stopped such an operation because it
threatened to block, the raw memory address will have to be recomputed before the
operation isretried (assuming it is the address of a BETA object).

3.3 The Fragment systemComm

The fragment syst enConm provides a functionality similar to that of the fragment
communi cat i on, but it is in several ways more sophisticated. Any program using
syst emConmmust be a syst emenv program, because syst emCormheavily depends on
cooperation with the scheduler present in syst enEnv programs.

Instances of the patterns of this fragment are expected to be executed from BETA co-
routines, and such co-routines must tolerate being suspended (de-scheduled) and later
re-scheduled as part of the execution of possibly lengthy syst enConm operations.
This means that concurrency control by means of semaphores, noni tors, and the
like must be established almost as rigourously as had the co-routines been fully con-
current threads of execution.

In return for this increase in complexity, a usually very important reduction in com-
plexity arises from having implicit instead of explicit scheduling. Especially when
fitting a new piece into an existing framework it is a great asset to be able to smply
“gpawn” the new piece as part of an initalization phase and then have it running along
with the rest of the program without changing any of the other parts not directly inter-
acting with this new piece.

In more concrete terms, it works like this. Whenever an operation is about to block,
the current component will be suspended. It will be resumed some time later, when
the requested 10 is available. In the meantime, some other component which has re-
guested 1O available or is not waiting for 1O will be resumed. In this way the follow-
ing liveness property of the program is ensured: it will never be the case that a sys-

t emConmoperation by blocking delays the continuation of the execution of all of those
components which are either (1) not executing asyst enConmoperation or (2) execut-
Ing a syst emConm operation, but has 1O of the requested kind available. Of course,
any component can still block the whole system by, for example, entering an infinite
loop that does nothing.

Syst enConm like conmuni cati on, supports the two families of sockets: stream
sockets and binary sockets. Everything said in section 3.2.1 still holds in the context
of syst enConm

BETA co-routines



10

Process Library

Pipe

StreamSocket
and binarySocket

SameConnection

getPortable-
Address

The following section describes the top level patterns of syst enConmin order of ap-
pearance. After that, there is a section with a general discussion of error handling,
which applies to al parts of syst enConm Finally another section discusses the treat-
ment of timeout. This again appliesto all of syst enConm

3.3.1 The Patterns of SystemComm
Wi t For ever isaconstant used to specify an infinite timeout.

Assi gnGuar d is used to detect wrong usage of other patterns, and pr opagat eExcep-
tion isused in error handling. None of them are important for the understanding of
the fragment.

A pi pe must be initialized with i ni t before usage. Then giving a reference to its
readEnd (witeEnd) as enter parameter to redirect FronChannel

(redi rect ToChannel ) of anot yet started process object will attach this pi pe to
another (not yet created) process. If only one end of the pi pe is attached to another
process, the current process may read from (write to) the other end of the pi pe, when
the other process has been created.

St reanSocket and bi narySocket are semi-abstract patterns: It is of no use to create
instances of them, but some operations may exit such instances. This is because these
patterns implement all of the functionality used during a connection, but they have no
means for establishing a connection. To establish a connection, one must choose be-
tween playing the passive role or the active role, as described in section 3.1. This
concerns the patterns act i veSt r eanSocket etc. described below. The following de-
scribes the operations of st r eanSocket in order of appearance.

The operation sameConnecti on on a streantocket is used to check whether two
different instances of st r eanSocket are attached to the same operating system level
socket. This may happen if one st r eanSocket is created and a connection is estab-
lished, and then later this connection silently gets destroyed. Now it is possible to es-
tablish a new connection with a new st r eanSocket instance, and to get from the op-
erating system the same connection identifier (file descriptor) as was used by the first
connection. In this case, the first streantocket will happily communicate on the
NEW connection, giving rise to strange errors. It suddenly talks with some total
stranger, as far asthe original purpose of thisst r eanSocket IS concerned.

The get Por t abl eAddr ess operation is used to obtain an instance of aport abl eCom

muni cat i onAddr ess which describes this passive socket or describes the destination
of this active socket, whichever variant is at hand. A streanSocket connection may
be closed by cl ose. After this point, the st r eanSocket cannot be used for communi-
cation, so you can discard (i.e. forget) it. Fl ush ensuresthat all datain internal buffers
of the streanBocket actually gets sent. Put, get and peek work as with other
streans.

Eos returns true if no data can possibly be read from this connection now or ever.
Please note the difference from the semantics of the communi cati on version: This
semantics more closely resembles the semantics of eos on other streans. On the
other hand, it may still happen that the communication partner holds the connection
alive but will not write any more data to it. In this case, this process has no chance of
guessing that no more data will actually arrive, so eos will “spontaneously” change
from false to true when the other process actually closes the connection. This
“spontaneous’ change goes in the opposite direction as the one in the communi cat i on
version.

Put Text, get Li ne and get At omwork like in other st reans. For ceTi meout is used
to provoke the same response within an ongoing operation as would have been the re-
sult of atimeout. This makes it possible to exercise timeout control over an operation
from within a co-routine different from the one executing that operation. Moreover, it
makes it possible to define a timeout limit for the execution of a number of opera-
tions, instead of setting timeouts for each of them. UsageTi meSt anp returns an inte-
ger value which indicates when this socket was last used. The value makes sense only



Communicating with other Processes

11

when compared to usage time stamps of other sockets in this same process. The pur-
pose is to enable a user of many sockets to close the least recently used connection or
similarly when and if the process runs out of system resources (e.g. it experiences a
“to many open files’ error).

NonBl ocki ngScope and | eaveNBScope are used to handle blocking conditions. The
discussion given on this in section 3.2.3 applies without change. But this approach
has been made largely obsolete by the implicit scheduling built into every operation
in syst emConm An exception is the possible usage of an i dl e virtua to keep some
kind of progress feed-back running, thus reassuring the user that the communicating
thread of execution has not gone into oblivion.

The operations on a bi nar ySocket are oriented towards transmitting special generic
containers for blocks of arbitrary bytes. Comparing with conmuni cat i on, operations
depending on raw memory addresses at the interface level are no longer present.

SameConnect i on and get Por t abl eAddr ess work analogously to the operations with
the same namesin st r eanSocket .

Asaways, cl ose asocket when done with it. endOf Dat a istrueif no dataisimmedi-
ately available for reading. Please note that this semantics may be updated to resem-
ble the semantics for eos with streanSocket in a later release. In the context of
implicit scheduling, the current semanticsis of little use.

Put Rep and get Rep are used to send and receive instances of the pattern Ext ende-
dRepst ream and put RepCbj and get RepObj are used to send and receive instances
of the pattern Repet i t i onQbj ect . The protocol for transmitting Repet i t i onCbj ect S
is a little different from the one used with Ext endedRepst r eam objects: there is no
header field, and the length field is the first element in the repetition from the r epe-
titionQbject,i.e repetitionCbjectshavetheirlength“built-in”.

Otherwise, it islike the protocol for Ext endedRepst r eamobjects.

ForceTi meout and usageTi nestanp work as described with the corresponding
st reanSocket operations.

Again, the discussion about handling time and blocking conditions given in section
3.2.3 applies to nonBl ocki ngScope and | eaveNBScope here. And again: it is largely
obsolete, as pointed out above in relation to the same patternsin st r eanSocket .

Acti veStreanBocket must have assigned values to itsport and to at least one of its
host and i net Addr attributes. In case both port and i net Addr are assigned a value,
i net Addr takes precedence.

The host must be given in a format like “quercus.daimi.aau.dk” or “130.225.16.15".
Depending on the network topologi and the whereabouts of this process, some pre-
fixes of the first format may aso suffice, notably a format like “quercus’. The port
must be an integer. By convention, port numbers below 5000 are reserved for system
administration purposes and for special, well-known services like e-mail and ftp. On
the other hand, do not expect to be able to use more than a 16-bit unsigned value. The
value to use when assigning i net Addr must be the four-byte internet address, given
as an integer value. E.g. the absolute address “130.225.16.15” is given as the integer
2195787791.

This done the act i veSt reanSocket may connect t0 some existing passive socket,
which has been initialized with that port on that host (with that internet address).
Having connected, it uses the operations of its superpattern st r eanSocket to com-
municate, as already described. Act i veBi nar ySocket isused analogously.

For passi veStreantocket, only port must be assigned. Then bi nd must be exe-
cuted to establish the given port number as an address, to which active sockets may
connect. Finally, a connection can be accepted by executing awai t Connect i on. Re-
member to enter a timeout value to await Connection. Again, passi veBi na-

PutRep and
GetRep

ActiveStream-
Socket

PassiveStream-
Socket



12

Process Library

rySocket works analogously. Please note that apassi ve. . . Socket can only be used
for establishing one connection. If you need to establish more than one connection on
agiven port, use asocket Gener at or .

A socket Gener at or is afactory from which instances of st r eanSocket and of bi -
nar ySocket can be obtained, in response to active sockets connecting to the socket -
Generat or'Sport.

As with the passive socket patterns, the port must have some value assigned, and
then bi nd must be executed. To obtain a st reanSocket on the next connection re-
guested, execute get StreanConnecti on, and to obtain a bi narySocket , execute
get Bi nar yConnect i on. As usual, when you are done, execute cl ose on the socket -
Cener at or.

get Port abl eAddr ess exits aport abl eCommuni cat i onAddr ess which describes the
network identity of this socket Generator. ForceTi neout and usageTi meSt anp
work as with the other socket variants, and the considerations concerning nonBl ock-
i ngScope and | eaveNBScope are as usual.

3.3.2 Error Handling in SystemComm

Throughout syst enConm the facilities from the fragment er r or Cal | back are used in
the handling of errors.

3.3.2.1 Error Callbacks

An error callback is a virtual pattern which is invoked in response to the occurrence
of some error. Whenever an error condition is detected on a socket, a corresponding

virtual pattern is instantiated and executed. These patterns are specializations of er -
r CB, as declared in er r or Cal | back. Such virtual patterns are hereafter denoted error
callback patterns. To catch and treat an error, extend the corresponding error callback.

If an error callback is not extended and the corresponding error occurs, an exception
is executed and the program terminates. If the error callback is extended, the follow-
ing holds:

* if abort is executed in the extending dopart, the operation (but not the pro-
gram) is aborted. You may execute | eave within a specialization of abort. Do
not | eave an error callback from any other point, as this may put the object or
the process into an unstable state. If you abort but do not | eave, the operation
aborts, but control flow is like when the operation succeeds; in this case, any
exited values are dummy values, reflecting that the operation failed. Do not use
them! Actualy, do not abort without | eave!

* if conti nue is executed in the extending dopart, there will be an attempt to re-
cover and finish the operation after the execution of the error callback termi-
nates. For many types of errors, no general recovery is possible at the operation
level. But you could close a couple of files in response to aresour ceError
and then execute cont i nue. In case of timeout, you can always choose to take
another turn with cont i nue.

* iffatal isexecutedin the extending dopart, an exception will be executed and
the program will be terminated. So the execution of the error callback will not
return. This is aso the default, but with hierarchical error callbacks, you may
need f at al to undo aconti nue at ahigher level.

In case it happens more than once that an operation from the set
{abort ,conti nue,fatal } isexecuted, the one executed as the last takes precedence.

3.3.2.2 Error Propagation

As mentioned, the error callback patterns are present at three different levels: Con-
crete error callbacks, operation level error callbacks, and socket level error callbacks.



Communicating with other Processes

13

The concrete error callbacks provide the greatest level of detail: their names indicate
the kind of error condition detected. This makes it possible to treat different errors
differently.

The operation level error callback is executed whenever an error condition is detected
during the execution of that operation. In a extending of this kind of error callback,
you can adjust the default action for all the concrete error callbacks in this operation.
The single socket level error callback is executed whenever any operation detects any
error condition. In a extending of this error callback, you can adjust the default action
for al concrete and operation level error callbacks.

The means for adjusting the behaviour is in al cases to execute abort (probably
abort (# | eave L #)), continue, Or fatal , and the semantics of these imperatives
are the semantics of the concrete error callbacks described in section 3.3.2.1.

Error callback extendings take precedence like this, in ascending order: concrete
level, operation level, socket level. This means that the higher level specifies a de-
fault, and the more concrete level may override this default by executing cont i nue,
abort,orfatal .

3.3.2.3 Categories of Errors

At the concrete level of error callbacks, errors are categorized according to classes of
operating system level error messages.

The list of names used for concrete error callbacks and a short description of the cor-
responding class of operating system level error is asfollows:

Error cal |l back nane Meani ng

accessError i nsufficient access rights

addressError address (i.e. (host,port)) in use or invalid
badMsgEr r or (EBADMSG, hardly documented in man page)
connBr okenErr or connection has beconme unusabl e

eosError unexpect ed end- of -stream

get Host Error error when getting hostnane

i nternal Error shoul d not happen; please report if it does!
intrError operation interrupted by signa

ref usedError connection refused by peer

resour ceError too few file descriptors/buffers etc.

ti medQut specified timeout period has expired

ti medQut I nTransf er ti med out, and sone data have been
transferred

unknownEr r or OS reports unknown errno (new OS?)
usageError e.g. you nust initialize port before connect
accessError (streanSocket) as above

nospacekrror (streantocket) caused by | ack of resources
readEr r or (streantocket) error during read operation
writeError (streantocket) error during wite operation
ot her Error (streantocket) anything el se

(In the case of st r eanBSocket s, the errors are currently not being categorized so pre-
cisely asthey should. These errors are given in the last five entries of the table and are
marked with “(streamsocket)”. They will very likely be refined into the first 14 cate-
gories of the table in afuture release of this software).

3.4 Timeout Management

Because most operationsin syst enCommmay provoke the suspension (de-scheduling)
of the current co-routine, any such operation may implicitly prevent this co-routine
from making any progress for an indefinite period of time. To give the co-routine the
power to do something about this, each of these operations takes a specification of an
upper limit (in seconds) to the time elapsed during the execution of that operation.

ng



14

Process Library

When such a timeout has been specified for some operation, the scheduler will re-
sume the execution of that operation if it gets the control and the timeout period has
expired. This means that lots of activity in the system as a whole may postpone the
detection of a timeout somewhat, and - as usual - an infinite loop somewhere could
stop everything.

In practical terms, the operation is resumed when and if the timeout period expires,
and of course it resumes by executing an error callback. Two different error callbacks
may be used to indicate the problem. If no irreversible actions have been taken, the
ti medout error callback isused. If someirreversible actions have been taken, such as
receiving or sending part of a message, the ti medQut I nTransfer error callback is
used. This last situation is considerably more grave than the first: Aborting an opera-
tion “in-transfer” means breaking the protocol, which again means that any subse-
guent messages received on the same connection will be garbled. Resynchronization
is hardly possible unless the data transferred are lines of text or some other format
with built-in structural markers. So in this situation, give it another chance, or close
the connection.

