
The Mjølner BETA System
Process Library

Reference Manual

Mjølner Informatics Report

MIA 94-29(1.0)

September 1995

Copyright © 1990-95 Mjølner Informatics ApS.
All rights reserved.

No part of this document may be copied or distributed
without the prior written permission of Mjølner Informatics

Contents

1 Introduction ...1

2 Manipulating Processes...2
2.1 Child Processes ...2
2.2 This Process and its Environment...3

3 Communicating with other Processes ...4
3.1 Communication Concepts ...4
3.2 The Fragment Communication ...5

3.2.1 The Two Families of Sockets..5
3.2.2 The Patterns of Communication..6
3.2.3 Handling Time with Communication..8

3.3 The Fragment systemComm ...9
3.3.1 The Patterns of SystemComm...10
3.3.2 Error Handling in SystemComm...12

3.4 Timeout Management ...13

4 Addresses...15
4.1 Specification of Connection Requirements...15
4.2 The Abstract Level..16
4.3 The Concrete Level...16

5 Managing a Pool of Connections ..18

6 Managing co-routines..20

7 The Demo Files ...22
7.1 activate ..22
7.2 pipeline, consumer and producer ..22
7.3 exchange..22
7.4 firstProgram and otherProgram...23
7.5 aClient and theServer ..23
7.6 aBinClient and theBinServer ..23
7.7 aRepClient and theRepServer ...23
7.8 chatClient and chatServer ...23
7.9 repChatClient and repChatServer ...24
7.10 idSchedulerDemo..24

8 Known Bugs and Inconveniences ...25

9 Interface Description ...27
9.1 commAddress..27
9.2 commError ..31
9.3 communication..32
9.4 connectionPool..40
9.5 errorCallback...42
9.6 idScheduler..44
9.7 osinterface ...45
9.8 processmanager...45
9.9 systemComm...48

References...61

Index ...63

i

1 Introduction

This document describes the version 1.4 of the process library in the Mjølner BETA
System. This library implements support for manipulating operating system processes
and for communicating with them.

The fragments dealing with the manipulation of processes are processmanager and
osinterface. Processmanager supports starting a child process, stopping it, and
similar things. Osinterface supports getting information about the run-time envi-
ronment of the process itself, such as the name of the host on which it runs.

Processmanag
er and
OSInterface

The fragments dealing with communication between processes are communication
and systemComm. They are very much alike the interface, but they are constructed to
run in different environments:

Communication
and
SystemComm

SystemComm demands that the program uses the BETA simulated concurrency, i.e. the
slot program:descriptor must be a specialization of systemenv. In return, one does
not have to explicitly transfer the thread of control by suspending when a system-
Comm operation is about to block - the systemenv scheduler and systemComm cooper-
ate to make it look like implicit scheduling. This ensures that co-routines which can
proceed with their work will never be prevented from this because of a blocking
communication operation in some other co-routine.

Communication will work independently of systemenv, but here any communication
which cannot be carried out at once will block the program by default. There are no-
tification hooks, which make it possible for the programmer to cancel operations
which are about to block, and other hooks (idle hooks) which make it possible to
keep the program alive while a lengthy operation is proceeding.

Communication is simpler to use for basic tasks, but for more complicated tasks,
systemComm provides a considerably stronger and more flexible base.

Some aspects of support for the communication between processes have been sepa-
rated into the fragments commError, commAddress and errorCallback. CommError
simply defines a number of constants. CommAddress defines a hierarchy of patterns,
which model addresses (destinations for communications) in a platform independent
way. ErrorCallback defines a few patterns used for error handling in this library.

On top of the support for single communication connections, connectionPool im-
plements support for holding a set of connections, and providing concurrency-secure
access to these connections by means of platform independent addresses, i.e. in-
stances of patterns in commAddress. This abstracts away the need to open and close
these connections: if connections to the required destination is available, one of them
will be used, otherwise a new connection will automatically be opened. If the process
hits a maximum limit for the number of open connections, a least recently used (and
currently unused) connection will be closed.

Connections

The last part of the process library extends the systemenv framework for concurrency
within one BETA process. IdScheduler implements support for sub-contracting the
job of the scheduler: Client co-routines can suspend themselves, identifying what they
are waiting for by means of an integer id; later, a managing co-routine can wake up
clients selectively, using such ids.

Extending
systemenv

1

2 Manipulating Processes

First, a bit of terminology. A binary file is a diskfile, from which the operating system
is able to create a process, which is then called an instance of the binary. A process is
a dynamic entity within a computer which has an internal state and may interact with
other processes. So there may be more than one process which is instantiated from
any given binary file, and these processes are by no means the same thing. Here, each
BETA object which is an instance of the pattern process, models one process. If you
want to manipulate more than one instantiation of a given binary, use more than one
process object.

2.1 Child Processes
The fragment processmanager is concerned with child processes. An instance of the
process pattern in this fragment is attached to a binary file by initializing it with a
file specification, like

 '/bin/someApplication' -> aProcess.init;

Process In the following, aProcess denotes an instance of the pattern process, which has
been attached to a binary file.

Arguments and
instantiating

One has the option to set up arguments for an instantiation of the binary, using aPro-
cess.argument.append, once for each argument. Afterwards, the process can be in-
stantiated with aProcess.start. In the following, this instantiation is referred to as
the child process. When it has been started, it is possible to change its life cycle and to
adjust to it: aProcess.stop causes the child process to be killed, aPro-
cess.awaitStopped causes this process to sleep until the child process terminates,
and aProcess.stillRunning is a predicate which returns true if the child process
has not yet terminated.

The onStart virtual is a hook, into which one can put code to be executed immedi-
ately after the child process has been started, and the onStop virtual is a hook which
is executed when stop has stopped the process. Please notice that onStop will NOT
be executed in the (typical) case when the child process terminates for any other rea-
son, e.g. when it terminates normally.

Inter-process
communication

The remaining pattern attributes of process are concerned with inter-process com-
munication. The network of inter-process communication must be defined before the
child processes are started. ConnectToProcess and connectInPipe enter a reference
to another process object and connect the referred child processes in a pipeline.
redirectFromFile arranges for the child process to take standard input from the
specified file, and redirectToFile makes it redirect standard output to the given
file.

Finally, redirectFromChannel enters the writeEnd of a pipe and makes the child
process accept standard input from that pipe, and redirectToChannel enters the
readEnd of a pipe and makes the child process send standard output to it. The en-
tered parameter is declared to be a (specialization of a) stream. The reason for this is
that a future release may accept a broader range of types of objects entered; it should,
for instance, be possible to use sockets.

2

Manipulating Processes 3

2.2 This Process and its Environment
The fragment osinterface contains the pattern osinterface, which supports access
to the run-time environment of this process. To use it, create an instance and initialize
it with init.

Then hostMachine will return a text characterizing the combination of the type of
machine and operating system on which this process runs, such as “sun4s” on a Sun
SparcStation Classic running SunOS 5.3 (Solaris). This is the same as the name of the
architecture dependent directories in the BETA directory hierarchy. HostName returns
the name of this host; getHostAddr returns the internet address of this host, in a for-
mat like “130.225.16.15”. Finally, thisProcess is an instance of process referring
to this process. It is kept around for backwards compatibility but otherwise obsolete:
Scanning the command line arguments to this process is now supported in betaenv,
and the other operations are not relevant on this process, as they must be executed be-
fore the process is actually instantiated.

3 Communicating with
other Processes

Two quite similar libraries are available for exploiting inter-process communication.
This section presents the basic concepts, which apply to both libraries. Two subse-
quent sections describe them in greater detail. At that level, differences exist.

3.1 Communication Concepts
Inter-process communication is usually described as “message based” or as
“connection based”. In both cases, any primitive communication act has a number of
participants, playing roles as the receiving or the transmitting end. In this context,
there will always be exactly one transmitting party and one receiving party. There is
support for specifying a group address, but there is not currently any ready-made im-
plementation of a group communication protocol.

For a message based communication, each message is sent to an explicitly specified
receiver. For a connection based communication, at first a connection between two
parties is established. From that point, messages can be transmitted via this connec-
tion without any explicit reference to their destination. Here, the model of communi-
cation is connection oriented.

Pipes For operating systems that support a notion of standard channels for receiving input
and delivering output and possibly other things, it is possible for the communicating
processes to be unaware (i.e. independent) of the fact that standard input comes from
another process or that standard output goes to another process: It all looks the same
as if the data came from a keyboard and went to a display or whatever. On the other
hand, this level of abstraction implies that the connection lifetime will be the lifetime
of the process and that there cannot be more connections than standard channels. Like
standard output and standard input, each connection only supports sending data in one
direction. Pipes establish this kind of connections. Use the pattern pipe.