For st reanBocket and its subpatterns, the socket level attribute ti meout Val ue de-
cides the timeout for al operations. For bi nar ySocket and its subpatterns, each op-
eration which has timeout control takes the timeout value as its first enter parameter.
Likewise with socket Gener at or . If you forget to specify such a timeout value, e.g.
in awai t Connect i on On a passive socket, the operation will always terminate at once
with atimeout error.



4 Addresses

The fragment conmAddr ess supports representing addresses of communication ports
with which one might like to establish connections. In this setting, more different op-
erating systems and kinds of communication ports are covered than what conmuni ca-

ti on and syst emConm actually support as yet. Accordingly, TCP/IP sockets are just
one example of akind of communication port.

Instances of any of these patterns are values, and under normal circumstances their
identity will make no difference. This ensures that it makes sense to transate them
from BETA objects into simple strings of text and back again, and this eases the mi-
gration of such values across networks and other media.

At the most abstract level, port abl eConmAddr ess models a portable communication
address. This specifies the address of a single destination or the address(es) of a group
of destinations.

The patterns portabl eMul ti Address and portabl ePort Address Speciaize
por t abl eConmAddr ess into concrete patterns for the multiple-destination case and
one-destination case, respectively.

The pattern concr et ePort Address and its specializations represent non-portable,
protocol specific communication port addresses. Of course, any concr et ePor t Ad-
dr ess is portable, being anormal BETA object; but only on some platforms will it be
possible to have such a communication port as is specified by the concr et ePor t Ad-
dress.

Concr et ePor t Addr esses are kept in por t abl eConmddr esses and selected accord-
ing to protocol specifications, given as pr ot ocol Spec objects.

4.1 Specification of Connection
Requirements

The pattern pr ot ocol Spec is used to package a specification of requirements to a
communication transfer. This package is given to a port abl ePor t Addr ess, which
will then use it to choose an appropriate channel. A specification is built with an in-
stance of prot ocol Spec by setting its cType and r Type attributes. For these, choose
from the constant values given in the fragment conmer r or .

The cType value can be any of the constants commPr ot ocol _. .. and specifies that
the chosen channel must be a TCP/UDP/etc. connection or that any kind of connec-
tion will do (commPr ot ocol _dont car e).

The value of r Type is any of the constants cormRel y_dont car e (N0 requirements),
commRel y_unreliable (alow al the below mentioned kinds of malfunction) or
commRel y_reliabl e (prevent al those mafunctions). Or it is a sum of some of the
constants commRel y_| oss (prevent packet lossage), conmRel y_dup (prevent packet
duplication), conmRel y_or der (prevent packets from arriving out of order), conm
Rel y_cont ent s (prevent packets from having corrupt data).

In reality, the last guarantee is enforced by means of checksums or something similar,
soitisonly very unlikely that a packet with corrupt data will pass unnoticed, not im-

15



16

Process Library

possible. Moreover, al the other guarantees depend on having packets with trustwor-
thy (header) contents, so not all combinations make sense.

4.2 The Abstract Level

The abstract pattern por t abl eConmAddr ess is used to specify the identity of an ab-
stract communication address. The patterns por t abl eMul t i Addr ess and port abl e-
Por t Addr ess areits non-abstract specializations.

Before usage, initialize any specialization of por t abl eConmmAddr ess withinit.

Any por t abl eConmAddr ess is able to express its value in textual form, by the opera-
tion asText . This enables simple and safe migration of an instance of any specializa-
tion of port abl eConmAddr ess: Trandate it into text, send it across the network, write
it into adisk file, or whatever, and then reconstruct it as a BETA object from its text
value.

Tell aport abl eCommAddr ess What proporties are required of the communications as-
sociated with it by entering a pr ot ocol Spec object reference. This affects its choice
of concrete communication port(s) in subsequent communications.

To reconstruct a por t abl eConmAddr ess from its text representation, give it as enter
parameter to port abl eConmAddr essFronifext , and a corresponding object will be
exited. The text is expected to have been produced by some instance of a specidiza-
tion of port abl eConmAddr ess using itsasText .

Problems in this process are reported by invoking par seEr r or . This terminates the
application, unless you extend par seEr r or to handle it.

4.3 The Concrete Level

A portabl eMul ti Address Specifies a group of communication ports. Start or en-
hance the group by i nser t ing members. Reduce it by del et eing members.

A port abl ePor t Addr ess specifies the identity of one logical communication desti-
nation. A logical destination corresponds to a number of concrete communication
ports, represented by instances of specializations of concret ePort Address. It isup
to the user of these patterns to ensure that the contained set of concrete ports actually
“logically belong to the same destination”.

Theideaisthat if “I” can talk on a channel of type “{A,B}” and “you” can talk on a
channel of type “{B,C,D}”, it is up to the underlying framework to discover that in
order to establish a connection, “we’ must use type “B”.

A port abl ePor t Addr ess can be built by inserting specializations of concr et ePort -
Addr ess. Only one concrete address is alowed for each known type - inserting a sec-
ond instance overrides the previously inserted one. With del et e, any concrete port
can be removed again. To retrieve a concrete port (without removing it), use one of
the Get . .. Port operations. If this port abl ePor t Addr ess does not contain any con-
crete port of the requested variety, NONE is exited.

Concr et ePor t Addr ess IS an abstract superpattern for specifying the address of a
concrete communication port, such as a UNIX stream socket, a Macintosh PPC
ToolBox session, a shared memory buffer etc.

Like a port abl eConmAddr ess, each concrete specialization is able to express its
value textually with the operation asText , and it is able to characterize its communi-
cation protocol with the operation prot ocol . The operation pr ot Name exits a text
which is a short, descriptive name for that protocol, and confornsTo answers



Addresses

17

true/false to the question, whether this kind of connection conforms to the protocol
associated with an entered cormPr ot ocol _. .. constant.

The pattern uni xAbst r act Por t Addr ess captures similarities between TCP and UDP
ports, represented by t cpPor t Addr ess and udpPor t Addr ess. The t cpPor t Addr ess
also fits a MacTCP port. The pattern uni xPor t Addr ess represents an AF_UNIX ad-
dress family socket, i.e. it appears as a name in some directory, just like afile; ppc-
Por t Addr ess represents a Macintosh PPC ToolBox session; menPor t Addr ess corre-
sponds to a shared memory implementation of inter-process communication.



5 Managing a Pool of
Connections

A connection pool manages a number of client side communication interfaces (e.g.
active sockets), and allows choosing which one of them to use for a communication
transfer by means of a por t abl eCommAddr ess. This abstracts away the need to estab-
lish connections. whenever a connection as specified is available in the pool, we use
it. Otherwise, such a connection will implicitly be established and added to the pool.
If this process runs out of resources associated with these connections (e.g. file han-
dles), it is possible to ask the pool to close the least recently used connection.

Concurrency The connections are subject to concurrency control, so they must be used in a “take-it,

control use-it, give-it-back” fashion. This is achieved by the pattern communi cati on. The
concurrency control is necessary to prevent the situation where two users of the pool
both transmit messages to some other party on one given connection, and randomly
divide the incoming messages on that connection between them, both believing to
have the other party for themselves. Using the pattern communi cat i on, a most one
user of the pool communicates on any given connection at any given point of time.

Binary socket By now, the only variant of connection pool implemented is the bi nar yConnect i on-

connections Pool . Instances of bi nar yConnect i onPool are used for managing a number of bi-
nary socket connections. Before usage, i ni tialize it. The user of a bi nar yConnec-
ti onPool gives a specification of the receiver, the type of connection, the quality of
service etc. in a port abl eConmAddr ess to a (speciaization of) the control pattern
comuni cat i on. Thisisused asfollows (where bcPool isaninstance of bi naryCon-
nect i onPool ):

addr[] -> bcPool . comruni cati on
(# (* Extend error call backs here *)
do
(* Wthin this dopart: use 'sock' to conmunicate *)
(* Do not bring references to sock outside *)
#);

If you want to | eave the dopart of a specialization of a comrmuni cati on, use a con-
struction like | eavi ng(# do | eave L #) in stead of | eave L. Otherwise some re-
sources may be rendered inaccessible.

Whenever the pool establishes a new connection, the hook onNewConnect i on of com
muni cat i on is executed. In a extending of this hook, a reference to the newly estab-
lished connection is available, and by assigning a co-routine to act or , the connection
gets associated with this co-routine. This is used to handle incoming messages to
connections in the pool, which are not the immediate response to an outgoing mes-
sage transmitted in ausage of comuni cat i on: have the co-routine sit around waiting
for the incoming messages. To support such things, one must specialize bi nar yCon-
necti onPool .

If the connection delivered as sock within a specialization of conmuni cati on isto be
taken away from the pool and used outside, execute r enoveSock and bring out a ref-
erence to sock. If it isknown that the connection will not be useful anymore, execute
removeSock and sock. cl ose.

On exceptions, see the description in section 3.3.2.

18



Managing a Pool of Connections

19

The operation mar kAsDead is used to tell the pool that it certainly cannot have a con-
nection like the one entered. If a communication partner closes a connection (or per-
haps terminates unexpectedly), and the other end of that connection isin a connection
pool, it could happen that this connection is not chosen in any communi cati on for
some time. If a new connection is created, the operating system may then reuse the
local connection identifier (file handle, in case of UNIX sockets), giving atotally dif-
ferent connection, which is then administrated by some new BETA socket object.
Now two BETA socket objects will talk to the same OS level connection (file han-
dle), but this means that the first object (in the pool) has silently been “redirected” to
anew communication partner. Of course, this leads to strange errors.

So, whenever creating a BETA socket object OUTSIDE a connection pool, please tell
it by means of mar kAsDead, that any connections in the pool with the same OS level
identifier must have died silently and thus should be removed from the pool. Inter-
nally, the connection pool handles this automatically.

Please note that this problem is not specific for connection pools, for the pr ocess li-
brary, or even for BETA programs, for that matter. But it occurs mainly in the pres-
ence of complicated and very dynamic communication topologies, which are more
likely to appear with connection pools. It would actually be best to carry out similar
checks (using saneConnect i on) also when using only simple socket objectsin an ap-
plication.

renoveSoneConnect i on Will seek through all unused connections in the pool. An
unused connection is a connection such that no instance of conmuni cat i on in any co-
routine of this process currently refers to it with its sock attribute. From this set of
unused connections, it chooses the least recently used (as reported by its usage-
Ti mest anp), closesit, and removes it from the pool. If all connections are currently in
use, application specific actions must be taken to free some of them. The callback no-
Connect i onsRenovabl e is executed in this situation. It does not terminate the appli-
cation by default, so beware of the possible infinite retry loop if r enoveSonmeConnec-
tion is used in response to resour ceError, and no connections could actually be
removed.

When done with a connecti onPool , cl ose it to close al of the connections con-
tained within it.



id_suspend and
Id_resume

6 Managing co-routines

The fragment i dSchedul er uses neither processmanager, communication nor
syst enComm SO inaway it isan island of itsown. It typically comes together with the
other parts of the process library when a communication connection is shared by a
number of BETA co-routines. In this case, a (master) co-routine administrating the
connection must have some means to control the execution of the (slave) co-routines
using the connection. This means the slaves must be able to “suspend” themselves wrt
the master, and the master must be able to “resume” a slave when the connection has
dataready for it.

As usua when present, the i nit operation should be executed on each instance of
i dSchedul er beforefirst usage.

Instances of i dSchedul er can play thisrole as an “intermediate’ scheduler, control-
ling any number of co-routines. Each dlave co-routine may i d_suspend itself,
awaiting an event identified by the integer value i d entered. The i d_suspended
slaves are under the control of thei dSchedul er master, and the master may resume
slaves by executing i d_r esune, again choosing which slave to wake up in accordance
withthei d entered.

These id values must be unique for the whole set of possible users of any giveni d-
Schedul er . Otherwise the semantics will be quite different from what is described
here. Usually, one can use a global “id-factory”, which always delivers new, essen-
tially meaningless values. In particular, it is a bad idea to use values which are con-
strained by other parts of the application (“have a meaning”), because such con-
straints may one day force somei dsto have the same value.

In the following, an instance of i d_suspend and an instance of id_resunme are
called corresponding if their i d items have the same value; an i d and aslave are cor-
responding if the dlaveisi d_suspended and thei d_suspend. i d equalsi d; similarly
for other combinations.

Add further attributesto thei sel enent virtual to create holders of information trans-
ferred from the master to the slave when the dave is resumed. A speciadization of
i d_resume may for instance transfer information to a corresponding slave by assign-
ing some object reference to a dynamic reference item, say “i nfo”, initsel m When
the corresponding slave wakes up, itsi d_suspend. el minfo will refer to that ob-
ject. (For a concrete example, check out dero/ i dSchedul er Deno. bet , where this
technique is used to transfer a text).

The specialization i dTi meout Schedul er alows a slave to specify atimeout limit to
the period of suspension, using the operation i d_t i meout Suspend. This operation
matchesi d_r esune (thereisno need for ani d_ti neout Resune) .

If a period of length timeoutvalue expires ater a dave has
i d_ti meout Suspended itself with no occurrence of a corresponding i d_r esune, the
dlave virtual i d_t i meout Suspend. retry gets to decide whether or not the suspen-
sion should be continued. If yes, another period of waiting starts. If no, the onTi ne-
out callback is executed, and that ends the i d_t i neout Suspend. (Actualy on-
Ti meout does NOT get executed -- please refer to section 8).

If, on the other hand, the correspondingi d_r esume does occur within the timeout pe-
riod, the dave callback i d_ti meout Suspend. onSuccess s executed, and that of
course adlso endsthei d_ti meout Suspend.

20



Managing co-routines

21

Now, if the master administrates a (number of) connection(s), the slaves can share it
(them) in the following way: The i d values used can be described as transactions
identifiers, and these transaction identifiers are transferred along with other data
across the network. Now, a slave can acquire access to a connection to send a request
“D’, and then i d_suspend itself on the transaction identifier. Each time data can be
received on a connection, the master reads the transaction identifier and then
i d_r esumes the corresponding slave, probably providing this slave with access to the
connection by means of the “el m i nf o” technique described above. Now, the save
can use the connection to collect the answer to the original request “D’. In the mean-
time, many other slaves could have sent and/or received data on the same connection
-- and, importantly, the slaves do not have to know about each other. As the (set of)
connection(s) is a shared resource, there will have to be some concurrency control as-
sociated with it.



7/ The Demo Files

A number of demonstration files are provided in the subdirectory deno. They show
simple and typical ways to use the process library. The files generally use comuni -
cat i on, SO some transformations will be needed in order to use them with syst em
Conm

Because of the “process’ aspect, and because of the nature of inter-process communi-
cation, the demo files come in small groups. For some groups, one program will ma-
nipulate others. For other groups, one may start a “server” and some “clients’ and
then interact with the clients to initiate communication. In the following, the groups
are presented one by one.