Sockets To implement more elaborate patterns of communication, one must be able to create
and destroy connections during the execution of a process, and to explicitly choose
with whom to communicate. Sockets are used for this, and with sockets, every con-
nection is two-way. Sockets come in two main variants: passive and active. A passive
socket is used to define a name, which may be used by active sockets when establish-
ing an actual connection. The interplay is like:

4

Communicating with other Processes 5

Passive: "Here I am! My name is Bob"
...
Active-1: "I want to speak with Bob"
Passive(Bob): "OK, here's a connection"
...
Active-2: "I want to speak with Bob"
Passive(Bob): "OK, here's a connection"
...
Active-3: "I want to speak with Cindy"
(Error: Here's no such thing as "Cindy")
...

I.e. active sockets connect by name, and more than one connection may be established
by means of one passive socket. The “name” is actually a pair whose first part is an
identification of the host (its IP address) and whose second part is an integer (the port
number). This pair is unique for each passive socket, at least from the time where the
operating system accepts registration of the name until the passive socket is closed.
After that, the pair may be reused, that is: the port number may be reused on the given
host, if the operating system wishes to do so.

In this library, sockets are also divided along another axis, namely into stream sockets
and binary sockets. Stream sockets are specializations of the basic stream pattern,
and support textual communication. Binary sockets support transfers of blocks of data
with a well-known size.

The patterns related to these concepts are: activeStreamSocket, activeBina-
rySocket, passiveStreamSocket, passiveBinarySocket and socketGenerator.
SocketGenerators make it possible to establish more than one connection to one
passive socket. PassiveStreamSocket and passiveBinarySocket are a bit simpler
to use, but support only one connection per BETA object.

3.2 The Fragment Communication

3.2.1 The Two Families of Sockets

Basically, communication supports two families of sockets: stream sockets and bi-
nary sockets.

A stream socket is suitable for transferring data which is readable for human beings,
such as the data transferred in a UNIX “talk” session, or the more formal communica-
tion between a mail program and an SMTP mail server. A streamSocket is a
stream, so you may “put”, “get” etc. However, do not rely on this kind of socket to
transfer data which contains zero-valued bytes, as arbitrary binary data may very well
do.

Stream socket

A binary socket is guaranteed to transfer any given block of arbitrary bytes unmodi-
fied, but you must always specify the length of the data block, both for sending and
receiving.

Binary socket

Both stream sockets and binary sockets come in active and passive versions, and then
there are socket generators which are used to generate (stream or binary) sockets
whenever somebody tries to connect. These are the main patterns of the fragment, but
there are a couple of others as well.

In general, you must have a way of choosing either a binary or a stream variant of a
connection to be established, because it is not possible to change a streamSocket
into a binarySocket on the same connection, or vice versa. And each socket object
models one connection, so it is not possible to use the same socket object for several
different connections - use a fresh object each time instead. For socketGenerator, of
course, this one-shot-restriction does not apply. See below.

6 Process Library

In the following, all the top level patterns in the fragment are described in the order of
appearance. After that there is a discussion of how to handle blocking conditions,
which applies to all kinds of socket objects.

3.2.2 The Patterns of Communication

WaitForIO is used to make this process sleep until some socket “known by communi-
cation” has data ready for reading, or a formerly full output buffer is no longer full,
such that some socket can now be written to. Any OS level socket created by means
of communication patterns is known, but if you create other sockets, e.g. by using
external patterns or by linking with a C-library which creates sockets, they will be un-
known. In this case, waitForIO may block the process, even though some communi-
cation could have taken place.

AssignGuard is used to detect wrong usage of other patterns, and propagateExcep-
tion is used in error handling. They have no conceptual significance.

Pipe A pipe must be initialized with init before usage. Then giving a reference to its
readEnd (writeEnd) as enter parameter to redirectFromChannel
(redirectToChannel) of a not yet started process object will attach this pipe to an-
other (not yet created) process. If only one end of the pipe is attached to another pro-
cess, the current process may read from (write to) the other end of the pipe, when the
other process has been created.

StreamSocket
and
binarySocket

StreamSocket and binarySocket are semi-abstract patterns: It is of no use to create
instances of them, but some operations may exit such instances. This is because these
patterns implement all of the functionality used during a connection, but they have no
means for establishing a connection. To establish a connection, one must choose be-
tween playing the passive role or the active role, as described in the preceding section.
This concerns the patterns activeStreamSocket etc. described below. In the follow-
ing paragraph the streamSocket operations are described in order of declaration.

A streamSocket connection may be closed by close. After this point, the stream-
Socket cannot be used for communication, so you can discard it. Flush ensures that
all data in internal buffers of the streamSocket actually gets sent. Put, get and peek
work as with other streams. Eos returns true if no data can be read right now from the
connection. This is radically different from the semantics of (say) text, because with
a streamSocket, eos may be true, and still, at some later point when more data has
arrived, become “spontaneously” false. PutText, getLine and getAtom work like in
other streams.

NonBlockingScope is used to handle blocking conditions, and is discussed below.

Error handling in streamSocket only discovers that something went wrong, and then
terminates the application. To be able to intercept, retry etc. when something goes
wrong in a streamSocket, use systemComm instead of communication.

The operations on a binarySocket are quite different. These operations are primarily
oriented towards transmitting blocks of various kinds of data. In order of declaration:

A binarySocket may be closed, and is of no use after that. The writeData and
readData operations are used for transferring a block of data given as its starting
memory address and the length of the block in bytes. This constitutes the lowest level
interface, and as always when using raw addresses: If it is the address of a BETA ob-
ject, it must be ensured that no garbage collection (GC) can happen from the point at
which the address was taken until the point where it is used. This is a bit tricky to en-
sure because GC happens implicitly. However, only an act of allocation can trigger a
GC, so you will be safe as long as no objects are created during the critical period.
This means that every object involved in the transfer must be instantiated, and only
after that can the address of the BETA object be taken and writeData or readData
executed. WriteData and readData are already instances in every instance of bina-
rySocket.

endOfData returns true if no data is immediately available for reading.

Communicating with other Processes 7

getBlock and
putBlock

The operations getBlock and putBlock provide support for a very simple, binary
data transfer protocol. It supports transfers of blocks of arbitrary length, because the
block length is transmitted along with the block itself for the receiver to read. In this
protocol, all data is transferred in blocks with the following layout:

 len header data
 |--------|--------|---------------------------------|

The len field is a four byte integer value, given in big-endian byte order format. The
header field is also a four byte big-endian integer, and it identifies which kind of data
is in the data field, what purpose the transfer has, or whatever. The data field length
is 4*len bytes long. The sender and the recipient must agree on the interpretation of
the header and data fields, which is left unspecified by this level of the protocol.

Operations getBlockLen and getBlockRest are supplied to make it possible for the
receiver to read the length of the block to be received, then allocate space for it, and
then to receive the block into this space. These two operations will only work mean-
ingfully when used together and in this order.

For all of the operations getBlock, putBlock, and getBlockRest, raw memory ad-
dresses are involved, so the same warnings as with writeData and readData apply.

Rising to a more civilized level, the operations putRep and getRep are used to send
and receive instances of the pattern ExtendedRepstream. This is a generic container
for arbitrary blocks of data, in particular it is possible to put texts and integers into it
and read them out again. When receiving data into an ExtendedRepstream with ge-
tRep, the ExtendedRepstream will automatically be extended in case the received
amount of data exceeds its current capacity.

Extended-
Repstream

About nonBlockingScope, see below.

Error handling in binarySocket comes in two levels. At the socket level, you may
extend the otherError virtual. This virtual will be executed in response to any error
detected during the execution of an operation on the socket, and it is possible to inter-
cept the error by means of a leave imperative in the extending of otherError. Please
note that it is not safe to leave from a nonBlockingScope with leave. For this, use
leaveNBScope. As otherError is an exception, it will terminate the application
unless it is leaved or its continue is assigned the value true.

At the operation level, you may extend error in any operation to take care of errors
occurring during the execution of that specific operation. This is the normal way to
intercept errors, because it is easy to know which operation went wrong, and this
normally influences what is relevant recovery. If error is extended to be leaved, the
socket level otherError will not be invoked. One may think of this as a matter of
precedence: The operation level error handling has higher priority than the socket
level error handling. By default, every communication error terminates the applica-
tion. By extending, this default may be overridden on each of the two levels.

ActiveStreamSocket must have assigned values to its host and port. The host must
be given in a format like “quercus.daimi.aau.dk” or “130.225.16.15”. Depending on
the network topologi and the whereabouts of this process, some prefixes of the first
format may also suffice, notably a format like “quercus”. The port must be an integer.
By convention, port numbers below 5000 are reserved for system administration pur-
poses and for special, well-known services like e-mail and ftp. On the other hand, do
not expect to be able to use more than a 16-bit unsigned value.

ActiveStream-
Socket

Having initialized host and port, the activeStreamSocket may connect to some
existing passive socket, which has been initialized with that port on that host. When
connected, it uses the operations of its superpattern streamSocket to communicate,
as already described. ActiveBinarySocket is used analogously.

For passiveStreamSocket, only port must be assigned. Then bind must be exe-
cuted to establish (<this host>,port) as a passive socket identifier, to which active
sockets may connect. Finally, a connection can be accepted by executing awaitCon-
nection. Again, passiveBinarySocket works analogously. Please note that a pas-

PassiveStream-
Socket

8 Process Library

sive...Socket can only be used for establishing one connection. If you need to es-
tablish more than one connection on some (host,port), use a socketGenerator.

SocketGenerator The last pattern supplied in communication is socketGenerator. This is a factory
from which instances of streamSocket and of binarySocket can be obtained, in re-
sponse to active sockets connecting to the socketGenerator’s port.

As with the passive socket patterns, the port must have some value assigned, and
then bind must be executed. To obtain a streamSocket on the next connection re-
quested, execute getStreamConnection, and to obtain a binarySocket, execute
getBinaryConnection. As usual, when you are done, execute close on the socket-
Generator.

3.2.3 Handling Time with Communication

Often when different processes communicate, it is not possible to predict when data
will be available for reading. When writing, a buffer full condition may arise in the
kernel of the operating system. Also, accepting a connection from an active socket
may happen anytime or never. This means that in most cases, the naive usage of the
functionality described in the previous section leads to blocking conditions: The ap-
plication sits waiting for something to happen, and it cannot do any sensible work in
the meantime.

Idle To remedy this situation, the operations which do not depend on raw memory ad-
dresses have an idle virtual, which may be extended to keep the application alive
during (possibly) lenghty operations. The idle may be executed one or more times if
the operation cannot finish right away. This, however, is not guaranteed to happen so
do not rely on idle being executed even once. Do not execute operations on the en-
closing socket object within the extending of an idle; this might compromise its in-
ternal consistency. Do not stop the operation from within a extending of idle - the
operation is unfinished; you may for instance have received half a block, in which
case stopping breaks the protocol. Use nonBlockingScope and Blocking for this
purpose.

NonBlock-
ingScope

The nonBlockingScope pattern is used for specifying non-blocking communication.
This means that operations which cannot begin right away are discontinued. An ex-
ample is: We try to read from a socket, but no data at all is available to read. If, on the
other hand, any irreversible actions have been taken in an operation (e.g. reading a
few bytes), it will not be interrupted by the nonBlockingScope mechanism. This
means it is always safe to interrupt an operation by enclosing it in a nonBlock-
ingScope, and then later to retry it. It also means that the granularity of scheduling by
means of nonBlockingScope is one communication operation; e.g. if the communi-
cation partner sends half a block and then takes a break, this process can only execute
an idle in the mean time, it cannot switch forth and back between several such ongo-
ing transfers.

With each Idle pattern comes a Blocking virtual. This is executed if the current op-
eration is blocking, i.e. if nothing can be done right away and nothing has been done
yet. You may extend this virtual to take some action in response to the operation be-
ing blocked. If the operation is enclosed in a nonBlockingScope, Blocking gets exe-
cuted immediately before the operation is interrupted. If you do not want to interrupt
the operation, execute continue in a extending of Blocking.

As default, the communication will be blocking. But if you enclose an operation in a
specialization of nonBlockingScope, we leave the nonBlockingScope at the first
blocking condition. Please notice that it is unsafe to execute a leave statement which
leaves a nonBlockingScope. If you need to explicitly leave it, execute leaveNB-
Scope. The normal usage without and with nonBlockingScope looks like this:

Communicating with other Processes 9

 (* BLOCKING STYLE *)
 myStreamSocket.getLine (* waits until data has arrived *)
 -> reactOnInput; (* always executed *)
 reactSomeMore; (* always executed *)
 doOtherThings;

 (* NONBLOCKING STYLE *)
 myStreamSocket.nonBlockingScope
 (#
 do
 myStreamSocket.getLine (* if no data: leave scope at once *)
 -> reactOnInput; (* only executed if data available *)
 reactSomeMore; (* only executed if data available *)
 #);
 doOtherThings;

With some operations such as writeData and the like it is not possible to have a vir-
tual Blocking or Idle pattern, because they depend on raw memory addresses. How-
ever, enclosing such operations in a nonBlockingScope does indeed cause them to
behave in a non-blocking manner. Having stopped such an operation because it
threatened to block, the raw memory address will have to be recomputed before the
operation is retried (assuming it is the address of a BETA object).

3.3 The Fragment systemComm
The fragment systemComm provides a functionality similar to that of the fragment
communication, but it is in several ways more sophisticated. Any program using
systemComm must be a systemenv program, because systemComm heavily depends on
cooperation with the scheduler present in systemEnv programs.

Instances of the patterns of this fragment are expected to be executed from BETA co-
routines, and such co-routines must tolerate being suspended (de-scheduled) and later
re-scheduled as part of the execution of possibly lengthy systemComm operations.
This means that concurrency control by means of semaphores, monitors, and the
like must be established almost as rigourously as had the co-routines been fully con-
current threads of execution.

BETA co-routines

In return for this increase in complexity, a usually very important reduction in com-
plexity arises from having implicit instead of explicit scheduling. Especially when
fitting a new piece into an existing framework it is a great asset to be able to simply
“spawn” the new piece as part of an initalization phase and then have it running along
with the rest of the program without changing any of the other parts not directly inter-
acting with this new piece.

In more concrete terms, it works like this: Whenever an operation is about to block,
the current component will be suspended. It will be resumed some time later, when
the requested IO is available. In the meantime, some other component which has re-
quested IO available or is not waiting for IO will be resumed. In this way the follow-
ing liveness property of the program is ensured: it will never be the case that a sys-
temComm operation by blocking delays the continuation of the execution of all of those
components which are either (1) not executing a systemComm operation or (2) execut-
ing a systemComm operation, but has IO of the requested kind available. Of course,
any component can still block the whole system by, for example, entering an infinite
loop that does nothing.

SystemComm, like communication, supports the two families of sockets: stream
sockets and binary sockets. Everything said in section 3.2.1 still holds in the context
of systemComm.

10 Process Library

The following section describes the top level patterns of systemComm in order of ap-
pearance. After that, there is a section with a general discussion of error handling,
which applies to all parts of systemComm. Finally another section discusses the treat-
ment of timeout. This again applies to all of systemComm.

3.3.1 The Patterns of SystemComm

WaitForever is a constant used to specify an infinite timeout.

AssignGuard is used to detect wrong usage of other patterns, and propagateExcep-
tion is used in error handling. None of them are important for the understanding of
the fragment.

Pipe A pipe must be initialized with init before usage. Then giving a reference to its
readEnd (writeEnd) as enter parameter to redirectFromChannel
(redirectToChannel) of a not yet started process object will attach this pipe to
another (not yet created) process. If only one end of the pipe is attached to another
process, the current process may read from (write to) the other end of the pipe, when
the other process has been created.

StreamSocket
and binarySocket

StreamSocket and binarySocket are semi-abstract patterns: It is of no use to create
instances of them, but some operations may exit such instances. This is because these
patterns implement all of the functionality used during a connection, but they have no
means for establishing a connection. To establish a connection, one must choose be-
tween playing the passive role or the active role, as described in section 3.1. This
concerns the patterns activeStreamSocket etc. described below. The following de-
scribes the operations of streamSocket in order of appearance.

SameConnection The operation sameConnection on a streamSocket is used to check whether two
different instances of streamSocket are attached to the same operating system level
socket. This may happen if one streamSocket is created and a connection is estab-
lished, and then later this connection silently gets destroyed. Now it is possible to es-
tablish a new connection with a new streamSocket instance, and to get from the op-
erating system the same connection identifier (file descriptor) as was used by the first
connection. In this case, the first streamSocket will happily communicate on the
NEW connection, giving rise to strange errors: It suddenly talks with some total
stranger, as far as the original purpose of this streamSocket is concerned.

getPortable-
Address

The getPortableAddress operation is used to obtain an instance of a portableCom-
municationAddress which describes this passive socket or describes the destination
of this active socket, whichever variant is at hand. A streamSocket connection may
be closed by close. After this point, the streamSocket cannot be used for communi-
cation, so you can discard (i.e. forget) it. Flush ensures that all data in internal buffers
of the streamSocket actually gets sent. Put, get and peek work as with other
streams.

Eos returns true if no data can possibly be read from this connection now or ever.
Please note the difference from the semantics of the communication version: This
semantics more closely resembles the semantics of eos on other streams. On the
other hand, it may still happen that the communication partner holds the connection
alive but will not write any more data to it. In this case, this process has no chance of
guessing that no more data will actually arrive, so eos will “spontaneously” change
from false to true when the other process actually closes the connection. This
“spontaneous” change goes in the opposite direction as the one in the communication
version.

PutText, getLine and getAtom work like in other streams. ForceTimeout is used
to provoke the same response within an ongoing operation as would have been the re-
sult of a timeout. This makes it possible to exercise timeout control over an operation
from within a co-routine different from the one executing that operation. Moreover, it
makes it possible to define a timeout limit for the execution of a number of opera-
tions, instead of setting timeouts for each of them. UsageTimeStamp returns an inte-
ger value which indicates when this socket was last used. The value makes sense only

Communicating with other Processes 11

when compared to usage time stamps of other sockets in this same process. The pur-
pose is to enable a user of many sockets to close the least recently used connection or
similarly when and if the process runs out of system resources (e.g. it experiences a
“to many open files” error).