7.1 activate

This is a stand-alone demo which uses a pr ocess to start the BETA compiler and a
pi pe to tell it to compile some fragment named bet aPr ogram You may have to
create such afragment. Please note: the released version of this demo isincorrect. Re-
fer to section 8 which lists a better one.

7.2 pipeline, consumer and producer

Execute pi peline, which will then start producer and consuner insucha
way that standard output from producer is piped into standard input of consuner.
The file items is read in by consumer and written to its standard output.

7.3 exchange

Starts an executable i gor which is given the argument rot t wei | er by means of
process. argunent . append. Then, while igor is running, exchange prints out a
small message every few seconds. When stops, exchange also stops (after the ter-
mination of the current delay period). One could for example do:

cd <<ny directory for trying out little things>>

cp /users/betal/process/vl. 4/ deno/ exchange. bet .

cp exchange. bet rottweil er. bet

In -s /usr/local/lib/betal/bin/beta igor

bet a exchange

.l exchange

The exchange executableis of course a CPU hog, because it sitsin atight f or loop
during those few seconds of delay.

22



The Demo Files

23

7.4 firstProgram and otherProgram

When executed, firstProgram will start otherProgram and accept a
streanBocket connection from ot her Program Then they exchange a couple of
words, and both terminate.

7.5 aClient and theServer

When t heSer ver isexecuted, it starts two instances of aCl i ent and communicates
alittle with them over two st r eanSocket S, one for each client.

7.6 aBinClient and theBinServer

Very similar to theServer, theBinServer starts two instances of aBin-
dient and communicates with them. This time, bi narySocket s are used, and
blocks of arbitrary bytes are being transferred. Of course, the data transferred is just a
usual BETA integer, but there is no essential difference to the case where any other
block of memory istransferred.

7.7 aRepClient and theRepServer

Using a similar setup, but extending the preceding two demo groups a bhit,
t heRepServer and theRepd i ent communicate according to a small, higher-level
protocol. Generic containers for blocks of bytes, namely ext endedRepSt r eans, are
used for the transfers. The protocol specifies three different formats for the contents
of these ext endedRepSt r eans, distinguished by the tag value header , which istrans-
ferred aong with the ext endedRepStream in the binarySocket operations
put Rep and get Rep. It should be fairly easy to read the exact protocol out of the
fragment showRep.

7.8 chatClient and chatServer

This group is used interactively. Start chat Ser ver and then a number of instances of
chat d i ent . Each client will connect to the server, resulting in a star-shaped connec-
tion topology. One may interact with each of the clients, and the clients in turn inter-
act with the server.

The fragment conmandCat egory is used to distinguish different types of commands.
The command language is very smple: anything starting with the letter “q” is a Quit
command, anything starting with an “a’ is an Answer command, and anything start-
ing with an “A” is an AnswerWait command. Anything else is a Default command.
Enter commands as any piece of text at the prompt, ending with RETURN. Please note
that |eading whitespace is significant.

All commands are immediately forwarded to the server. Then, if the command was a
Quit command, the client closes down the connection and terminates. If it was an An-
swer command, the client notifies the user of that fact by printing a message contain-
ing the sequence number of this Answer command. Some time later, the server will



24

Process Library

return an answer, and the sequence number of the answer makes it possible to match
up outgoing requests with incoming answers. In case of an AnswerWait command,
the client blocks until the answer from the server arrives. For Default commands, the
contents are just echoed at the server.

For each command received, the server echoes the identification number of the client
which sent that command and the contents of the command. Y ou may wish to exam-
ine the source code in chat Server. bet to see how nonbl ocki ngScope enables
the server to (semi-)simultaneously receive incoming messages, accept connections
from new clients, and do other work.

7.9 repChatClient and repChatServer

Similar to chat d i ent and chat Server, using bi nar ySocket s for the communica-
tion.

7.10 1dSchedulerDemo

This demo shows a simple application of an i dTi meout Schedul er which uses nei-
ther pr ocessnmanager , comuni cat i on, NOr syst emConmm

An instance of idsched_naster plays the “master” role, and a number of i d-
sched_sl aves play the “dave’ role, as described in section 6. Each dlave has an
identifier, which is also used as the timeout period initsi d_t i meout Suspend oper -
ations.

When i dSchedul er Deno runs, a master and a number of slaves are created. The
number of daves is specified as the first command line argument. The master imme-
diately goes to sleep, and sleegps for as many seconds as the second command line ar-
gument specifies. The slaves start i d_t i neout Suspending themselves, allowing two
retries. By the third retry, a slave will give up and terminate (the comment “ Give up
at second attempt” ini dSchedul er Deno. bet ismisleading). When the master wakes
up, it servesthe slavesin order.

Try i dSchedul erDeno 2 3 to watch a small but non-trivial case; try i dSched-
ul erDeno 20 30 to get afeeling for the behaviour at a somewhat larger scale.



8 Known Bugs and
Inconveniences

InsystenComm the streanBocket operation eos doesnot correctly implement
the described semantics. Errorsin system calls are detected as they should be, and the
answer is correctly “false” when data is immediately available, but when data is not
immediately available, the return values are swapped: When the communication part-
ner has closed down the connection, the answer will be “false”, and when this has not
happened, the answer will be “true’. A patch to fix it isto swap the lines 494 (// 1
then) and 498 (// 0 then) of pri vat e/ ssocket _uni xbody. bet . Thereisno known
easy workaround.

For st reanSockets in both conmmunication and systenConm reading a line of
text with the operation getLine or a word w th get At om only works correctly
when the line/word becomes available to read as a whole. If a non-empty part of the
line/lword but not all of it can be read, the operation incorrectly detects an error. A
possible workaround is to use get and collect characters in a normal BETA text ob-
ject, on which get Li ne and get At om can be used.

If the transmitting side always sends lines/words in one go, the problem is unlikely to
show up. In this case, if the purpose is non-critical of course, you could try to ignore
the problem.

Outputting operations in st r eanSocket, such as put, flush and putLine, will
not detect a buffer full condition before attempting to transmit data. This means that
they may block until the operating system has relieved the full buffer of some of its
contents. This usually happens quickly, though.

Certain operations in syst enConm take as enter parameter a timeout value, which
does not affect the execution of the operation, because timing out makes no sense -
the operation is not “possibly lenghty”. An exampleiscl ose of bi narySocket .

Furthernore, the tinmeout enter parameter in the streanSocket pattern
wi t hPE provides the operations open, close and flush with such an enter pa-
rameter, and this is no longer used. As described, ti meout Val ue is used to specify
timeoutsin all st reanSocket operations.

In port abl eMul ti Addr ess, members are del et ed by identity, i.e. entering a refer-
ence to some port abl ePort Address in an invocation of the delete oOpera-
tion will delete that exact instance, if present. It would make more sense to delete ev-
ery port abl ePort Addr ess contained by this por t abl eMul t i Addr ess, which speci-
fies the same communication port as the one entered. That is, it would be better if
members were deleted by value equality.

port abl eMul ti Address ought to have means for iterating through all its members,
such asascan operation. There should also be away to test for equality and for sub-
set-relations between port abl ePort Addr esses, and between port abl eMul ti Ad-
dr esses.

In the fragment connecti onPool , in the pattern comuni cation iNn bi naryCon-
nectionPool , theoperation renoveSock does not remove the connection denoted
by sock as it should. Workaround: Use sock[]->mar kAsDead Whereever re-
nmoveSock should have been used.

The demo-fileact i vat e. bet isgarbled. Use the following instead:

25



26

Process Library

ORI G N ' ~bet a/ process/ v1. 4/ processnmanager ' ;
--- programdescriptor ---
(#
conpi l er: @rocess;
aPi pe: @i pe;
do
"/usr/local/lib/betal/bin/beta' ->conpiler.init;
aPipe.init;
aPi pe. readEnd[] - >conpi | er. redi rect Fr onChannel
compiler.start;
' bet aPr ograni - >aPi pe. wri t eend. put Text;
aPi pe. wi t eend. newLi ne;
#)

where bet aPr ogr am bet isthe a path of some BETA source codefile.

In the fragment i dSchedul er, the callback onTineout of the operation
i d_ti meout Suspend IS never executed, even though it should be executed in case of
atimeout. For a workaround, put the code intended to go into a specialization of on-
Ti meout at the end of a specialization of theretry virtual, and encapsulate it within
anif statement suchthatitisexecutedifretry exitsfalse.



9 Interface Description

9.1 commAddress

(* CONTENTS

* ————————

Defines patterns for representing comruni cati on addresses.

The nobst abstract pattern, portabl eConmAddress, nodels a
portabl e communication address. This specifies the address
of a single destination or the address(es) of a group of
desti nati ons.

The patterns portabl eMil ti Address and portabl ePort Addr ess
speci al i ze portabl eCommAddress into concrete patterns for
the multiple-destination case and one-destinati on case,
respectively.

The pattern concretePort Address and its specializations

represent non-portable, protocol specific conmunication

port addresses. These are kept in portabl eConmAddr esses

and sel ected according to protocol specifications, given
as protocol Spec objects.

L T T T I R R I

)

Speci fication of connection requirenents

Used to package spec. of requirenents to a conmunication
transfer, and then given to a portabl ePort Address, which
will use it when choosing an appropriate channel

L

*

pr ot ocol Spec:
(#
cType: @nteger; (* one of 'comProtocol .*'; dontcare is default

rType: @nteger; (* one of 'comRely_ .*'; dontcare is default *)
(* bandwidth/r-rr-rra/etc *)
enter (cType, rType)
exit cType
#);
Port abl e comuni cati on address

(

*

*

*

* Specifies identity of an abstract conmuni cati on address.
* This pattern is abstract, and no instances of it are

* expected to exist. The patterns portabl eMilti Address and
* portabl ePort Address are non-abstract specializations.

*
*
*

Any portabl eConmAddress is able to express its val ue
in textual form by '"asText'.

27



Process Library

Tell a portabl eCommAddress what proporties are required
of the communications associated with it by entering

a protocol Spec object. This affects its choice of
concrete comunication port(s) in subsequent
communi cati ons.

* % X X X X %
~

port abl eConmAddr ess:
(#
init:< Object;
asText: @sTextPattern

(* private *)
asTextPattern:< (# t: "“text do INNER exit t[] #);
enterSpec: @..;
private: @..;
enter enter Spec
#);

(* Portable comunication address constructor

*

*
* Function. Takes a text value, which is expected to have
* been produced by sonme instance X of a specialization of
* portabl eCommAddress using its 'asText'. Returns an object
* with the sane value as X
*
* Problems are reported by invoking 'parseError'. The
* application will then termnate with an exception
* unl ess you extend parseError to leave it.
*)
por t abl eConmAddr essFr oniText :
(#

parseError: <
(# nmsg: “text;
enter msg[]
#)
txt: "text;
addr: ~portabl eConmAddr ess;

<<SLOT port abl eCommAddr essFromrlext Li b: attri but es>>;
enter txt[]

exit addr[]
#)
(* Portable nulticast address
* Specifies identities of the nenbers of a group of
* conmuni cation destinations.
*
* The group can be built from scratch or enhanced
* by 'insert'ing nenbers. It can be reduced by
* 'delete'ing nenbers.
*)
portabl eMul ti Address: portabl eConmAddr ess
(#
init::< (# ... #);
insert:

(# addr: ~portabl ePort Addr ess;
enter addr[]

#)



Interface Description 29

(

*
*
*
*
*
*
*
*
*
*
*
*
*

del et e:
(# addr: ~portabl ePort Address;
enter addr[]

#);
(* private *)
asTextPattern::< (# ... #);
private2: @..;
#);
Port abl e conmuni cati on port address
Specifies identity of one |ogical conmunication destination
A | ogi cal destination corresponds to a nunmber of concrete
conmmuni cati on ports, represented by instances of
speci al i zations of concretePort Address.
A portabl ePort Address can be built from scratch by
by '"insert'ing such instances. Only one concrete address
is allowed for each known type - inserting a second instance
overrides the previously inserted one.
)
port abl ePort Addr ess: portabl eConmAddr ess
(#
i nsert:
(# addr: ~concretePort Address;
addr HasUnknownType: < excepti on
enter addr[]
#)
del et e:
(# prot: @nteger; (* one of 'comProtocol .*' *)
addr HasUnknownType: < excepti on
enter prot
#):
get TcpPort:
(# addr: ~tcpPort Address;
exit addr[] (* NONE if not present *)
#);
get UdpPort :

(# addr: ~udpPort Address;

ékit addr[] (* NONE if not present *)
#);

get Uni xPort :
(# addr: ~uni xPort Addr ess;

ékit addr[] (* NONE if not present *)
#) ;

get PpcPort :
(# addr: ~ppcPort Address;

é%it addr[] (* NONE if not present *)
#);

get MenPort :
(# addr: ~nenPort Addr ess;

ékit addr[] (* NONE if not present *)
#)

(* private *)
asTextPattern::< (# ... #);



30

Process Library

—~
*

*

* Ok Xk kX X X X %

private2: @..;
#)

Concrete comuni cation port address

Abstract superpattern for specifying the address
of a concrete comunication port, such as a UN*X
stream socket, a Mac PPC Tool Box session, a shared
menory buffer etc.

Is able to express its value textually with 'asText

and to characterize its comruni cati on protoco
with 'comilype'

)

concr et ePort Addr ess:

—~
*

*

¥ 0% ok 3k X X 3k X X X

(#
asText: @sTextPattern
asTextPattern:< (# t: "~text do INNER exit t[] #);

protocol : < integerValue; (* one of 'comProtoco

*

protName: < (# t: “text do & ext[] -> t[]; INNER Ekit t[] #);

conf ormsTo: Bool eanVal ue
(# p: @nteger;
enter p
#);

private: @..;

#);

Uni x comruni cation port address types

The pattern uni xAbstract Port Address captures simlarities

bet ween TCP and UDP ports, represented by
t cpPort Addr ess and udpPort Addr ess.

The pattern uni xPort Address represents an AF_UN X address
famly socket, i.e. it appears as a nanme in sonme directory,

just like a file.

NB: The tcpPort Address also fits a MacTCP port.
)

uni xAbst ract Port Addr ess: concr et ePort Addr ess

(#
i net Addr: @ nt eger;
port No: @ nteger;
asTextPattern::< (# ... #);
#);

t cpPort Addr ess: uni xAbstract Port Addr ess

(#
protocol ::< (# do comProtocol _tcp -> value #);
prot Nane::< (# do comProt Nane_tcp ->t #);

#)

udpPor t Addr ess: uni xAbst ract Port Addr ess

(#
protocol ::< (# do comProtocol _udp -> value #);
prot Nane::< (# do comProt Nane_udp -> t #);

#);
uni xPor t Addr ess: concr et ePort Addr ess
(#
asTextPattern::< (# ... #);

pat hName: @ ext;



Interface Description

31

protocol ::< (# do comProtocol _unix -> value #);
prot Name: : < (# do conmProt Nane_unix ->t #);

#);
(* Mac comuni cation port address
*
*
* Represents a PPC Tool Box session
*

ppcPort Addr ess: concr et ePort Addr ess

(#
host: @ ext;
port No: @ nteger;
sessionld: @ nteger;
asTextPattern::< (# ... #);
protocol :: < (# do commProtocol _ppc -> val ue #);
prot Nane:: < (# do commProt Nane_ppc -> t #);

#);

(* Shared nenory buffer port address
*
*
* Correspondi ng comuni cati on support NOT | MPLEMENTED
* Could be very fast, perhaps for comunicating within
* one process, using the sane source code as for renote
* comuni cati on.
*)
nmenPor t Addr ess: concr et ePort Addr ess
(#
bufferID: @nteger; (* !!'! This may have to change *)
asTextPattern::< (# ... #);
protocol ::< (# do comrProtocol _nem -> val ue #);
prot Nanme:: < (# do conmProt Nane_nem -> t #);
#)

9.2 commError

(* Conmuni cation error nessages

*

*

* 11l These are obsolete - to be renoved.

*

* May be returned from communicati on operations on a
* connectionPool. Reports OS level errors related to the
* individual connection in the connectionPool used for
* the transfer.

*)

comError _noError: (# exit 0 #);

conmmEr r or _noHost : (# exit -1 #);

commEr r or _connRef used: (# exit -2 #);

commError _tineQut: (# exit -5 #);

conmrer r or _connBr oken: (# exit -6 #);

commError _nonor eSockets: (# exit -8 #);

(* Reliability

*

Used to specify the reliability proporties
required for a transfer (in a protocol Spec).
The proporties are additive.

* % ok F F

)



32

Process Library

conmRel y_dont car e: (# exit 0 #);

commRel y_| oss: (# exit 2 #); (* packets are not lost *)

commRel y_dup: (# exit 4 #); (* packets are not duplicated *)
commRel y_order: (# exit 8 #); (* packets arrive in correct order
*

commRel y_contents: (# exit 16 #); (* corrupt data unlikely (e.g.
checksun) *)

commRel y_unreliable: (# exit 1 #); (* ensures none of the above *)

commRel y_reliable: (# exit 31 #); (* ensure loss, dup, order, contents *)

(*

*

* %k X X F X %

Type of connection protoco

OS |l evel category of connection. An inplenmentation

| evel description of an individual connection
managed by a connectionPool. Wird nunbers chosen

to make data containing these constants recogni zabl e
in a raw conmuni cati on dunp.

comPr ot ocol _dont car e: (# exit 0 #);

conmPr ot ocol _t cp: (# exit 72301 #); (* TCP/IP *)

conmPr ot ocol _udp: (# exit 72302 #); (* UDP/IP *)

conmPr ot ocol _uni x: (# exit 72303 #); (* UNI X donain (socket as
file) *)

comPr ot ocol _ppc: (# exit 72304 #); (* Mac PPC Tool Box *)
conmPr ot ocol _nmem (# exit 72305 #); (* Shared nenory buffer *)
(* Mienoni c names of the protocols *)

conmPr ot Nane_t cp: (# exit "TCP #);

conmPr ot Nanme_udp: (# exit "UDP' #);

comPr ot Name_uni x: (# exit "UNLX #);

comPr ot Nanme_ppc: (# exit 'PPC #);

conmPr ot Nane_nem (# exit '"MEM #);

0.3 communication

(

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

Conmuni cati on concepts:

Pi pe: Conmmuni cati on channel between two processes.
For pure standard comruni cation, using standard input/output.
Both processes are unaware of the identity of their
comuni cati on partner

Socket: A stream conceptually an endpoint of a two-way
conminication line. Two endpoints are connected by letting
an ActiveSocket connect to aPassiveSocket. The
Passi veSocket just waits for the ActiveSocket to connect.
After connection both sockets can read/wite on
t hei rstreans.

Socket Generators are used in client/server type comunication
Sockets are divided into the categories stream socket and binary
socket .

Stream socket s:

A stream socket is suitable for transferring data, which is
readabl e for hunman beings, like the data transferred in a UNI X
"tal k' session, or like the nore fornal conmmunicati on between a
smai | program and an SMIP nail erver. A stream socket is a stream
SO you may 'put', 'get' etc.



Interface Description 33

L S T T R R R N I R S S N N N I T TR N S N R I R R N N N N . N N N I TR T R R

However, don't rely on this kind of socket when transferring data
whi ch may contain zero-val ued bytes, such as arbitrary binary data.

Bi nary sockets

A binary socket is guaranteed to transfer any given bl ock of
arbitrary bytes unnodified, but you nust always specify the

I ength of the data bl ock, both for sending and receiving. You nmay
'readData' and 'witeData' on a binary socket, which constitutes
the | owest level interface.

The operations 'getBlock' and 'putBlock' provide support for
a very sinple, binary data transfer protocol. In this protocol
all data is transferred in blocks with the follow ng | ayout:

| en header dat a

The 'len' field is a four byte integer value, in big-endian byte
order. The 'header' field is a four byte big-endian integer val ue,
identifying the kind of data in the 'data' field, the purpose

of the block, or whatever. The 'data' field length is 4*'len'
bytes. The sender and the recipient nust agree on the
interpretation of the 'header' and 'data' fields, which is |eft
unspecified by this protocol

The operations 'putRep' and 'getRep' are provided for transferring
data to and from a ExtendedRepstream object, using this protocol
The usage of this level of functionality is recommended whenever
possi ble, as it encapsul ates (and hides) references to raw nenory
addr esses.

The 'Idl e patterns:

Many operations on sockets have an 'ldle" virtual pattern

It may be executed one or nore tinmes if the operation cannot
finish right away. This is not guaranteed to happen, so don't
rely on 'lIdle'" being executed even once. Extend this virtua

to keep your application "alive" during a (possibly) |enghty
operation. Don't execute operations on this(Socket) in an
enclosed 'Idle'. Don't stop the operation fromw thin an "Idle -
the operation is unfinished; you nmay for instance have received
hal f a bl ock, which nakes the stop a serious break wt the
protocol ; use 'nonBl ocki ngScope' and ' Bl ocking' for this purpose.

The ' nonBl ocki ngScope' and ' Bl ocki ng' patterns:

The 'nonBl ocki ngScope' pattern is used for specifying non-bl ocki ng
communi cati on. This neans that operations which cannot begin

right away are discontinued. An exanple is: W try to read froma
socket, but no data at all is available to read. If any
irreversible actions have been taken in an operation (e.g. reading
a few bytes), it will not be interrupted by the 'nonBl ocki ngScope
mechani sm This neans it is always safe to interrupt an operation
by enclosing it in a 'nonBl ocki ngScope', and to retry it later

Wth each 'Idle' pattern conmes a 'Blocking' virtual. This is
executed if the current operation is blocking, i.e. if nothing can
be done right away. You may extend this virtual to take sonme action
in response to the operation being blocked. If the operation is
encl osed in a 'nonBl ocki ngScope', your 'Bl ocking' -code gets
executed imedi ately before the operation is interrupted. If you
don't want to interruptthe operation, execute 'continue' in the

ext endi ng of ' Bl ocking'.

USAGE: Nornally the comunication will be blocking. But if you



Process Library

encl ose an operation in a specialization of 'nonBl ockingScope', we
"l eave' the 'nonBl ocki ngScope' at the first blocking condition
PLEASE NOTE: it is unsafe to execute

a 'leave' statenent which | eaves a 'nonBl ocki ngScope'. |If you

need to leave it, execute 'l eaveNBScope'. The normal usage with
and wi thout 'nonBl ocki ngScope' | ooks like this:

/* BLOCKI NG STYLE */

nmySt reanSocket . getLine /* waits until data has arrived */
-> react Onl nput ; [ * al ways executed */

react SoneMor e; /* al ways executed */
doQx her Thi ngs;

/* NONBLOCKI NG STYLE */
nmy St r eanSocket . nonBl ocki ngScope

(#

do
nyStreantSocket . getLine if no data: |eave scope at once
-> react Onl nput ; only executed if data avail able
react SoneMor e; only executed if data avail able

#) ;

doClhérThings;

Wth sonme patterns, it is not possible to have a virtual 'Bl ocking'
or 'Idle' pattern. This is because an enter paraneter for the
operation is supposedly the address of a beta object. Having taken
this, it is unsafe to create objects during the execution of the
operation. An exanple is 'BinarySocket.witeData' . However,

encl osi ng such operations in a 'nonBl ocki ngScope' does cause the
operation to behave in a non-bl ocki ng manner.

b T R S R T I B R T B S S T T N N N N I N N N

)

wai t For | O

(* Make the process sleep until input/output is avail able,

* put at nbst naxWait seconds. If zero is entered (or the enter
* part isn't evaluated), wait for 1/0O w thout tineout.

*

(# maxWait: @nteger;

enter maxWiit

do ...

#);

assi gnCGuard: (# assigned: @ool ean do true -> assigned #);

pr opagat eException: (# nsg: "Text enter nmsg[] do INNER #);

pi pe:
(* The pipe is a conposition of two interconnected one way streans.
* What is witten on 'witeEnd' can subsequently be read
* from'readEnd'.
*
(#
(* operations *)
init:<(# error:< propagat eException(# do INNER;, ...#);
do ...;
#)

(* exceptions *)
pi peException: Exception
(#
enter nsg
do (if nsg.enpty//false then nsg.newine if);
| NNER;
#)
pi peError: < Pi peException



Interface Description

#);

(* attributes *)
readEnd: ~Stream
witeEnd: "Stream

(* private *)
private: @..;
(* pipe *)

St reanSocket: Stream

(#

(* basics *)
wi t hPE:
(# error: < propagat eException(# do | NNER, nsg->ot her Error #);
do | NNER
#);
Basi cBl ocki ng:
(# continue: (# do true->doContinue #);
doConti nue: @ool ean;
dol dl e: < Obj ect;

do | NNER;
(i f doContinue//false then | eaveNBScope if);
dol dl e;
#) ]
Idle:< Object; (* every local 'Idle'" executes this global one *)

(* operations *)
open: withPE
(# ldle:< (# do INNER, this(StreanSocket).ldle #);
Bl ocki ng: < Basi cBl ocki ng(# doldle::< (# do ...#) do I NNER #);
do ...
#);
cl ose: < w t hPE
(#
do ...
#);
flush: < withPE
(# ldle:< (# do INNER, this(StreanSocket).ldle #);
Bl ocki ng: < Basi cBl ocki ng(# doldle::< (# do ...#) do | NNER #);
do ...
#)
put::<(# ldle:< (# do INNER this(StreanSocket).ldle #);
Bl ocki ng: < Basi cBl ocki ng(# doldle::< (# do ...#) do | NNER #);
do ...
#)
get::<(# ldle:< (# do INNER, this(StreanSocket).ldle #);
Bl ocki ng: < Basi cBl ocki ng(# doldle::< (# do ...#) do I NNER #);
do ...
#)
peek::<(# ldle:< (# do INNER; this(StreanSocket).Idle #);
Bl ocki ng: < Basi cBl ocki ng(# doldle::< (# do ...#) do | NNER #);
do ...
#)
eos::<(# ldle:< (# do INNER; this(StreantSocket).Idle #);
Bl ocki ng: < Basi cBl ocki ng(# doldle::< (# do ...#) do | NNER #);
do ...
#)
put Text::<(# ldle:< (# do INNER; this(StreanSocket).ldle #);
Bl ocki ng: < Basi cBl ocki ng(# doldle::< (# do ...#) do I NNER #);
do ...
#)
getLine::<(# ldle:< (# do INNER, this(StreanSocket).ldle #);
Bl ocki ng: < Basi cBl ocki ng(# doldle::< (# do ...#) do | NNER #);
do ...
#) ;
getAtom : <(# ldle:< (# do INNER, this(StreanSocket).ldle #);
Bl ocki ng: < Basi cBl ocki ng(# doldle::< (# do ...#) do | NNER #);



36 Process Library

do ...
#);

(* nonBl ocki ngScope support *)

(* don't 'leave' a 'nonBl ockingScope'. Use 'l eaveNBScope' *)
nonBl ocki ngScope: (# do ... #);

| eaveNBScope: (# do ... #);

(* exceptions *)
sSocket Exception: streamnException

(#

enter nsg

do (if nsg.enpty//false then nsg.newine if); |INNER
#)

ot herError:: < sSocket Excepti on;

(* attributes *)
port: @ssignGuard(# rep: @nteger enter rep exit rep #);

(* private *)
private: @..;
#); (* Streantocket *)

Bi nar ySocket :
(#
(* basics *)
wi t hPE:
(# error:< propagat eExcepti on(# do | NNER; nsg->otherError #);
do | NNER
#);
withldle: wthPE
(# ldle:< (# do INNER this(BinarySocket).Idle #);
Bl ocki ng: <(# continue: (# do true->doContinue #);
doConti nue: @ool ean;
do | NNER;
(if doContinue//false then | eaveNBScope if);
I dle;
#)
do | NNER
#);
rawi O wi t hPE
(* Abstract pattern. Read/wite exactly 'length' bytes of
* arbitrary data to/fromthe nenory | ocation 'address'.
* Non-abstract SPECI ALl ZATI ONS MUST BE STATIC itens to
* prevent garbage collection between cal cul ati on of 'address’
* and reference through 'address'.
*
(# address,length: @nteger;
enter (address,|ength)
do | NNER
#)
repl O withldle
(* Abstract pattern. Read/wite a block to/from'rep',
* returning/using 'header'. The length of the block is
* stored in/retrived from'rep.end .
(# rep: “ExtendedRepstream
header: @ nteger;
enter rep[]

do | NNER
#)
Idle:< bject; (* every local 'Idle' executes this global one *)

(* operations *)
open: withldle(# do ... #);
close:< withldle(# do ... #);



Interface Description 37

witeData: @awm Q # do ... #);
readData: @awl Q(# do ... #);
endOf Dat a:

(* Returns true if no data is inmediately avail abl e
* for reading *)
(# val ue: @ool ean;
do ...
exit val ue
#) ;
put Bl ock: @n t hPE
(# | ength, header, address: @ nt eger;
enter (Ilength, header, address)
do ...
#)
get Bl ock: @it hPE
(* The 'maxl en' enter paraneter specifies the nmaxi mum al |l oned
* length of the 'data’ field in the block. If the block is
* bigger than that, the rest of 'data' is discarded. The
* "length' exit paraneter always specifies the block |ength,
* so such an overflow has occurred if maxlen<length. If this
* behavi our is not acceptable, use 'getBlockLen' and
* ' get Bl ockRest" .
*
(# address, naxl en, | engt h, header: @ nt eger;
enter (address, maxl en)
do ...
exit (length, header)
#) ;
get Bl ockLen: withldle
(* Exits the length of the next block to receive. Make sure
* the necessary space is available, and then use
* 'getBl ockRest' to read the bl ock.
*
(# length: @nteger;
do ...
exit length
#);
get Bl ockRest: @t hPE
(* Reads the next block. | MPORTANT: assunes the
* length has been read with 'getBl ockLen' as the |ast
* operation on this(BinarySocket).
(# address, header: @ nteger;
enter address
do ...
exit header
#);

put Rep: repl O
(* Read to ExtendedRepstream using
* above nentioned binary protocol
*
)
(#
enter header
do ...
#) ;
getRep: replO
(* Wite ExtendedRepstream contents
* using above nentioned binary protocol
*
)
(#
do ...
exit header
#)