NonBlockingScope and leaveNBScope are used to handle blocking conditions. The
discussion given on this in section 3.2.3 applies without change. But this approach
has been made largely obsolete by the implicit scheduling built into every operation
in systemComm. An exception is the possible usage of an idle virtual to keep some
kind of progress feed-back running, thus reassuring the user that the communicating
thread of execution has not gone into oblivion.

The operations on a binarySocket are oriented towards transmitting special generic
containers for blocks of arbitrary bytes. Comparing with communication, operations
depending on raw memory addresses at the interface level are no longer present.

SameConnection and getPortableAddress work analogously to the operations with
the same names in streamSocket.

As always, close a socket when done with it. endOfData is true if no data is immedi-
ately available for reading. Please note that this semantics may be updated to resem-
ble the semantics for eos with streamSocket in a later release. In the context of
implicit scheduling, the current semantics is of little use.

PutRep and getRep are used to send and receive instances of the pattern Extende-
dRepstream, and putRepObj and getRepObj are used to send and receive instances
of the pattern RepetitionObject. The protocol for transmitting RepetitionObjects
is a little different from the one used with ExtendedRepstream objects: there is no
header field, and the length field is the first element in the repetition from the repe-
titionObject, i.e. repetitionObjects have their length “built-in”.

PutRep and
GetRep

 len data
 |--------|---------------------------------|

Otherwise, it is like the protocol for ExtendedRepstream objects.

ForceTimeout and usageTimestamp work as described with the corresponding
streamSocket operations.

Again, the discussion about handling time and blocking conditions given in section
3.2.3 applies to nonBlockingScope and leaveNBScope here. And again: it is largely
obsolete, as pointed out above in relation to the same patterns in streamSocket.

ActiveStreamSocket must have assigned values to its port and to at least one of its
host and inetAddr attributes. In case both port and inetAddr are assigned a value,
inetAddr takes precedence.

ActiveStream-
Socket

The host must be given in a format like “quercus.daimi.aau.dk” or “130.225.16.15”.
Depending on the network topologi and the whereabouts of this process, some pre-
fixes of the first format may also suffice, notably a format like “quercus”. The port
must be an integer. By convention, port numbers below 5000 are reserved for system
administration purposes and for special, well-known services like e-mail and ftp. On
the other hand, do not expect to be able to use more than a 16-bit unsigned value. The
value to use when assigning inetAddr must be the four-byte internet address, given
as an integer value. E.g. the absolute address “130.225.16.15” is given as the integer
2195787791.

This done the activeStreamSocket may connect to some existing passive socket,
which has been initialized with that port on that host (with that internet address).
Having connected, it uses the operations of its superpattern streamSocket to com-
municate, as already described. ActiveBinarySocket is used analogously.

For passiveStreamSocket, only port must be assigned. Then bind must be exe-
cuted to establish the given port number as an address, to which active sockets may
connect. Finally, a connection can be accepted by executing awaitConnection. Re-
member to enter a timeout value to awaitConnection. Again, passiveBina-

PassiveStream-
Socket

12 Process Library

rySocket works analogously. Please note that a passive...Socket can only be used
for establishing one connection. If you need to establish more than one connection on
a given port, use a socketGenerator.

A socketGenerator is a factory from which instances of streamSocket and of bi-
narySocket can be obtained, in response to active sockets connecting to the socket-
Generator’s port.

As with the passive socket patterns, the port must have some value assigned, and
then bind must be executed. To obtain a streamSocket on the next connection re-
quested, execute getStreamConnection, and to obtain a binarySocket, execute
getBinaryConnection. As usual, when you are done, execute close on the socket-
Generator.

getPortableAddress exits a portableCommunicationAddress which describes the
network identity of this socketGenerator. ForceTimeout and usageTimeStamp
work as with the other socket variants, and the considerations concerning nonBlock-
ingScope and leaveNBScope are as usual.

3.3.2 Error Handling in SystemComm

Throughout systemComm, the facilities from the fragment errorCallback are used in
the handling of errors.

3.3.2.1 Error Callbacks

An error callback is a virtual pattern which is invoked in response to the occurrence
of some error. Whenever an error condition is detected on a socket, a corresponding

virtual pattern is instantiated and executed. These patterns are specializations of er-
rCB, as declared in errorCallback. Such virtual patterns are hereafter denoted error
callback patterns. To catch and treat an error, extend the corresponding error callback.

If an error callback is not extended and the corresponding error occurs, an exception
is executed and the program terminates. If the error callback is extended, the follow-
ing holds:

• if abort is executed in the extending dopart, the operation (but not the pro-
gram) is aborted. You may execute leave within a specialization of abort. Do
not leave an error callback from any other point, as this may put the object or
the process into an unstable state. If you abort but do not leave, the operation
aborts, but control flow is like when the operation succeeds; in this case, any
exited values are dummy values, reflecting that the operation failed. Do not use
them! Actually, do not abort without leave!

• if continue is executed in the extending dopart, there will be an attempt to re-
cover and finish the operation after the execution of the error callback termi-
nates. For many types of errors, no general recovery is possible at the operation
level. But you could close a couple of files in response to a resourceError
and then execute continue. In case of timeout, you can always choose to take
another turn with continue.

• if fatal is executed in the extending dopart, an exception will be executed and
the program will be terminated. So the execution of the error callback will not
return. This is also the default, but with hierarchical error callbacks, you may
need fatal to undo a continue at a higher level.

In case it happens more than once that an operation from the set
{abort,continue,fatal} is executed, the one executed as the last takes precedence.

3.3.2.2 Error Propagation

As mentioned, the error callback patterns are present at three different levels: Con-
crete error callbacks, operation level error callbacks, and socket level error callbacks.

Communicating with other Processes 13

The concrete error callbacks provide the greatest level of detail: their names indicate
the kind of error condition detected. This makes it possible to treat different errors
differently.

The operation level error callback is executed whenever an error condition is detected
during the execution of that operation. In a extending of this kind of error callback,
you can adjust the default action for all the concrete error callbacks in this operation.
The single socket level error callback is executed whenever any operation detects any
error condition. In a extending of this error callback, you can adjust the default action
for all concrete and operation level error callbacks.

The means for adjusting the behaviour is in all cases to execute abort (probably
abort(# leave L #)), continue, or fatal, and the semantics of these imperatives
are the semantics of the concrete error callbacks described in section 3.3.2.1.

Error callback extendings take precedence like this, in ascending order: concrete
level, operation level, socket level. This means that the higher level specifies a de-
fault, and the more concrete level may override this default by executing continue,
abort, or fatal.

3.3.2.3 Categories of Errors

At the concrete level of error callbacks, errors are categorized according to classes of
operating system level error messages.

The list of names used for concrete error callbacks and a short description of the cor-
responding class of operating system level error is as follows:

Error callback name Meaning
accessError insufficient access rights
addressError address (i.e. (host,port)) in use or invalid
badMsgError (EBADMSG, hardly documented in man page)
connBrokenError connection has become unusable
eosError unexpected end-of-stream
getHostError error when getting hostname
internalError should not happen; please report if it does!
intrError operation interrupted by signal
refusedError connection refused by peer
resourceError too few file descriptors/buffers etc.
timedOut specified timeout period has expired
timedOutInTransfer timed out, and some data have been
transferred
unknownError OS reports unknown errno (new OS?)
usageError e.g. you must initialize port before connecting
accessError (streamSocket) as above
nospaceError (streamSocket) caused by lack of resources
readError (streamSocket) error during read operation
writeError (streamSocket) error during write operation
otherError (streamSocket) anything else

(In the case of streamSockets, the errors are currently not being categorized so pre-
cisely as they should. These errors are given in the last five entries of the table and are
marked with “(streamsocket)”. They will very likely be refined into the first 14 cate-
gories of the table in a future release of this software).

3.4 Timeout Management
Because most operations in systemComm may provoke the suspension (de-scheduling)
of the current co-routine, any such operation may implicitly prevent this co-routine
from making any progress for an indefinite period of time. To give the co-routine the
power to do something about this, each of these operations takes a specification of an
upper limit (in seconds) to the time elapsed during the execution of that operation.

14 Process Library

When such a timeout has been specified for some operation, the scheduler will re-
sume the execution of that operation if it gets the control and the timeout period has
expired. This means that lots of activity in the system as a whole may postpone the
detection of a timeout somewhat, and - as usual - an infinite loop somewhere could
stop everything.

In practical terms, the operation is resumed when and if the timeout period expires,
and of course it resumes by executing an error callback. Two different error callbacks
may be used to indicate the problem. If no irreversible actions have been taken, the
timedOut error callback is used. If some irreversible actions have been taken, such as
receiving or sending part of a message, the timedOutInTransfer error callback is
used. This last situation is considerably more grave than the first: Aborting an opera-
tion “in-transfer” means breaking the protocol, which again means that any subse-
quent messages received on the same connection will be garbled. Resynchronization
is hardly possible unless the data transferred are lines of text or some other format
with built-in structural markers. So in this situation, give it another chance, or close
the connection.

For streamSocket and its subpatterns, the socket level attribute timeoutValue de-
cides the timeout for all operations. For binarySocket and its subpatterns, each op-
eration which has timeout control takes the timeout value as its first enter parameter.
Likewise with socketGenerator. If you forget to specify such a timeout value, e.g.
in awaitConnection on a passive socket, the operation will always terminate at once
with a timeout error.

4 Addresses

The fragment commAddress supports representing addresses of communication ports
with which one might like to establish connections. In this setting, more different op-
erating systems and kinds of communication ports are covered than what communica-
tion and systemComm actually support as yet. Accordingly, TCP/IP sockets are just
one example of a kind of communication port.

Instances of any of these patterns are values, and under normal circumstances their
identity will make no difference. This ensures that it makes sense to translate them
from BETA objects into simple strings of text and back again, and this eases the mi-
gration of such values across networks and other media.

At the most abstract level, portableCommAddress models a portable communication
address. This specifies the address of a single destination or the address(es) of a group
of destinations.

The patterns portableMultiAddress and portablePortAddress specialize
portableCommAddress into concrete patterns for the multiple-destination case and
one-destination case, respectively.

The pattern concretePortAddress and its specializations represent non-portable,
protocol specific communication port addresses. Of course, any concretePortAd-
dress is portable, being a normal BETA object; but only on some platforms will it be
possible to have such a communication port as is specified by the concretePortAd-
dress.

ConcretePortAddresses are kept in portableCommAddresses and selected accord-
ing to protocol specifications, given as protocolSpec objects.

4.1 Specification of Connection
Requirements

The pattern protocolSpec is used to package a specification of requirements to a
communication transfer. This package is given to a portablePortAddress, which
will then use it to choose an appropriate channel. A specification is built with an in-
stance of protocolSpec by setting its cType and rType attributes. For these, choose
from the constant values given in the fragment commError.

The cType value can be any of the constants commProtocol_... and specifies that
the chosen channel must be a TCP/UDP/etc. connection or that any kind of connec-
tion will do (commProtocol_dontcare).

The value of rType is any of the constants commRely_dontcare (no requirements),
commRely_unreliable (allow all the below mentioned kinds of malfunction) or
commRely_reliable (prevent all those malfunctions). Or it is a sum of some of the
constants commRely_loss (prevent packet lossage), commRely_dup (prevent packet
duplication), commRely_order (prevent packets from arriving out of order), comm-
Rely_contents (prevent packets from having corrupt data).

In reality, the last guarantee is enforced by means of checksums or something similar,
so it is only very unlikely that a packet with corrupt data will pass unnoticed, not im-

15

16 Process Library

possible. Moreover, all the other guarantees depend on having packets with trustwor-
thy (header) contents, so not all combinations make sense.

4.2 The Abstract Level
The abstract pattern portableCommAddress is used to specify the identity of an ab-
stract communication address. The patterns portableMultiAddress and portable-
PortAddress are its non-abstract specializations.

Before usage, initialize any specialization of portableCommAddress with init.

Any portableCommAddress is able to express its value in textual form, by the opera-
tion asText. This enables simple and safe migration of an instance of any specializa-
tion of portableCommAddress: Translate it into text, send it across the network, write
it into a disk file, or whatever, and then reconstruct it as a BETA object from its text
value.

Tell a portableCommAddress what proporties are required of the communications as-
sociated with it by entering a protocolSpec object reference. This affects its choice
of concrete communication port(s) in subsequent communications.

To reconstruct a portableCommAddress from its text representation, give it as enter
parameter to portableCommAddressFromText, and a corresponding object will be
exited. The text is expected to have been produced by some instance of a specializa-
tion of portableCommAddress using its asText.

Problems in this process are reported by invoking parseError. This terminates the
application, unless you extend parseError to handle it.

4.3 The Concrete Level
A portableMultiAddress specifies a group of communication ports. Start or en-
hance the group by inserting members. Reduce it by deleteing members.

A portablePortAddress specifies the identity of one logical communication desti-
nation. A logical destination corresponds to a number of concrete communication
ports, represented by instances of specializations of concretePortAddress. It is up
to the user of these patterns to ensure that the contained set of concrete ports actually
“logically belong to the same destination”.

The idea is that if “I” can talk on a channel of type “{A,B}” and “you” can talk on a
channel of type “{B,C,D}”, it is up to the underlying framework to discover that in
order to establish a connection, “we” must use type “B”.

A portablePortAddress can be built by inserting specializations of concretePort-
Address. Only one concrete address is allowed for each known type - inserting a sec-
ond instance overrides the previously inserted one. With delete, any concrete port
can be removed again. To retrieve a concrete port (without removing it), use one of
the Get...Port operations. If this portablePortAddress does not contain any con-
crete port of the requested variety, NONE is exited.

ConcretePortAddress is an abstract superpattern for specifying the address of a
concrete communication port, such as a UNIX stream socket, a Macintosh PPC
ToolBox session, a shared memory buffer etc.

Like a portableCommAddress, each concrete specialization is able to express its
value textually with the operation asText, and it is able to characterize its communi-
cation protocol with the operation protocol. The operation protName exits a text
which is a short, descriptive name for that protocol, and conformsTo answers

Addresses 17

true/false to the question, whether this kind of connection conforms to the protocol
associated with an entered commProtocol_... constant.

The pattern unixAbstractPortAddress captures similarities between TCP and UDP
ports, represented by tcpPortAddress and udpPortAddress. The tcpPortAddress
also fits a MacTCP port. The pattern unixPortAddress represents an AF_UNIX ad-
dress family socket, i.e. it appears as a name in some directory, just like a file; ppc-
PortAddress represents a Macintosh PPC ToolBox session; memPortAddress corre-
sponds to a shared memory implementation of inter-process communication.

5 Managing a Pool of
Connections

A connection pool manages a number of client side communication interfaces (e.g.
active sockets), and allows choosing which one of them to use for a communication
transfer by means of a portableCommAddress. This abstracts away the need to estab-
lish connections: whenever a connection as specified is available in the pool, we use
it. Otherwise, such a connection will implicitly be established and added to the pool.
If this process runs out of resources associated with these connections (e.g. file han-
dles), it is possible to ask the pool to close the least recently used connection.

Concurrency
control

The connections are subject to concurrency control, so they must be used in a “take-it,
use-it, give-it-back” fashion. This is achieved by the pattern communication. The
concurrency control is necessary to prevent the situation where two users of the pool
both transmit messages to some other party on one given connection, and randomly
divide the incoming messages on that connection between them, both believing to
have the other party for themselves. Using the pattern communication, at most one
user of the pool communicates on any given connection at any given point of time.

Binary socket
connections

By now, the only variant of connection pool implemented is the binaryConnection-
Pool. Instances of binaryConnectionPool are used for managing a number of bi-
nary socket connections. Before usage, initialize it. The user of a binaryConnec-
tionPool gives a specification of the receiver, the type of connection, the quality of
service etc. in a portableCommAddress to a (specialization of) the control pattern
communication. This is used as follows (where bcPool is an instance of binaryCon-
nectionPool):

 addr[] -> bcPool.communication
 (# (* Extend error callbacks here *)
 do
 (* Within this dopart: use 'sock' to communicate *)
 (* Do not bring references to sock outside *)
 #);

If you want to leave the dopart of a specialization of a communication, use a con-
struction like leaving(# do leave L #) in stead of leave L. Otherwise some re-
sources may be rendered inaccessible.

Whenever the pool establishes a new connection, the hook onNewConnection of com-
munication is executed. In a extending of this hook, a reference to the newly estab-
lished connection is available, and by assigning a co-routine to actor, the connection
gets associated with this co-routine. This is used to handle incoming messages to
connections in the pool, which are not the immediate response to an outgoing mes-
sage transmitted in a usage of communication: have the co-routine sit around waiting
for the incoming messages. To support such things, one must specialize binaryCon-
nectionPool.

If the connection delivered as sock within a specialization of communication is to be
taken away from the pool and used outside, execute removeSock and bring out a ref-
erence to sock. If it is known that the connection will not be useful anymore, execute
removeSock and sock.close.

On exceptions, see the description in section 3.3.2.

18

Managing a Pool of Connections 19

The operation markAsDead is used to tell the pool that it certainly cannot have a con-
nection like the one entered. If a communication partner closes a connection (or per-
haps terminates unexpectedly), and the other end of that connection is in a connection
pool, it could happen that this connection is not chosen in any communication for
some time. If a new connection is created, the operating system may then reuse the
local connection identifier (file handle, in case of UNIX sockets), giving a totally dif-
ferent connection, which is then administrated by some new BETA socket object.
Now two BETA socket objects will talk to the same OS level connection (file han-
dle), but this means that the first object (in the pool) has silently been “redirected” to
a new communication partner. Of course, this leads to strange errors.