(* nonBl ocki ngScope support *)



38 Process Library

(* don't 'leave' a 'nonBlockingScope'. Use 'l eaveNBScope'. *)
nonBl ocki ngScope: (# do ... #);
| eaveNBScope: (# do ... #);

(* exceptions *)
bSocket Excepti on: Exception

(#

enter nsg

do (if nsg.enpty//false then msg.newine if); INNER
#)

ot her Error: < bSocket Excepti on

(* attributes *)
port: @ssignGuard(# rep: @nteger enter rep exit rep #);

(* private *)
private: @..;
#); (* BinarySocket *)

ActiveStreantocket: StreanSocket
(* Initiator of socket communication. Initialize 'host' and 'port
* and 'connect' to a passive socket to establish comrunication.
*
(#
(* operations *)
connect: open
(# enter (host, port)
do ...;
#),

(* attributes *)
host: @ssignGuard(# t: @ext; enter t exit t #);
#); (* ActiveStreantocket *)

Act i veBi narySocket : Bi narySocket
(* Initiator of socket conmunication. Initialize 'host' and 'port
* and 'connect' to a passive socket to establish comrunication
*)
(#
(* operations *)
connect: open
(# enter (host, port)
do ...;
#);

(* attributes *)
host: @ssignGuard(# t: @ext; enter t exit t #);
#); (* ActiveBi narySocket *)

Passi veSt reanSocket : StreanSocket
(* "bind" to port and 'awaitConnection'. O her executions can then
* connect to the port and communi cate through the passive socket.
* Use a 'nonBl ocki ngScope' to interrupt 'awaitConnection', if no
* connections are being requested.
*
(#
(* operations *)
bi nd:
(# error:< propagat eExcepti on(# do I NNER; nsg->otherError #);
enter port
do ...;
#)
awai t Connection: open(# do ...; #);
close::< (# do ... #);

(* private *)



Interface Description 39

#);

private2: @..;
(* PassiveStreanSocket *)

Passi veBi nar ySocket : Bi narySocket
(* "bind" to port and 'awaitConnection'. Qher executions can then

(

*
*
*

*

#

connect to the port and communicate through the passive socket.
Use a 'nonBl ocki ngScope' to interrupt 'awaitConnection', if no
connections are being requested.

)

(* operations *)
bi nd:
(# error: < propagat eException(# do | NNER, nsg->ot her Error #);
enter port
do ...;
#);
awai t Connection: open(# do ...; #);
close::< (# do ... #);

(* private *)
private2: @..;

#); (* PassiveBi narySocket *)

Socket Gener at or :

(

~

*

F ok ko 2k X F X 2k X X X X X

Supports creating nultiple connections on a single port nunber;
typically used in an application acting as a server for a nunber
of clients. do 'portNunber -> bind and use "get???Connection”
to establish connections to the clients. Use a 'nonBl ocki ngScope
to avoid waiting if no clients are requesting a connection

"get ???Connection" exits a reference to a "???Socket" associ at ed
with the new connection. You may use this |ike:

nySocket Gener at or . get St r eanConnecti on -> aStreanfSocket Ref[];

If you want to work with a specialization of the basic socket
patterns, extend the virtuals 'streanSocket Type' and/or
' bi narySocket Type' .

)

(* basics *)
st reanBocket Type: < st reantocket ;
bi nar ySocket Type: < bi nar ySocket ;
wi t hl dl eAndPE:
(# Idle:< (# do INNER this(socketCenerator).ldle #);
Bl ocki ng: <(# continue: (# do true->doContinue #);
doConti nue: @ool ean;
do | NNER;
(if doContinue//false then | eaveNBScope if);
I dl e;
#);
error: < propagat eExcepti on(# do | NNER nsg->ot herError #);
do | NNER
#);
Idle:< Object; (* every local 'Idle' executes this global one *)

(* operations *)
bi nd: wi t hl dl eAndPE
(#
enter port
do ...
#);
cl ose: withldl eAndPE
(#
do ...
#);



Process Library

get StreanConnecti on: withl dl eAndPE
(# sock: ~"streanBSocket Type;
do ...;
exit sock[]
#) ;
get Bi naryConnecti on: wi thl dl eAndPE
(# sock: "binarySocket Type;
do ...;
exit sock[]
#);

(* nonBl ocki ngScope support *)

(* don't 'leave' a 'nonBlockingScope'. Use 'l eaveNBScope'. *)
nonBl ocki ngScope: (# do ... #);

| eaveNBScope: (# do ... #);

(* exceptions *)
socket Gener at or Excepti on: Exception

(#

enter nsg

do (if nsg.enpty//false then nmsg.newine if); INNER
#)

ot her Error: < socket Gener at or Excepti on

(* attributes *)
port: @ssignGuard(# rep: @nteger enter rep exit rep #);

(* private *)
private: @..;
#); (* Socket Generator *)

9.4 connectionPool

A connecti onPool nmanages a nunber of client side
conmuni cation interfaces (e.g. active sockets), and
al |l ows choosi ng which one of those to use for a
conmuni cati on transfer by nmeans of a

port abl eConmAddr ess.

The conmmuni cation interfaces are subject to concurrency
control, so they nust be used in a 'take-it, use-it,

gi ve-it-back' fashion. This is achieved by the pattern
' conmruni cation' in 'connectionPool’

E I I R R R I

~

The binary connection poo

I nstances of Bi naryConnecti onPool are used for managi ng

a nunber of binary socket connections. The user of a

Bi nar yConnecti onPool gives a specification of the

recei ver, the type of connection, the quality of

service etc. in a portabl eCommAddress to a (specialization
of) the control pattern 'comunication'. This is used as
foll ows (bcPool is an instance of BinaryConnectionPool):

addr[] -> bcPool . comuni cation
(# Extend error call backs here
do
Wthin this dopart: use 'sock' to comunicate
When | eaving, forget 'sock' (don’t bring out ref.s to it)
#);

EE I T R T . N B N S



Interface Description

41

*
* | f you want to 'leave' the dopart of a specialization of
* a 'communi cation', use
*
* | eavi ng(# do | eave L #);
*
* in stead of
*
* | eave L;
*
* Ot herwi se sone resources may be rendered inaccessible.
*)
Bi nar yConnecti onPool
(#

(* patterns *)
socket Type: < acti veBi narySocket ;

(* operations *)
init:<
(#
do ...
#)
conmmuni cat i on:
(# addr: ~portabl eConmAddr ess;
sock: "socket Type
| eaving: (# do ... #);

(* hooks *)
onNewConnect i on: <
(* executed when a new connection has been created *)
(# sock: "socket Type; (* The new connection *)
context: “object; (* NB: Should ve been private *)
actor: | system (* process to associate with sock *)
enter (sock[],context[])

do | NNER
exit actor[]
#)

(* operations *)

renoveSock: (* renmove sock fromthis pool *)
(# dopart: @..;
do dopart
#);

(* exceptions *)

error:< hiErrCB (* operation |level error callback *)
(#
do | NNER;

#);.“
concrErrCB: hi ErrCB
(*superpattern for concrete error call backs*)
(#
do | NNER;

#);

addr HasUnknownType: < exception
(* Considered fatal, for now *)

internal Error: < concrErrCB(# do | NNER #);
unknownError: < concrErrCB(# do | NNER #);
accessError: < concrErrCB(# do | NNER #);
resourceError: < concrErrCB(# do | NNER #);
addressError: < concrErrCB(# do | NNER #);
refusedError: < concrErrCB(# do | NNER #);
intrError:< concrErrCB(# do | NNER #);
get Host Error: < concrErrCB(# do | NNER #);



Process Library

(* private *)
priv: @..;

enter addr[]
do ...
#);
mar kAsDead:
(# dopart: @..;
sock: “bi narySocket ;
enter sock[]
do dopart
#);
renoveSoneConnect i on:
(* Renmpves least recently used currently unused connection *)
(# noConnecti onsRenpvabl e: < obj ect ;

dopart: @..;
do dopart
#);
cl ose: <
(#
do ...
#);

(* top level error callback *)
error:< hi ErrCB(# do | NNER #);

(* private *)

private: @..;
#);

9.5 errorCallback

Basi ¢ Exception Handl i ng

—~
*

*

VWhenever an error condition is detected on a socket, a
corresponding virtual pattern is instantiated and execut ed.
These patterns are specializations of "errCB, as

decl ared bel ow. Such virtual patterns are hereafter denoted
error callback patterns. To catch and treat an error

extend the correspondi ng error call back

If an error callback is not extended and the
correspondi ng error occurs, an exception is executed
and the programtermnates. If the error call back

i s extended, the follow ng hol ds:

- if "abort' is executed in the extending dopart,
the operation (but not the program is aborted. You may
execute 'l eave' within a specialization of abort. Don't
"l eave' an error callback fromany other point, as this
may put the object or the process into an unstable
state. If you "abort' but do not 'leave', the operation
aborts, but control flowis Iike when the operation succeeds;
in this case, any exited values are dumy val ues, reflecting
that the operation failed. Don't use then

- if "continue' is executed in the extending dopart,
there will be an attenpt to recover and finish the operation
after the execution of the error callback term nates.

EE S R T S T R R N B T N T R R I



Interface Description 43

L R T T T R N N R S R R R R . N N TN N N N B N
~

- if '"fatal' is executed in the extending dopart,
an exception will be executed and the programterni nated,
before the execution of the error callback returns. (This
is also the default, but with hierarchical error call backs,
you may need 'fatal' to undo a 'continue' at a higher |evel).

In case it happens nore than once that an operation
fromthe set 'abort','continue','fatal' is executed,
the one executed as the | ast takes precedence.

Propagati ng exceptions

The error callback patterns are present at three different
| evel s: Concrete error call backs, operation |evel error
cal I backs, and socket |evel error call backs.

The concrete error call backs provide the greatest |evel of
detail: their names indicate the kind of error condition
detected. This nmakes it possible to treat different errors
differently.

The operation level error callback is executed whenever
an error condition is detected during the execution of
that operation. In a extending of this kind of error
cal | back, you can adjust the default action for all the
concrete error callbacks in this operation

The single socket level error callback is executed whenever
any operation detects any error condition. In a extending
of this error callback, you can adjust the default action
for all operation Ievel error callbacks.

The means for adjusting the behaviour is in all cases to
execute 'abort' (probably "abort(# leave L #)") 'continue'
or 'fatal', and the semantics of these inperatives are
like in concrete error call backs.

Error cal |l back extendings nornally take precedence

like this: concrete > operation |level > socket |evel

This means that the higher l|evel specifies a default, and
the nmore concrete level overrides this default if it
executes 'continue', 'abort', or 'fatal'. This doesn't
hol d, however, if you "abort(# do leave L #)" at a higher
level: In this case, the nore concrete levels will never
get a chance to undo the 'l eave'.

- lib:attributes ---

errCB initialValue: (# exit -1 #);
errCB _abortProgram (# exit 0 #);
errCB _abort Operation: (# exit 1 #);
errCB continueQperation: (# exit 2 #);

err CB: IntegerVal ue

(# abort: (# do ... #);
continue: (# do ... #);
fatal: (# do ... #);
addMsg: (# t: ~text enter t[] ... #);

exceptionType: < exception
cl eanup: "object;
private: @..;

ent er cl eanup[]

do ...

#);



44

Process Library

hi Err CB: | nt eger Obj ect

(# abort: (# do ... #);
continue: (# do ... #);
fatal: (# do ... #);

cl eanup: "object;
enter cleanup[]
do | NNER
#)

9.6 i1dScheduler

i dSchedEl enent :
(#
suspend_sem @enmaphor e;
id: @nteger;
#)

i dSchedul er:
(#
i SEl emrent : < i dSchedEl enent ;
prefix:
(# id: @nteger;
elm ~isElenent;
enter id
do | NNER
#);

(* operations *)
init:<
(#
do ...
#);
i d_suspend: prefix
(# dopart: @..;
do dopart; | NNER
#);
id_resune: prefix
(# found: < object;
not found: < object;
dopart: @..;

do dopart

#);

(* private *)
private: @..
#)

i dTi meout Schedul er: idSchedul er
(#
(* operations *)
init::<
(#
do ...
#)
i d_tinmeout Suspend: prefix
(# timeout Val ue: @ nteger;
retry: < Bool eanVal ue;
onSuccess: < obj ect;
onTi neout : < obj ect;
dopart: @..;



Interface Description

enter tineoutVal ue
do dopart
#);

(* private *)
private2: @..;
#)

9.7 osinterface

osi nterface:
(#
<<SLOT OSlI nterfacelLib:attri butes>>;

init:< (# do ...; INNER #);
host Machi ne:

(# theMachi ne: @ ext

do ...

exit theMachi ne

#);
host Nane:

(# error: <CSError;
result: @ext;
do ...;
exit result
#) ;
get Host Addr :
(# addr: ~Text;

do ...
exit addr[]
#);
t hi sProcess: @Process
(#

scanArgunents:
(# current: @ext;
do ...;
#);
#); (* the process referring to this program execution *)

do init; |INNER
#);

OSError: Exception
(# message: @ext;
enter nessage
do ...;

I NNER;
#);

9.8 processmanager

The ProcessManager nodels the concepts of program executions and
conmuni cati on between program executi ons.

A program execution is nodelled as a process.
A process can be started (executed) and stopped (termn nated).

* % Sk Sk



46

Process Library

Processes can comruni cate to each other using either pipes or
sockets. Using pipes as comuni cation nodel, processes can nmake
si mpl e conmuni cati on though redirection of standard input/out put
streanms (screen and keyboard). Using sockets as conmuni cation
nodel , processes can conmuni cate through any specified stream

b T R .