So, whenever creating a BETA socket object OUTSIDE a connection pool, please tell
it by means of markAsDead, that any connections in the pool with the same OS level
identifier must have died silently and thus should be removed from the pool. Inter-
nally, the connection pool handles this automatically.

Please note that this problem is not specific for connection pools, for the process li-
brary, or even for BETA programs, for that matter. But it occurs mainly in the pres-
ence of complicated and very dynamic communication topologies, which are more
likely to appear with connection pools. It would actually be best to carry out similar
checks (using sameConnection) also when using only simple socket objects in an ap-
plication.

removeSomeConnection will seek through all unused connections in the pool. An
unused connection is a connection such that no instance of communication in any co-
routine of this process currently refers to it with its sock attribute. From this set of
unused connections, it chooses the least recently used (as reported by its usage-
Timestamp), closes it, and removes it from the pool. If all connections are currently in
use, application specific actions must be taken to free some of them. The callback no-
ConnectionsRemovable is executed in this situation. It does not terminate the appli-
cation by default, so beware of the possible infinite retry loop if removeSomeConnec-
tion is used in response to resourceError, and no connections could actually be
removed.

When done with a connectionPool, close it to close all of the connections con-
tained within it.

6 Managing co-routines

The fragment idScheduler uses neither processmanager, communication nor
systemComm, so in a way it is an island of its own. It typically comes together with the
other parts of the process library when a communication connection is shared by a
number of BETA co-routines. In this case, a (master) co-routine administrating the
connection must have some means to control the execution of the (slave) co-routines
using the connection. This means the slaves must be able to “suspend” themselves wrt
the master, and the master must be able to “resume” a slave when the connection has
data ready for it.

As usual when present, the init operation should be executed on each instance of
idScheduler before first usage.

Instances of idScheduler can play this role as an “intermediate” scheduler, control-
ling any number of co-routines. Each slave co-routine may id_suspend itself,
awaiting an event identified by the integer value id entered. The id_suspended
slaves are under the control of the idScheduler master, and the master may resume
slaves by executing id_resume, again choosing which slave to wake up in accordance
with the id entered.

These id values must be unique for the whole set of possible users of any given id-
Scheduler. Otherwise the semantics will be quite different from what is described
here. Usually, one can use a global “id-factory”, which always delivers new, essen-
tially meaningless values. In particular, it is a bad idea to use values which are con-
strained by other parts of the application (“have a meaning”), because such con-
straints may one day force some ids to have the same value.

id_suspend and
Id_resume

In the following, an instance of id_suspend and an instance of id_resume are
called corresponding if their id items have the same value; an id and a slave are cor-
responding if the slave is id_suspended and the id_suspend.id equals id; similarly
for other combinations.

Add further attributes to the isElement virtual to create holders of information trans-
ferred from the master to the slave when the slave is resumed. A specialization of
id_resume may for instance transfer information to a corresponding slave by assign-
ing some object reference to a dynamic reference item, say “info”, in its elm. When
the corresponding slave wakes up, its id_suspend.elm.info will refer to that ob-
ject. (For a concrete example, check out demo/idSchedulerDemo.bet, where this
technique is used to transfer a text).

The specialization idTimeoutScheduler allows a slave to specify a timeout limit to
the period of suspension, using the operation id_timeoutSuspend. This operation
matches id_resume (there is no need for an id_timeoutResume).

If a period of length timeoutvalue expires after a slave has
id_timeoutSuspended itself with no occurrence of a corresponding id_resume, the
slave virtual id_timeoutSuspend.retry gets to decide whether or not the suspen-
sion should be continued. If yes, another period of waiting starts. If no, the onTime-
out callback is executed, and that ends the id_timeoutSuspend. (Actually on-
Timeout does NOT get executed -- please refer to section 8).

If, on the other hand, the corresponding id_resume does occur within the timeout pe-
riod, the slave callback id_timeoutSuspend.onSuccess is executed, and that of
course also ends the id_timeoutSuspend.

20

Managing co-routines 21

Now, if the master administrates a (number of) connection(s), the slaves can share it
(them) in the following way: The id values used can be described as transactions
identifiers, and these transaction identifiers are transferred along with other data
across the network. Now, a slave can acquire access to a connection to send a request
“D”, and then id_suspend itself on the transaction identifier. Each time data can be
received on a connection, the master reads the transaction identifier and then
id_resumes the corresponding slave, probably providing this slave with access to the
connection by means of the “elm.info” technique described above. Now, the slave
can use the connection to collect the answer to the original request “D”. In the mean-
time, many other slaves could have sent and/or received data on the same connection
-- and, importantly, the slaves do not have to know about each other. As the (set of)
connection(s) is a shared resource, there will have to be some concurrency control as-
sociated with it.

7 The Demo Files

A number of demonstration files are provided in the subdirectory demo. They show
simple and typical ways to use the process library. The files generally use communi-
cation, so some transformations will be needed in order to use them with system-
Comm.

Because of the “process” aspect, and because of the nature of inter-process communi-
cation, the demo files come in small groups. For some groups, one program will ma-
nipulate others. For other groups, one may start a “server” and some “clients” and
then interact with the clients to initiate communication. In the following, the groups
are presented one by one.

7.1 activate
This is a stand-alone demo which uses a process to start the BETA compiler and a
pipe to tell it to compile some fragment named betaProgram. You may have to
create such a fragment. Please note: the released version of this demo is incorrect. Re-
fer to section 8 which lists a better one.

7.2 pipeline, consumer and producer
Execute pipeline, which will then start producer and consumer in such a
way that standard output from producer is piped into standard input of consumer.
The file items is read in by consumer and written to its standard output.

7.3 exchange
Starts an executable igor which is given the argument rottweiler by means of
process.argument.append. Then, while igor is running, exchange prints out a
small message every few seconds. When stops, exchange also stops (after the ter-
mination of the current delay period). One could for example do:

cd <<my directory for trying out little things>>
cp /users/beta/process/v1.4/demo/exchange.bet .
cp exchange.bet rottweiler.bet
ln -s /usr/local/lib/beta/bin/beta igor
beta exchange
./exchange

The exchange executable is of course a CPU hog, because it sits in a tight for loop
during those few seconds of delay.

22

The Demo Files 23

7.4 firstProgram and otherProgram
When executed, firstProgram will start otherProgram and accept a
streamSocket connection from otherProgram. Then they exchange a couple of
words, and both terminate.

7.5 aClient and theServer
When theServer is executed, it starts two instances of aClient and communicates
a little with them over two streamSockets, one for each client.

7.6 aBinClient and theBinServer
Very similar to theServer, theBinServer starts two instances of aBin-
Client and communicates with them. This time, binarySockets are used, and
blocks of arbitrary bytes are being transferred. Of course, the data transferred is just a
usual BETA integer, but there is no essential difference to the case where any other
block of memory is transferred.

7.7 aRepClient and theRepServer
Using a similar setup, but extending the preceding two demo groups a bit,
theRepServer and theRepClient communicate according to a small, higher-level
protocol. Generic containers for blocks of bytes, namely extendedRepStreams, are
used for the transfers. The protocol specifies three different formats for the contents
of these extendedRepStreams, distinguished by the tag value header, which is trans-
ferred along with the extendedRepStream in the binarySocket operations
putRep and getRep. It should be fairly easy to read the exact protocol out of the
fragment showRep.

7.8 chatClient and chatServer
This group is used interactively. Start chatServer and then a number of instances of
chatClient. Each client will connect to the server, resulting in a star-shaped connec-
tion topology. One may interact with each of the clients, and the clients in turn inter-
act with the server.

The fragment commandCategory is used to distinguish different types of commands.
The command language is very simple: anything starting with the letter “q” is a Quit
command, anything starting with an “a” is an Answer command, and anything start-
ing with an “A” is an AnswerWait command. Anything else is a Default command.
Enter commands as any piece of text at the prompt, ending with RETURN. Please note
that leading whitespace is significant.

All commands are immediately forwarded to the server. Then, if the command was a
Quit command, the client closes down the connection and terminates. If it was an An-
swer command, the client notifies the user of that fact by printing a message contain-
ing the sequence number of this Answer command. Some time later, the server will

24 Process Library

return an answer, and the sequence number of the answer makes it possible to match
up outgoing requests with incoming answers. In case of an AnswerWait command,
the client blocks until the answer from the server arrives. For Default commands, the
contents are just echoed at the server.

For each command received, the server echoes the identification number of the client
which sent that command and the contents of the command. You may wish to exam-
ine the source code in chatServer.bet to see how nonblockingScope enables
the server to (semi-)simultaneously receive incoming messages, accept connections
from new clients, and do other work.

7.9 repChatClient and repChatServer
Similar to chatClient and chatServer, using binarySockets for the communica-
tion.

7.10 idSchedulerDemo
This demo shows a simple application of an idTimeoutScheduler which uses nei-
ther processmanager, communication, nor systemComm.