(* Notice, this(Process) can only be executed once.
*

* Two program executions of the same Process,
can be executed by instantiating and executing two different BETA
* objects fromthe same Process.
*)
Process:
(#
<<SLOT ProcessLib:attributes>>;

nane: “Text;
init:< (# enter nanme[] do ...; INNER #);

argType:
(# argunent: @ext;
put Arg:
(# t: "Text;
enter t[]
do ...
#),
append: @ut Arg;
scanArgunents: (* calls INNER for each argument *)
(# current: @ext;
do ...;
#);
#);
argunent: @rgType; (* argunents to this(Process) *)

(* operations *)

start: (* starts this(Process)'s program execution *)
(# error:< ProcessManager Excepti on;
twoCurrent: < ProcessManager Excepti on
do ...; INNER
#);

stop: (* stops this(Process)'s program execution *)
(# error:< ProcessManager Excepti on;
do ...; INNER
#);

awai t St opped: (* Returns when THI S(Process) stops *)
(# error:< ProcessManager Excepti on;
do ...; INNER
#);

still Running: (* Returns true if TH S(Process) is still running*)
(# error:< ProcessManager Excepti on;
val ue: @Bool ean;

do ...; INNER
exit val ue
#)

(* input/output redirection *)

connect ToPr ocess:
(* connect output of this(process) to toProcess's input
* In Unix terms: this(Process) | toProcess



Interface Description

*

(# error: < ProcessManager Excepti on;
t oProcess: “Process;

enter toProcess|]

do ...;

#);

connect | nPi pe:
(* connect output of fronmProcess to input of this(process)
* In Unix terms: fronmProcess | this(Process)
*
(# error: < ProcessManager Excepti on;
fromProcess: "Process;
enter fronProcess|]
do ...;
#);

redirect FronFil e:
(* redirect input to this(process) frominputFile
* In Unix terms: this(Process) < inputFile
*
(# error: < ProcessManager Excepti on;
inputFile: “File;
enter inputFile[]
do ...;
#);

redi rect ToFi | e:
(* redirect output of this(process) to outputFile
* |n Unix terms: this(Process) > outputFile
*
)
(# error: < ProcessManager Excepti on;
outputFile: "File;
enter outputFile[]
do ...;
#);

r edi r ect Fr onChannel :
(* redirect input to this(process) frominputChannel *)
(# error: < ProcessManager Excepti on;
i nput Channel : ~Stream
ent er i nput Channel []
do ...;
#)

redi rect ToChannel :
(* redirect output of this(process) to outputChannel *)
(# error: < ProcessManager Excepti on;
out put Channel : ~Stream
ent er out put Channel []
do ...;
#)

(* Virtual callbacks: called when the proper action has occurred *)

onStart:< (# do | NNER #);
onStop: < (# do I NNER #);

doDebug: @Bool ean;
private: @..;
#);

Pr ocessManager Excepti on: Exception
(# message: "Text;
ent er nessagel]
do ...;



48

Process Library

| NNER:
#),

9.9 systemComm

(*

* 0% X Sk kX X X X kX

*

E o S B R I I B N I R T T B I N R R T R R B T N B R N R

Expect ed context:

I nstances of the patterns of this fragnent are expected to be
executed from conponents (co-routines). Whenever an operation
is about to block, the current component will be suspended.

It will be resumed sone tine |ater, when the requested IO

is available. This means that comunication rel ated
functionality can be witten in a sinple, blocking style; it
wi || behave approximately as if the schedul er were preenptive.

Comuni cati on concepts:

Pi pe: Conmuni cati on channel between two processes.
For pure standard comuni cation, using standard input/output.
Both processes are unaware of the identity of their
comuni cati on partner.

Socket: A stream conceptually an endpoint of a two-way
conmini cation line. Two endpoints are connected by letting
an ActiveSocket connect to a PassiveSocket. The
Passi veSocket just waits for the ActiveSocket to connect.
After connection both sockets can read/wite on their
streans.

Socket Generators are used in client/server type comunication
Sockets are divided into the categories stream socket and binary
socket .

St ream socket s:

A stream socket is suitable for transferring data, which is
readabl e for human beings, like the data transferred in a UNI X
"tal k' session, or like the more formal comunication between a
mai | program and an SMIP mail server. A stream socket is a stream
so you may 'put', 'get' etc. However, don't use this kind of socket
when transferring data which nmay contain zero-val ued bytes, such as
arbitrary binary data.

Bi nary sockets:

A binary socket is guaranteed to transfer any given bl ock of
arbitrary bytes unnodified, but you nust always specify the

l ength of the data bl ock, both for sending and receiving. You nmay
'readData' and 'witeData' on a binary socket, which constitutes
the | owest |evel interface.

The operations 'getBlock' and 'putBl ock' provide support for

a very sinple, binary data transfer protocol. In this protocol
all data is transferred in blocks with the follow ng | ayout:

The '"len' field is a four byte integer value, in big-endian byte



Interface Description 49

L S T T R R R N I R S S N N N I T TR N S N R I R R N N N N . N N N I TR T R R

order. The 'header' field is a four byte big-endian integer val ue,
identifying the kind of data in the 'data' field, the purpose

of the block, or whatever. The 'data' field length is 4*' len'
bytes. The sender and the recipient nust agree on the
interpretation of the 'header' and 'data' fields, which is left
unspecified by this protocol

The operations 'putRep' and 'getRep' are provided for transferring
data to and from a ExtendedRepstream object, using this protocol
The usage of this level of functionality is recommended whenever
possi ble, as it encapsul ates (and hides) references to raw nenory
addr esses.

The operations 'putRepObj' and 'getRepOhj' are similar to 'putRep'
and 'getRep', apart from (1) The objects sent or received are

i nstances of the pattern RepetitionCbject. (2) the protocol has
no header field, and the length field is the first elenent in

the repetition fromthe repetitionCbject:

O herwise, it is |ike the above protocol

The 'Idle' patterns:

Many operations on sockets have an 'ldle" virtual pattern

It may be executed one or nore tinmes if the operation cannot
finish right away. This is not guaranteed to happen, so don't
rely on 'lIdle being executed even once. Extend this virtua

to keep your application "alive" during a (possibly) |enghty
operation. Don't execute operations on this(Socket) in an
enclosed 'Idle'. Don't stop the operation fromw thin an '"Idle -
the operation is unfinished; you may for instance have received
hal f a bl ock, which nakes the stop a serious break wt the
protocol ; use 'nonBl ocki ngScope' and ' Bl ocking' for this purpose.

The ' nonBl ocki ngScope' and ' Bl ocki ng' patterns:

The ' nonBl ocki ngScope' pattern is used for specifying non-bl ocki ng
communi cati on. This neans that operations which cannot begin

right away are discontinued. An exanple is: W try to read froma
socket, but no data at all is available to read. If any

i rreversi bl eacti ons have been taken in an operation (e.g. reading a
few bytes), it will not be interrupted by the 'nonBl ocki ngScope’
mechani sm This nmeans it is always safe to interrupt an operation
by enclosing it in a 'nonBl ocki ngScope', and to retry it later

Wth each 'lIdle'" pattern conmes a 'Blocking' virtual. This is
executed if the current operation is blocking, i.e. if nothing can
be done right away. You may extend this virtual to take sonme action
in response to the operation being blocked. If the operation is
encl osed in a 'nonBl ocki ngScope', your 'Bl ocking' -code gets
executed imedi ately before the operation is interrupted. If you
don't want to interrupt the operation, execute 'continue' in the
ext endi ng of ' Bl ocking'.

USAGE: Nornally the comunication will be blocking. But if you
encl osean operation in a specialization of 'nonBl ocki ngScope', we
'l eave' the 'nonBl ocki ngScope' at the first blocking condition
PLEASE NOTE: it is unsafe to execute a 'leave' statenent which

| eaves a 'nonBl ocki ngScope'. If you need to leave it, execute

'l eaveNBScope' . The normal usage with and w t hout

" nonBl ocki ngScope' | ooks like this:



50

Process Library

BLOCKI NG STYLE

nmySt reanSocket . getLine waits until data has arrived
-> react Onl nput ; al ways execut ed

react SoneMor e; al ways execut ed
doQx her Thi ngs;

NONBLOCKI NG STYLE
nmy St r eanSocket . nonBl ocki ngScope

(#

do
nyStreantSocket . getLine if no data: |eave scope at once
-> react Onl nput ; only executed if data avail able
react SoneMor e; only executed if data avail able

#)

doOQx her Thi ngs;

Wth sonme patterns, it is not possible to have a virtual 'Bl ocking'
or 'Idle' pattern. This is because an enter paraneter for the
operation is supposedly the address of a beta object. Having taken
this, it is unsafe to create objects during the execution of the
operation. An exanple is 'BinarySocket.witeData' . However,

encl osi ng such operations in a 'nonBl ocki ngScope' does cause the
operation to behave in a non-bl ocki ng manner.

Lo T . R T R S B N N N B R R T

Excepti on Handl i ng

*

Uses error call backs. Read about these in 'errorCall back. bet'.

The error call backs used have the foll ow ng neaning:

Error call back nane Meani ng

accessError I nsufficient access rights

addr essError Address (i.e. (host,port)) in use or
invalid

badMsgErr or (hardly docunented in man page)

connBr okenErr or The connecti on has become unusabl e

eosError End- of - st r eam

get Host Err or Error when getting hostnane

i nternal Error Shoul d not happen; please report if it
does!

intrError Qperation interrupted by signa

ref usedErr or Connection refused by peer

resour ceError Too few file descriptors/buffers etc.

ti medCut Specified tineout period has expired

ti medQut | nTransfer Ti med out, and sone data have been
transferred

unknownEr r or OS reports unknown errno (new OS?)

usageError Eg: you nust initialize port before

connecti ng

L T B S T R S R R SR . B N N N N N N S N I N R

nospacekrr or (Streantocket) returned by op. on
fdStream

ot her Error (StreanSocket) from fdStream

r eadEr r or (Streantocket) from fdStream

writeError (Streantocket) from fdStream

accessError (al so occurs as an fdStream error)

)

wai t Forever: (* Default for timeouts *)
I nt eger Val ue(# do -1->val ue; | NNER #);

assi gnCGuard: (# assigned: @ool ean do true -> assigned #);



Interface Description

51

propagat eException: (# nsg: "~Text enter nsg[] do I NNER #);

pi pe:
(* The pipe is a conposition of two interconnected one way streans.
* What is witten on 'witeEnd' can subsequently be read
* from'readEnd'.
*
(#
(* operations *)
init:<(# error:< propagat eException(# do | NNER, ...#);

do ...
#)
(* 111 exceptions *)
pi peException: Exception
(#
enter nsg
do (if nsg.enpty//false then nsg.newline if);
I NNER;
#)

pi peError: < Pi peExcepti on;

(* attributes *)
readEnd: ~Stream
witeEnd: ~Stream

(* private *)
private: @..;
#); (* pipe *)

St reanSocket: Stream

(#
(* basics *)
wi t hPE:
(# error:< hiErrCB (* operation level error callback *)
(#
do | NNER;

(if errCB_initialValue // value then
(val ue, cl eanup[]) - >t hi s(StreantSocket) . error->val ue;

if);

#);
| oErrCB: errCB (*superpattern for concrete error call backs*)

(#
do | NNER,

(if errCB_initialValue // value then

(val ue, cl eanup[]) ->error->val ue;

if);

#)

accessError: < | oErrCB(# do | NNER #);
nospaceError: < | oErrCB(# do | NNER #);
writeError:< | oErrCB(# do | NNER #);
usageError: < | oErrCB(# do | NNER #);
otherError: < | oErrCB(# do | NNER #);
tinmedQut: < | oErrCB(# do | NNER #);
ti meout: @ nteger;
enter timeout

do | NNER

#)

Basi cBl ocki ng:

(# continue: (# do true->doContinue #);
doCont i nue: @ool ean;
dol dl e: < bj ect;

do | NNER;
(if doContinue//false then | eaveNBScope if);
dol dl e;



52 Process Library

#)
Idle:< bject; (* every local 'Idle' executes this global one *)
ti meout Val ue: < wai t Forever; (*length in seconds, all operations*)

(* operations *)
saneConnecti on: bool eanVal ue
(* do "this' and 'other' wap the sane OS | evel connection? *)
(# other: "StreanBocket;
enter other[]
#) ;
get Port abl eAddr ess:
(# addr: ~portabl ePort Addr ess;
dopart: @..;
do dopart
exit addr[]
#);
open: withPE
(# lIdle:< (# do INNER;, this(StreanBSocket).ldle #);
Bl ocki ng: < Basi cBl ocki ng(# doldle::< (# do ...#) do INNER #);
do ...
#);
cl ose: < wit hPE
(#
do ...
#)
flush: wthPE
(# ldle:< (# do INNER, this(StreanBSocket).ldle #);
Bl ocki ng: < Basi cBl ocki ng(# doldle::< (# do ...#) do INNER #);
dopart: @..;
do dopart
#)
put::
(# ldle:< (# do INNER, this(StreanBSocket).ldle #);
Bl ocki ng: < Basi cBl ocki ng(# doldle::< (# do ...#) do INNER #);
error:< hiErrCB (* operation |level error callback *)
(#
do | NNER;

"
| oErrCB: errCB (*superpattern for concrete error call backs*)
(#
do | NNER;

#)
witeError:< | oErrCB(# do | NNER #);
timedQut: < | oErr CB(# do | NNER #);
dopart: @..;
do dopart

(#.Idl e:< (# do INNER, this(StreantSocket).ldle #);
Bl ocki ng: < Basi cBl ocki ng(# doldle::< (# do ...#) do INNER #);
error:< hiErrCB (* operation |level error callback *)

(#

do | NNER;

"
| oErrCB: errCB (*superpattern for concrete error call backs*)
(#
do | NNER;

"
readError: < | oErr CB(# do | NNER #);
eosError: < | oErrCB(# do | NNER #);
connBrokenError: < | oErrCB(# do | NNER #);



Interface Description

53

tinmedQut: < | oErrCB(# do | NNER #);
dopart: @..;
do dopart
#)
peek: :
(# ldle:< (# do INNER, this(Streanocket).ldle #);
Bl ocki ng: < Basi cBl ocki ng(# doldle::< (# do ...#) do | NNER #);
error:< hiErrCB (* operation |evel error callback *)
(#
do | NNER;

#);._
| OErrCB: errCB (*superpattern for concrete error call backs*)
(#
do | NNER;

#) ;
readError: < | oErrCB(# do | NNER #);
eosError: < | oErr CB(# do | NNER #);
connBrokenError: < | oErrCB(# do | NNER #);
timedQut: < | oErr CB(# do | NNER #);
dopart: @..;
do dopart
#)
eos::
(# Idle:< (# do INNER this(StreantSocket).Idle #);
Bl ocki ng: < Basi cBl ocki ng(# doldle::< (# do ...#) do | NNER #);
error:< hiErrCB (* operation |level error callback *)
(#
do | NNER;

#);.“
| oErrCB: errCB (*superpattern for concrete error call backs*)
(#
do | NNER,

#);
connBrokenError: < | oErrCB(# do | NNER #);
internal Error: < [ oErr CB(# do | NNER #);
unknownError: < | oErrCB(# do | NNER #);
dopart: @..;
do dopart
#)
put Text : :
(# Idle:< (# do INNER this(Streantocket).Idle #);
Bl ocki ng: < Basi cBl ocki ng(# doldle::< (# do ...#) do I NNER #);
error:< hiErrCB (* operation |level error callback *)
(#
do | NNER;

#);._
| oErrCB: errCB (*superpattern for concrete error call backs*)
(#
do | NNER;

#);
witeError:< | oErrCB(# do | NNER #);
timedQut: < | oErrCB(# do | NNER #);
dopart: @..;
do dopart
#);
get Li ne:
(# Idle:< (# do INNER this(Streantocket).Ildle #);
Bl ocki ng: < Basi cBl ocki ng(# doldle::< (# do ...#) do | NNER #);
error:< hiErrCB (* operation |level error callback *)
(#



Process Library

do | NNER;
"
| oErrCB: errCB (*superpattern for concrete error call backs*)
((jﬁ | NNER;
4

readError: < [ oErrCB(# do | NNER #);
eosError: < | oErrCB(# do | NNER #);
connBrokenError: < | oErr CB(# do | NNER #);
timedQut: < | oErrCB(# do | NNER #);
dopart: @..;
do dopart
#)
get Atom :
(# ldle:< (# do INNER, this(StreanSocket).ldle #);
Bl ocki ng: < Basi cBl ocki ng(# doldle::< (# do ...#) do INNER #);
error:< hiErrCB (* operation level error callback *)
(#
do | NNER;

"
| oErrCB: errCB (*superpattern for concrete error call backs*)
(#
do | NNER;

#);
readError: < | oErr CB(# do | NNER #);
eosError: < | oErrCB(# do | NNER #);
connBrokenError: < | oErrCB(# do | NNER #);
timedQut: < | oErr CB(# do | NNER #);

dopart: @..;
do dopart
#);
forceTinmeout:< (# do ... #);
usageTi nestanp: < integerValue(# ... #);

(* nonBl ocki ngScope support *)

(* don™t 'leave' a 'nonBlockingScope'. Use 'l eaveNBScope' *)
nonBl ocki ngScope: (# do ... #);

| eaveNBScope: (# do ... #);

(* socket level error callback *)
error:< hi ErrCB(# do | NNER #);

(* attributes *)

host: @ssignGuard(# t: @ext; enter t exit t #);

port: @ssignGuard(# rep: @nteger enter rep exit rep #);

i net Addr: @ssignGuard(# rep: @nteger enter rep exit rep #);

(* private *)
private: @..;
#); (* StreanBocket *)

Bi nar ySocket :

(#
(* basics *)
wi t hPE:
(# error:< hiErrCB (* operation level error callback *)
(#
do | NNER;
#)....

| oErrCB: errCB (*superpattern for concrete error call backs*)
(#



Interface Description

55

do | NNER;

#);

timedQut: < | oErr CB(# do | NNER #);
timedQutInTransfer:< | oErrCB(# do | NNER #);
internal Error:< | oErrCB(# do | NNER #);
connBrokenError: < | oErrCB(# do | NNER #);
usageError: < | oErrCB(# do | NNER #);
unknownError: < | oErrCB(# do | NNER #);
ti meout: @ nteger;

enter timeout

do | NNER

#);

wi thldle: wthPE

(# Idle:< (# do INNER this(BinarySocket).Ildle #);

Bl ocki ng: <(# continue: (# do true->doContinue #);
doConti nue: @ool ean;

do | NNER
(if doContinue//false then | eaveNBScope if);
I dl e;
#)
do | NNER

#)
repl G withldle
(* Abstract pattern. Read/wite a block to/from'rep',
* returning/using 'header'. The length of the block is
* stored in/retrived from'rep.end' .
*
(# resourceError:< | oErrCB(# do | NNER #);
badMsgError: < | oErr CB(# do | NNER #);
rep: "“Ext endedRepstream
header: @ nteger;
enter rep[]
do | NNER
#)
repj1 G withldle
(* Abstract pattern. Read/wite a block to/from'rep',
* The length of the block is stored in/retrived from
* 'rep.end'.
*
(# resourceError:< | oErrCB(# do | NNER #);
badMsgError: < | oErr CB(# do | NNER #);
rep: “Repetitionject;
enter rep[]

do | NNER
#)
Idle:< Cbject; (* every local 'Idle executes this global one *)

(* operations *)
saneConnection: bool eanVal ue
(* do "this' and 'other' wap the sane OS | evel connection? *)
(# other: "BinarySocket;
enter other[]
#);
get Port abl eAddr ess:
(# addr: ~portabl ePort Addr ess;
dopart: @..;
do dopart
exit addr[]
#);
open: withldle(# do ... #);
close:< withldle(# do ... #);
endOf Dat a: @ndCOf Dat aPatt er n;
put Rep: @ut RepPattern;
get Rep: @et RepPattern;



56

Process Library

put RepQhj: @ut RepObj Pattern;

get RepObj : @et Repoj Pattern;
forceTinmeout:< (# do ... #);

usageTi nestanp: < integerValue(# ... #);

endOf Dat aPat t er n:
(* Returns true if no data is inmrediately
* available for reading *)
(# error:< hiErrCB (* operation |level error callback *)
(#
do | NNER;

"
| oErrCB: errCB (*superpattern for concrete error callbacks*)
(#
do | NNER;

#),
connBrokenError: < | oErrCB(# do | NNER #);
internal Error: < | oErr CB(# do | NNER #);
unknownError: < | oErrCB(# do | NNER #);
val ue: @ool ean;
dopart: @..;
do dopart
exit val ue
#) ;
put RepPattern: replO
(* Read to ExtendedRepstream using
* above nentioned binary protocol
*
(# dopart: @..;
enter header
do dopart
#) ;
get RepPattern: replO
(* Wite ExtendedRepstream contents
* using above nentioned binary protocol
*
(# dopart: @..;
do dopart
exit header
#);
put RepChj Pattern: repojl O
(* Read to RepetitionOoject, using headerless protocol *)
(# dopart: @..;
do dopart
#) ;
get RepCbj Pattern: repjl O
(* Wite RepetitionCbject, using headerl ess protocol *)
(# dopart: @..;
do dopart
#);

(* nonBl ocki ngScope support *)

(* don't 'leave' a 'nonBlockingScope'. Use 'l eaveNBScope'. *)
nonBl ocki ngScope: (# do ... #);

| eaveNBScope: (# do ... #);

(* socket |evel error callback *)
error:< hi ErrCB(# do | NNER #);

(* attributes *)

host: @ssignGuard(# t: @ext; enter t exit t #);

port: @ssignGuard(# rep: @nteger enter rep exit rep #);

i net Addr: @ssignCGuard(# rep: @nteger enter rep exit rep #);



Interface Description

57

(* private *)
private: @..;
#); (* BinarySocket *)

ActiveStreanSocket: StreanSocket
(* Initiator of socket comunication. Initialize 'host' and 'port'
* and 'connect' to a passive socket to establish conmunication.
*
(#
(* operations *)
connect: open
(# resourceError:< | oErrCB(# do | NNER #);
addressError: < | oErrCB(# do | NNER #);
refusedError: < | oErrCB(# do | NNER #);
intrError:< | oErrCB(# do | NNER #);
get HostError: < | oErrCB(# do | NNER #);
connBrokenError: < | oErrCB(# do | NNER #);
unknownError: < | oErrCB(# do | NNER #);
internal Error: < | oErrCB(# do | NNER #);

dopart: @..;
enter (host, port
do dopart

#);
#); (* ActiveStreantocket *)

Act i veBi narySocket: Bi narySocket
(* Initiator of socket communication. Initialize 'host' and 'port’
* and 'connect' to a passive socket to establish comrunication.
*
(#
(* operations *)
connect: open
(# accessError:< | oErrCB(# do | NNER #);
resourceError: < | oErrCB(# do | NNER #);
addressError: < | oErrCB(# do | NNER #);
refusedError:< | oErrCB(# do | NNER #);
intrError:< | oErrCB(# do | NNER #);
getHostError: < | oErr CB(# do | NNER #);

dopart: @..;
enter (host, port
do dopart

#);
#); (* ActiveBinarySocket *)

Passi veStreanSocket: StreantSocket
(* "bind" to port and 'awaitConnection'. O her executions can then
* connect to the port and comunicate through the passive socket.
* Use a 'nonBl ocki ngScope' to interrupt 'awaitConnection', if no
* connections are being requested.

*

(#
(* operations *)
bi nd:
(# error:< hiErrCB (* operation |level error callback *)
(#
do | NNER;
5
| oErrCB: errCB (*superpattern for concrete error call backs*)

(#
do | NNER;
"

connBrokenError: < | oErrCB(# do | NNER #);
accessError: < | oErrCB(# do I NNER #);
addressError: < | oErrCB(# do | NNER #);



58

Process Library

intrError:< | oErrCB(# do | NNER #);
resourceError: < [ oErrCB(# do | NNER #);
internal Error: < | oErr CB(# do | NNER #);
unknownError: < | oErr CB(# do | NNER #);
usageError: < [ oErrCB(# do | NNER #);
dopart: @..;

enter port

do dopart

#)

awai t Connecti on: open

(# connBrokenError: < | oErrCB(# do | NNER #);
resourceError: < | oErrCB(# do | NNER #);
internal Error:< | oErrCB(# do | NNER #);
unknownError: < | oErrCB(# do | NNER #);

dopart: @..;
do dopart
#);
close::< (# do ... #);
forceTinmeout::< (# do ... #);
usageTimestanp::< (# ... #);

(* private *)
private2: @..;
#); (* PassiveStreanSocket *)

Passi veBi nar ySocket : Bi narySocket
(* "bind" to port and 'awaitConnection'. O her executions can then
* connect to the port and communi cate through the passive socket.

* Use a 'nonBl ocki ngScope' to interrupt 'awaitConnection', if no
* connections are being request ed.
*)
(#
(* operations *)
bi nd:
(# error:< hiErrCB (* operation level error callback *)
(#
do | NNER;
"
| oErrCB: errCB (*superpattern for concrete error call backs*)
(#
do | NNER;
4

connBr okenError: < | oErrCB(# do | NNER #);
accessError: < | oErrCB(# do I NNER #);
addressError: < [ oErrCB(# do | NNER #);
intrError:< | oErrCB(# do | NNER #);
resourcekrror: < | oErrCB(# do | NNER #);
internal Error: < | oErr CB(# do | NNER #);
unknownError: < | oErrCB(# do | NNER #);
usageError: < [ oErrCB(# do | NNER #);
dopart: @..;

enter port

do dopart

#)

awai t Connecti on: open

(# accessError:< | oErrCB(# do | NNER #);
connBrokenError: < | oErr CB(# do | NNER #);
resourceError: < | oErrCB(# do | NNER #);

dopart: @..;
do dopart
#);
close::< (# do ... #);
forceTinmeout::< (# do ... #);

usageTi nestanp::< (# ... #);



Interface Description 59

(* private *)
private2: @..;

#); (* PassiveBi narySocket *)

Socket Gener at or :

(

~

*

FH ok ko 2k X F X 2k X X X X X

Supports creating nultiple connections on a single port nunber;
typically used in an application acting as a server for a nunber
of clients. do 'portNunber -> bind and use "get???Connection”
to establish connections to the clients. Use a 'nonBl ocki ngScope
to avoid waiting if no clients are requesting a connection

"get ???Connection" exits a reference to a "???Socket" associ at ed
with the new connection. You may use this |ike:

nySocket Gener at or . get St r eanConnecti on -> aStreanfSocket Ref[];

If you want to work with a specialization of the basic socket
patterns, extend the virtuals 'streanSocket Type' and/or
' bi narySocket Type' .

)

(* basics *)
st reanBocket Type: < st reantocket ;
bi nar ySocket Type: < bi nar ySocket ;
wi t hl dl eAndPE:
(# error:< hiErrCB (* operation level error callback *)
(#
do | NNER;

#);._
| oErrCB: errCB (*superpattern for concrete error call backs*)
(#
do | NNER;

#);
usageError: < | oErrCB(# do | NNER #);
resourceError: < | oErrCB(# do | NNER #);
accessError: < | oErrCB(# do | NNER #);
addressError: < | oErrCB(# do | NNER #);
connBrokenError: < | oErr CB(# do | NNER #);
intrError:< | oErrCB(# do | NNER #);
internal Error: < | oErrCB(# do | NNER #);
unknownError: < | oErrCB(# do | NNER #);
timedQut: < | oErr CB(# do | NNER #);
Idle:< (# do INNER; this(socketCGenerator).ldle #);
Bl ocki ng: <(# continue: (# do true->doContinue #);

doConti nue: @ool ean;

do | NNER;
(if doContinue//false then | eaveNBScope if);
I dl e;
#) ;
do | NNER
#)
Idle:< Object; (* every local 'Idle' executes this global one *)

(* operations *)
get Port abl eAddr ess:
(# addr: ~portabl ePort Address;
dopart: @..;
do dopart
exit addr[]
#)
bi nd: wi t hl dl eAndPE
(# dopart: @..;
enter port



60

Process Library

#)

do dopart
#);
cl ose: withldl eAndPE
(# dopart: @..;
do dopart
#) ;
get StreanConnecti on: withl dl eAndPE
(# sock: ~streanBSocket Type;
ti meout: @ nteger;
dopart: @..;
enter timeout
do dopart
exit sock[]
#)
get Bi nar yConnecti on: withl dl eAndPE
(# sock: "binarySocket Type;
ti meout: @ nteger;
dopart: @..;
enter timeout
do dopart
exit sock[]
#),
forceTineout: @
(# dopart: @..
do dopart
#);
usageTi nest anp: @ nt eger Val ue
(#
#);

(* nonBl ocki ngScope support *)

(* don™t 'leave' a 'nonBlockingScope'. Use '|eaveNBScope'. *)
nonBl ocki ngScope: (# do ... #);

| eaveNBScope: (# do ... #);

(* socket level error callback *)
error:< hi ErrCB(# do | NNER #);

(* attributes *)

host: @ssignGuard(# t: @ext; enter t exit t #);

port: @ssignGuard(# rep: @nteger enter rep exit rep #);

i net Addr: @assignCGuard(# rep: @nteger enter rep exit rep #);

(* private *)
private: @..;



References

[Knudsen 94]

[Madsen 93]

[MIA 90-1]

[MIA 90-2]

[MIA 91-20]

[MIA 94-24]

[MIA 93-25]

[MIA 94-26]

J. L. Knudsen, M. Léfgren, O. L. Madsen, B. Magnusson
(eds.): Object-Oriented Environments — The Mjginer Ap-
proach, Prentice Hall, 1994, ISBN 0-13-009291-6.

O. L. Madsen, B. Mdller-Pedersen, K. Nygaard: Object-
Oriented Programming in the BETA Programming Lan-
guage, Addison-Wesley, 1993, ISBN 0-201-62430-3

Mjglner Informatics. The Mjglner BETA System: —
Overview, Mjglner Informatics Report MIA 90-1.

Mjeglner Informatics: The Mjglner BETA System: BETA
Compiler Reference Manual Mjginer Informatics Report
MIA 90-2.

Mjgalner Informatics. The Mjglner BETA System — Persis-
tent Sore, Mjglnerinformatics Report MIA 91-20.