An instance of idsched_master plays the “master” role, and a number of id-
sched_slaves play the “slave” role, as described in section 6. Each slave has an
identifier, which is also used as the timeout period in its id_timeoutSuspend oper-
ations.

When idSchedulerDemo runs, a master and a number of slaves are created. The
number of slaves is specified as the first command line argument. The master imme-
diately goes to sleep, and sleeps for as many seconds as the second command line ar-
gument specifies. The slaves start id_timeoutSuspending themselves, allowing two
retries. By the third retry, a slave will give up and terminate (the comment “Give up
at second attempt” in idSchedulerDemo.bet is misleading). When the master wakes
up, it serves the slaves in order.

Try idSchedulerDemo 2 3 to watch a small but non-trivial case; try idSched-
ulerDemo 20 30 to get a feeling for the behaviour at a somewhat larger scale.

8 Known Bugs and
Inconveniences

In systemComm, the streamSocket operation eos does not correctly implement
the described semantics. Errors in system calls are detected as they should be, and the
answer is correctly “false” when data is immediately available, but when data is not
immediately available, the return values are swapped: When the communication part-
ner has closed down the connection, the answer will be “false”, and when this has not
happened, the answer will be “true”. A patch to fix it is to swap the lines 494 (// 1
then) and 498 (// 0 then) of private/ssocket_unixbody.bet. There is no known
easy workaround.

For streamSockets in both communication and systemComm, reading a line of
text with the operation getLine or a word with getAtom only works correctly
when the line/word becomes available to read as a whole. If a non-empty part of the
line/word but not all of it can be read, the operation incorrectly detects an error. A
possible workaround is to use get and collect characters in a normal BETA text ob-
ject, on which getLine and getAtom can be used.

If the transmitting side always sends lines/words in one go, the problem is unlikely to
show up. In this case, if the purpose is non-critical of course, you could try to ignore
the problem.

Outputting operations in streamSocket, such as put, flush and putLine, will
not detect a buffer full condition before attempting to transmit data. This means that
they may block until the operating system has relieved the full buffer of some of its
contents. This usually happens quickly, though.

Certain operations in systemComm take as enter parameter a timeout value, which
does not affect the execution of the operation, because timing out makes no sense -
the operation is not “possibly lenghty”. An example is close of binarySocket.

Furthermore, the timeout enter parameter in the streamSocket pattern
withPE provides the operations open, close and flush with such an enter pa-
rameter, and this is no longer used. As described, timeoutValue is used to specify
timeouts in all streamSocket operations.

In portableMultiAddress, members are deleted by identity, i.e. entering a refer-
ence to some portablePortAddress in an invocation of the delete opera-
tion will delete that exact instance, if present. It would make more sense to delete ev-
ery portablePortAddress contained by this portableMultiAddress, which speci-
fies the same communication port as the one entered. That is, it would be better if
members were deleted by value equality.

portableMultiAddress ought to have means for iterating through all its members,
such as a scan operation. There should also be a way to test for equality and for sub-
set-relations between portablePortAddresses, and between portableMultiAd-
dresses.

In the fragment connectionPool, in the pattern communication in binaryCon-
nectionPool, the operation removeSock does not remove the connection denoted
by sock as it should. Workaround: Use sock[]->markAsDead whereever re-
moveSock should have been used.

The demo-file activate.bet is garbled. Use the following instead:

25

26 Process Library

ORIGIN '~beta/process/v1.4/processmanager';
--- program:descriptor ---
(#
 compiler: @process;
 aPipe: @pipe;
do
 '/usr/local/lib/beta/bin/beta'->compiler.init;
 aPipe.init;
 aPipe.readEnd[]->compiler.redirectFromChannel;
 compiler.start;
 'betaProgram'->aPipe.writeend.putText;
 aPipe.writeend.newLine;
#)

where betaProgram.bet is the a path of some BETA source code file.

In the fragment idScheduler, the callback onTimeout of the operation
id_timeoutSuspend is never executed, even though it should be executed in case of
a timeout. For a workaround, put the code intended to go into a specialization of on-
Timeout at the end of a specialization of the retry virtual, and encapsulate it within
an if statement such that it is executed if retry exits false.

9 Interface Description

9.1 commAddress
(* CONTENTS
 * ========
 *
 * Defines patterns for representing communication addresses.
 *
 * The most abstract pattern, portableCommAddress, models a
 * portable communication address. This specifies the address
 * of a single destination or the address(es) of a group of
 * destinations.
 *
 * The patterns portableMultiAddress and portablePortAddress
 * specialize portableCommAddress into concrete patterns for
 * the multiple-destination case and one-destination case,
 * respectively.
 *
 * The pattern concretePortAddress and its specializations
 * represent non-portable, protocol specific communication
 * port addresses. These are kept in portableCommAddresses
 * and selected according to protocol specifications, given
 * as protocolSpec objects.
 *)

(* Specification of connection requirements
 * ==
 *
 * Used to package spec. of requirements to a communication
 * transfer, and then given to a portablePortAddress, which
 * will use it when choosing an appropriate channel.
 *)
protocolSpec:
 (#
 cType: @integer; (* one of 'commProtocol_.*'; dontcare is default
*)
 rType: @integer; (* one of 'commRely_.*'; dontcare is default *)
 (* bandwidth/r-rr-rra/etc *)
 enter (cType, rType)
 exit cType
 #);

(* Portable communication address
 * ==============================
 *
 * Specifies identity of an abstract communication address.
 * This pattern is abstract, and no instances of it are
 * expected to exist. The patterns portableMultiAddress and
 * portablePortAddress are non-abstract specializations.
 *
 * Any portableCommAddress is able to express its value
 * in textual form, by 'asText'.

27

28 Process Library

 *
 * Tell a portableCommAddress what proporties are required
 * of the communications associated with it by entering
 * a protocolSpec object. This affects its choice of
 * concrete communication port(s) in subsequent
 * communications.
 *)
portableCommAddress:
 (#
 init:< Object;
 asText: @asTextPattern;

 (* private *)
 asTextPattern:< (# t: ^text do INNER exit t[] #);
 enterSpec: @...;
 private: @...;
 enter enterSpec
 #);

(* Portable communication address constructor
 * ==
 *
 * Function. Takes a text value, which is expected to have
 * been produced by some instance X of a specialization of
 * portableCommAddress using its 'asText'. Returns an object
 * with the same value as X.
 *
 * Problems are reported by invoking 'parseError'. The
 * application will then terminate with an exception,
 * unless you extend parseError to leave it.
 *)
portableCommAddressFromText:
 (#
 parseError:<
 (# msg: ^text;
 enter msg[]
 ...
 #);
 txt: ^text;
 addr: ^portableCommAddress;
 <<SLOT portableCommAddressFromTextLib:attributes>>;
 enter txt[]
 ...
 exit addr[]
 #);

(* Portable multicast address
 * ==========================
 *
 * Specifies identities of the members of a group of
 * communication destinations.
 *
 * The group can be built from scratch or enhanced
 * by 'insert'ing members. It can be reduced by
 * 'delete'ing members.
 *)
portableMultiAddress: portableCommAddress
 (#
 init::< (# ... #);

 insert:
 (# addr: ^portablePortAddress;
 enter addr[]
 ...
 #);

Interface Description 29

 delete:
 (# addr: ^portablePortAddress;
 enter addr[]
 ...
 #);

 (* private *)
 asTextPattern::< (# ... #);
 private2: @...;
 #);

(* Portable communication port address
 * ===================================
 *
 * Specifies identity of one logical communication destination.
 * A logical destination corresponds to a number of concrete
 * communication ports, represented by instances of
 * specializations of concretePortAddress.
 *
 * A portablePortAddress can be built from scratch by
 * by 'insert'ing such instances. Only one concrete address
 * is allowed for each known type - inserting a second instance
 * overrides the previously inserted one.
 *)
portablePortAddress: portableCommAddress
 (#
 insert:
 (# addr: ^concretePortAddress;
 addrHasUnknownType:< exception;
 enter addr[]
 ...
 #);
 delete:
 (# prot: @integer; (* one of 'commProtocol_.*' *)
 addrHasUnknownType:< exception;
 enter prot
 ...
 #);
 getTcpPort:
 (# addr: ^tcpPortAddress;
 ...
 exit addr[] (* NONE if not present *)
 #);
 getUdpPort:
 (# addr: ^udpPortAddress;
 ...
 exit addr[] (* NONE if not present *)
 #);
 getUnixPort:
 (# addr: ^unixPortAddress;
 ...
 exit addr[] (* NONE if not present *)
 #);
 getPpcPort:
 (# addr: ^ppcPortAddress;
 ...
 exit addr[] (* NONE if not present *)
 #);
 getMemPort:
 (# addr: ^memPortAddress;
 ...
 exit addr[] (* NONE if not present *)
 #);

 (* private *)
 asTextPattern::< (# ... #);

30 Process Library

 private2: @...;
 #);