Mjglner Informatics. The Mjglner BETA System — The
Mjginer BETA System Tutorial, Mjgnerlnformatics
Report MIA 94-24.

Mjglner Informatics:. The Mjginer BETA System -
Distribution Mjglnerlnformatics Report MIA 94-25.

Mjealner Informatics. The Mjglner BETA System — BETA
Language Introduction Mjginerinformatics Report MIA
94-26.

61






Index

The entries in the index with italic pagenumbers are the identifiers defined in

the public interface of the libraries:

The minor level entries refer to identifiers defined local to the identifier of the
major level entry. For those index entries referring to patterns with super- or
subpatterns within the library, these patterns are specified in special sections of

the minor level index for that identifier.

Entries with plain pagenumbers refer to the text of this manual.

addMsg 43

addr 28

addresses 15

argType 46

argument 46

assigned 34; 50
AssignGuard 10; 34; 50

. assigned 34; 50

asText 28; 30

asTextPattern 28; 29; 30; 31
awaitConnection 38; 39; 58
awaitStopped 2; 46
BasicBlocking 35; 51
Binary socket 5
binaryConnectionPool 18; 41
. close 42

. communication 41

. error 42

. . Superpattern:

... hiErrCB 60

.init 41

. markAsDead 42

. private 42

. removeSomeConnection 42
. socketType 41
binarySocket 6; 10; 36; 54

. Subpatterns:

.. ActiveBinarySocket 38; 57
.. PassiveBinarySocket 39; 58
. bSocketException 38

. . Superpattern:

.. . Exception 60

. close 36; 55

. . Superpattern:

... withldle 36

. endOfData 37; 55

. endOf DataPattern 56

. error 56

. . Superpattern:

... hiErrCB 60

. forceTimeout 56

63

. getBlock 37

. getBlockLen 37

.. Superpattern:

... withldle 36

. getBlockRest 37

. getPortableAddress 55
. getRep 37; 55

.. Superpattern:

... replO 36

. getRepObj 56

. getRepObjPattern 56
.. Superpattern:

... repObjl0 55

. getRepPattern 56

.. Superpattern:

... replO 36

. host 56

. ldle 36; 55

. inetAddr 56

. leaveNB Scope 38; 56
. nonBlockingScope 38; 56
. open 36; 55

. . Superpattern:

... withldle 36

. otherError 38

. port 38; 56

. private 38; 57

. putBlock 37

. putRep 37; 55

.. Superpattern:

... replO 36

. putRepObj 56

. putRepObj Pattern 56
. . Superpattern:

... repObjl0 55

. putRepPattern 56

. . Superpattern:

... replO 36

. rawlO 36

. . Superpattern:

... WithPE 36



64

Process Library

. readData 37

. replO 36; 55

. . Superpattern:

... withldle 36

.. Subpatterns:

... QetRep 37

.. . getRepPattern 56
... putRep 37

.. . putRepPattern 56

. repObj1 O 55

. . Superpattern:

... withldle 36

.. Subpatterns:

. . . getRepObj Pattern 56
. . . putRepObjPattern 56
. sameConnection 55

. . Superpattern:

.. . booleanVaue 60

. usageTimestamp 56
.. Superpattern:

... integerVaue 60

. withldle 36; 55

. . Superpattern:

... WithPE 36

.. Subpatterns:

... close 36; 55

... getBlockLen 37
... open 36; 55

... replO 36; 55

... repObjl0 55

. WithPE 36; 54

.. Subpatterns:
...rawlO 36

... withldle 36; 55

. writeData 37
binarySocketType 39; 59
bind 38; 39; 57; 58; 59
bSocketException 38
bufferiD 31

Bugs and Inconveniences 25
Categories of Errors 13
cleanup 43; 44

close 35; 36; 38; 39; 42; 52; 55; 58; 60

co-routines 9; 20
commAddress 15
commError_connBroken 31
commError_connRefused 31
commError_noError 31
commeError_noHost 31
commError_nomoreSockets 31
commError_timeOut 31
commProtName_mem 32
commProtName_ppc 32
commProtName_tcp 32
commProtName_udp 32
commProtName_unix 32
commProtocol _dontcare 32
commProtocol _mem 32
commProtocol_ppc 32
commProtocol_tcp 32

commProtocol _udp 32
commProtocol _unix 32
commRely_contents 32
commRely_dontcare 32
commRely_dup 32
commRely_loss 32
commRely_order 32
commRely_reliable 32
commRely_unreliable 32
communication 41
ConcretePortAddress 16; 30
. Subpatterns:

.. memPortAddress 31

.. ppcPortAddress 31

.. unixAbstractPortAddress 30
.. unixPortAddress 30

. asText 30

. asTextPattern 30

. conformsTo 30

. . Superpattern:

... BooleanValue 60

. private 30

. protName 30

. protocol 30

concurrency control 18
conformsTo 30

connect 38; 57
connectlnPipe 47
connectToProcess 46
continue 43; 44

cType 27

delete 29

demo 22

doDebug 47

endOfData 6; 37; 55
endOf DataPattern 56
enterSpec 28

eos 35; 53

errCB 43

. Super pattern:

.. IntegerVaue 43

. abort 43

.addMsg 43

. Cleanup 43

. continue 43

. exceptionType 43

. fatal 43

. private 43
errCB_abortOperation 43
errCB_abortProgram 43
errCB_continueOperation 43
errCB_initiadVaue 43
error 7; 12; 42; 54; 56; 60
errorCallback 12
Exception

. Subpatterns:

.. OSError 45

.. ProcessManagerException 47
exceptionType 43
ExtendedRepstream 7



Index

65

fatal 43; 44

flush 35; 52

ForceTimeout 10; 54; 56; 58; 60
get 35; 52

getAtom 10; 35; 54
getBinaryConnection 40; 60
getBlock 7; 37
getBlockLen 37
getBlockRest 37
getHostAddr 45

getLine 10; 35; 53
getMemPort 29
getPortableAddress 10; 52; 55; 59
getPpcPort 29

getRep 7; 11, 37; 55
getRepObj 56
getRepObjPattern 56
getRepPattern 56
getStreamConnection 40; 60
getTcpPort 29

getUdpPort 29
getUnixPort 29

hiErrCB 44

. Super pattern:

.. IntegerObject 44

. abort 44

. Cleanup 44

. continue 44

. fatal 44

host 31; 38; 54; 56; 60
hostMachine 3; 45
hostName 45

id 44

idle 8; 35; 36; 39; 52; 55; 59
idSchedElement 44

.id44

. suspend_sem 44
idScheduler 20; 44

. Subpatterns:

.. iIdTimeoutSchedul er 44
.id_resume 44

. . Superpattern:

... prefix 44

.id_suspend 44

. . Superpattern:

... prefix 44

.init 44

. isElement 44

. prefix 44

.. Subpatterns:
...id_resume 44

... id_suspend 44

. private 44
idTimeoutScheduler 20; 44
. super pattern:

.. idScheduler 44

. id_timeoutSuspend 44

. . Superpattern:

... prefix 60

.init 44

. private2 45

id_resume 20; 44
id_suspend 20; 44
id_timeoutSuspend 44
id_timeoutSuspended 20
inetAddr 11; 30; 54; 56; 60
init 28; 34; 41; 44, 45; 46; 51
insert 28; 29

IntegerObject

. Subpatterns:

.. hiErrCB 44
IntegerVaue

. Subpatterns:

.. errCB 43

.. waitForever 50

I nter-process communication 4
isElement 44
leaveNBScope 11; 36; 38; 40; 54; 56;
60

MacTCP 17

markAsDead 19; 42
maxWait 34
memPortAddress 31

. Superpattern:

.. concretePortAddress 31
. asTextPattern 31

. bufferID 31

. protName 31

. protocol 31

message 45; 47

monitor 9

msg 34; 51

name 46
NonBlockingScope 6; 11; 36; 38; 40;
54; 56; 60

onStart 2; 47

onStop 47

open 35; 36; 52; 55
OSError 45

. Superpattern:

.. Exception 45

. message 45

osinterface 45

. getHostAddr 45

. hostMachine 45

. hostName 45

.init 45

. thisProcess 45

otherError 36; 38; 40
parseError 28
passiveBinarySocket 5; 39; 58
. Superpattern:

.. BinarySocket 39

. awaitConnection 39; 58
.. Superpattern:

... open 60

. bind 39; 58

. close 39; 58

. forceTimeout 58

. private2 39; 59



66

Process Library

. usageTimestamp 58

passiveStreamSocket 5; 7; 11; 38; 57

. Superpattern:

.. StreamSocket 38

. awaitConnection 38; 58

. . Superpattern:

... open 60

. bind 38; 57

. close 38; 58

. forceTimeout 58

. private2 39; 58

. usageTimestamp 58
pathName 30

peek 35; 53

pipe 6; 10; 34; 51

.init 34; 51

. pipeError 34; 51

. pipeException 34; 51

.. Superpattern:

.. . Exception 60

. private 35; 51

. readEnd 35; 51

. writeEnd 35; 51

pipeError 34; 51
pipeException 34; 51
Pipes4

port 11; 36; 38; 40; 54; 56; 60
portableCommAddress 16; 28
. Subpatterns:

. . portableMultiAddress 28

. . portablePortAddress 29

. asText 28

. asTextPattern 28

. enterSpec 28

.init 28

. private 28
portableCommAddressFromText 28
. addr 28

. parsekError 28

. txt 28
portableCommunicationAddress 12
portableMultiAddress 16; 28
. Superpattern:

.. portableCommAddress 28
. asTextPattern 29

. delete 29

.init 28

.insert 28

. private2 29
portablePortAddress 16; 29

. Superpattern:

.. portableCommAddress 29
. asTextPattern 29

. delete 29

. getMemPort 29

. getPpcPort 29

. getTcpPort 29

. getUdpPort 29

. getUnixPort 29

.insert 29

. private2 30

portNo 30; 31
ppcPortAddress 31

. Super pattern:

.. concretePortAddress 31
. asTextPattern 31

. host 31

. portNo 31

. protName 31

. protocol 31

.sessionld 31

prefix 44

private 28; 30; 35; 36; 38; 40; 42; 43;
44; 47; 51, 54; 57; 60
private2 29; 30; 39; 45; 58; 59
process 2; 46

.argType 46

. argument 46

. awaitStopped 46

. connectInPipe 47

. connectToProcess 46

. doDebug 47

.init 46

. hame 46

.onStart 47

. onStop 47

. private 47

. redirectFromChannel 47
. redirectFromFile 47

. redirectToChannel 47

. redirectToFile 47

. Start 46

. stillRunning 46

. stop 46

ProcessM anagerException 47
. Super pattern:

.. Exception 47

. message 47
propagateException 34; 51
. msg 34, 51

protName 30; 31

protocol 30; 31

protocol Spec 15; 27

. CType 27

.IType 27

put 35; 52

putBlock 7; 37

putRep 7; 11; 37; 55
putRepObj 56

putRepObj Pattern 56
putRepPattern 56

PutText 10; 35; 53

rawlO 36

readData 37

readEnd 35; 51
redirectFromChannel 2; 6; 47
redirectFromFile 2; 47
redirectToChannel 2; 6; 47
redirectToFile 2; 47
removeSomeConnection 19; 42



Index

67

repl O 36; 55

repObj10 55

rType 27

sameConnection 10; 52; 55
semaphore 9

sessionid 31

socketGenerator 5; 8; 39; 59
. binarySocketType 39; 59

. bind 39; 59

. . Superpattern:

... withldleAndPE 39

. close 39; 60

. . Superpattern:

... withldleAndPE 39

. error 60

. . Superpattern:

... hiErrCB 60

. forceTimeout 60

. getBinaryConnection 40; 60
. . Superpattern:

... withldleAndPE 39

. getPortableAddress 59

. getStreamConnection 40; 60
. . Superpattern:

... withldleAndPE 39

. host 60

. 1dle 39; 59

. inetAddr 60

. leaveNB Scope 40; 60

. nonBlockingScope 40; 60

. otherError 40

. port 40; 60

. private 40; 60

. socketGeneratorException 40
. . Superpattern:

.. . Exception 60

. streamSocketType 39; 59

. usageTimestamp 60

. withldleAndPE 39; 59

.. Subpatterns:

... bind 39; 59

... close 39; 60

.. . getBinaryConnection 40; 60
.. . getStreamConnection 40; 60
socketGeneratorException 40
Sockets 4

socketType 41
sSocketException 36

start 2; 46

stillRunning 2; 46

stop 46

Stream

. Subpatterns:

.. StreamSocket 35; 51
Stream socket 5
StreamSocket 6; 10; 35; 51

. Super pattern:

.. Stream 35

. Subpatterns:

.. ActiveStreamSocket 38; 57

. . PassiveStreamSocket 38; 57
. BasicBlocking 35; 51
. close 35; 52

. . Superpattern:

... WithPE 35

. e0s 35; 53

. error 54

. . Superpattern:

... hiErrCB 60

. flush 35; 52

. . Superpattern:

... WithPE 35

. forceTimeout 54

. get 35; 52

. getAtom 35; 54

. getLine 35; 53

. getPortableAddress 52
. host 54

. ldle 35; 52

. inetAddr 54

. leaveNB Scope 36; 54
. nonBlockingScope 36; 54
. open 35; 52

. . Superpattern:

... WithPE 35

. otherError 36

. peek 35; 53

. port 36; 54

. private 36; 54

. put 35; 52

. putText 35; 53

. sameConnection 52

.. Superpattern:

.. . booleanVaue 60

. sSocketException 36

. . Superpattern:

.. . StreamException 60
. timeoutValue 52

. usageTimestamp 54

. . Superpattern:

... integerVaue 60

. WithPE 35; 51

.. Subpatterns:
...close 35; 52

... flush 35; 52

... open 35; 52
streamSocketType 39; 59
suspend_sem 44
systemComm 9
systemEnv 9

TCP 17

TCP/IP 15
tcpPortAddress 17; 30

. Superpattern:

.. unixAbstractPortAddress 30
. protName 30

. protocol 30
thisProcess 3; 45
timeout 14
timeoutValue 52



68

Process Library

txt 28

UDP 17

udpPortAddress 17; 30

. Super pattern:

.. unixAbstractPortAddress 30
. protName 30

. protocol 30
unixAbstractPortAddress 17; 30
. super pattern:

. . concretePortAddress 30
. Subpatterns:

. . tcpPortAddress 30

.. udpPortAddress 30

. asTextPattern 30

. inetAddr 30

. portNo 30
unixPortAddress 30

. super pattern:

. . concretePortAddress 30
. asTextPattern 30

. pathName 30

. protName 31

. protocol 31
usageTimeStamp 12; 54; 56; 58; 60
WaitForever 10; 50

. Super pattern:

.. IntegerVaue 50
WaitForlO 6; 34

. maxWait 34

withldle 36; 55
withldleAndPE 39; 59
withPE 35; 36; 51; 54
writeData 37

writeEnd 35; 51