(* Concrete communication port address
 * ===================================
 *
 * Abstract superpattern for specifying the address
 * of a concrete communication port, such as a UN*X
 * stream socket, a Mac PPC ToolBox session, a shared
 * memory buffer etc.
 *
 * Is able to express its value textually with 'asText',
 * and to characterize its communication protocol
 * with 'commType'.
 *)
concretePortAddress:
 (#
 asText: @asTextPattern;
 asTextPattern:< (# t: ^text do INNER exit t[] #);

 protocol:< integerValue; (* one of 'commProtocol_.*' *)
 protName:< (# t: ^text do &text[] -> t[]; INNER exit t[] #);
 conformsTo: BooleanValue
 (# p: @integer;
 enter p
 ...
 #);
 private: @...;
 #);

(* Unix communication port address types
 * =====================================
 *
 * The pattern unixAbstractPortAddress captures similarities
 * between TCP and UDP ports, represented by
 * tcpPortAddress and udpPortAddress.
 *
 * The pattern unixPortAddress represents an AF_UNIX address
 * family socket, i.e. it appears as a name in some directory,
 * just like a file.
 *
 * NB: The tcpPortAddress also fits a MacTCP port.
 *)
unixAbstractPortAddress: concretePortAddress
 (#
 inetAddr: @integer;
 portNo: @integer;
 asTextPattern::< (# ... #);
 #);

tcpPortAddress: unixAbstractPortAddress
 (#
 protocol::< (# do commProtocol_tcp -> value #);
 protName::< (# do commProtName_tcp -> t #);
 #);

udpPortAddress: unixAbstractPortAddress
 (#
 protocol::< (# do commProtocol_udp -> value #);
 protName::< (# do commProtName_udp -> t #);
 #);

unixPortAddress: concretePortAddress
 (#
 asTextPattern::< (# ... #);
 pathName: @text;

Interface Description 31

 protocol::< (# do commProtocol_unix -> value #);
 protName::< (# do commProtName_unix -> t #);
 #);

(* Mac communication port address
 * ==============================
 *
 * Represents a PPC ToolBox session.
 *)
ppcPortAddress: concretePortAddress
 (#
 host: @text;
 portNo: @integer;
 sessionId: @integer;
 asTextPattern::< (# ... #);
 protocol::< (# do commProtocol_ppc -> value #);
 protName::< (# do commProtName_ppc -> t #);
 #);

(* Shared memory buffer port address
 * =================================
 *
 * Corresponding communication support NOT IMPLEMENTED.
 * Could be very fast, perhaps for communicating within
 * one process, using the same source code as for remote
 * communication.
 *)
memPortAddress: concretePortAddress
 (#
 bufferID: @integer; (* !!! This may have to change *)
 asTextPattern::< (# ... #);
 protocol::< (# do commProtocol_mem -> value #);
 protName::< (# do commProtName_mem -> t #);
 #);

9.2 commError
(* Communication error messages
 * ============================
 *
 * !!! These are obsolete - to be removed.
 *
 * May be returned from communication operations on a
 * connectionPool. Reports OS level errors related to the
 * individual connection in the connectionPool used for
 * the transfer.
 *)
commError_noError: (# exit 0 #);
commError_noHost: (# exit -1 #);
commError_connRefused: (# exit -2 #);
commError_timeOut: (# exit -5 #);
commError_connBroken: (# exit -6 #);
commError_nomoreSockets: (# exit -8 #);

(* Reliability
 * ===========
 *
 * Used to specify the reliability proporties
 * required for a transfer (in a protocolSpec).
 * The proporties are additive.
 *)

32 Process Library

commRely_dontcare: (# exit 0 #);
commRely_loss: (# exit 2 #); (* packets are not lost *)
commRely_dup: (# exit 4 #); (* packets are not duplicated *)
commRely_order: (# exit 8 #); (* packets arrive in correct order
*)
commRely_contents: (# exit 16 #); (* corrupt data unlikely (e.g.
checksum) *)

commRely_unreliable: (# exit 1 #); (* ensures none of the above *)
commRely_reliable: (# exit 31 #); (* ensure loss, dup, order, contents *)

(* Type of connection protocol
 * ===========================
 *
 * OS level category of connection. An implementation
 * level description of an individual connection
 * managed by a connectionPool. Weird numbers chosen
 * to make data containing these constants recognizable
 * in a raw communication dump.
 *)
commProtocol_dontcare: (# exit 0 #);
commProtocol_tcp: (# exit 72301 #); (* TCP/IP *)
commProtocol_udp: (# exit 72302 #); (* UDP/IP *)
commProtocol_unix: (# exit 72303 #); (* UNIX domain (socket as
file) *)
commProtocol_ppc: (# exit 72304 #); (* Mac PPC ToolBox *)
commProtocol_mem: (# exit 72305 #); (* Shared memory buffer *)

(* Mnemonic names of the protocols *)
commProtName_tcp: (# exit 'TCP' #);
commProtName_udp: (# exit 'UDP' #);
commProtName_unix: (# exit 'UNIX' #);
commProtName_ppc: (# exit 'PPC' #);
commProtName_mem: (# exit 'MEM' #);

9.3 communication
(* Communication concepts:
 * Pipe: Communication channel between two processes.
 * For pure standard communication, using standard input/output.
 * Both processes are unaware of the identity of their
 * communication partner.
 *
 * Socket: A stream, conceptually an endpoint of a two-way
 * comminication line. Two endpoints are connected by letting
 * an ActiveSocket connect to aPassiveSocket. The
 * PassiveSocket just waits for the ActiveSocket to connect.
 * After connection both sockets can read/write on
 * theirstreams.
 *
 * SocketGenerators are used in client/server type communication.
 * Sockets are divided into the categories stream socket and binary
 * socket.
 *
 * Stream sockets:
 *
 * A stream socket is suitable for transferring data, which is
 * readable for human beings, like the data transferred in a UNIX
 * 'talk' session, or like the more formal communication between a
 * smail program and an SMTP mail erver. A stream socket is a stream,
 * so you may 'put', 'get' etc.

Interface Description 33

 * However, don't rely on this kind of socket when transferring data
 * which may contain zero-valued bytes, such as arbitrary binary data.
 *
 * Binary sockets:
 *
 * A binary socket is guaranteed to transfer any given block of
 * arbitrary bytes unmodified, but you must always specify the
 * length of the data block, both for sending and receiving. You may
 * 'readData' and 'writeData' on a binary socket, which constitutes
 * the lowest level interface.
 *
 * The operations 'getBlock' and 'putBlock' provide support for
 * a very simple, binary data transfer protocol. In this protocol,
 * all data is transferred in blocks with the following layout:
 *
 * len header data
 * |--------|--------|---------------------------------|
 *
 * The 'len' field is a four byte integer value, in big-endian byte
 * order. The 'header' field is a four byte big-endian integer value,
 * identifying the kind of data in the 'data' field, the purpose
 * of the block, or whatever. The 'data' field length is 4*'len'
 * bytes. The sender and the recipient must agree on the
 * interpretation of the 'header' and 'data' fields, which is left
 * unspecified by this protocol.
 *
 * The operations 'putRep' and 'getRep' are provided for transferring
 * data to and from a ExtendedRepstream object, using this protocol.
 * The usage of this level of functionality is recommended whenever
 * possible, as it encapsulates (and hides) references to raw memory
 * addresses.
 *
 * The 'Idle' patterns:
 *
 * Many operations on sockets have an 'Idle' virtual pattern.
 * It may be executed one or more times if the operation cannot
 * finish right away. This is not guaranteed to happen, so don't
 * rely on 'Idle' being executed even once. Extend this virtual
 * to keep your application "alive" during a (possibly) lenghty
 * operation. Don't execute operations on this(Socket) in an
 * enclosed 'Idle'. Don't stop the operation from within an 'Idle' -
 * the operation is unfinished; you may for instance have received
 * half a block, which makes the stop a serious break wrt the
 * protocol; use 'nonBlockingScope' and 'Blocking' for this purpose.
 *
 * The 'nonBlockingScope' and 'Blocking' patterns:
 *
 * The 'nonBlockingScope' pattern is used for specifying non-blocking
 * communication. This means that operations which cannot begin
 * right away are discontinued. An example is: We try to read from a
 * socket, but no data at all is available to read. If any
 * irreversible actions have been taken in an operation (e.g. reading
 * a few bytes), it will not be interrupted by the 'nonBlockingScope'
 * mechanism. This means it is always safe to interrupt an operation
 * by enclosing it in a 'nonBlockingScope', and to retry it later.
 *
 * With each 'Idle' pattern comes a 'Blocking' virtual. This is
 * executed if the current operation is blocking, i.e. if nothing can
 * be done right away. You may extend this virtual to take some action
 * in response to the operation being blocked. If the operation is
 * enclosed in a 'nonBlockingScope', your 'Blocking'-code gets
 * executed immediately before the operation is interrupted. If you
 * don't want to interruptthe operation, execute 'continue' in the
 * extending of 'Blocking'.
 *
 * USAGE: Normally the communication will be blocking. But if you

34 Process Library

 * enclose an operation in a specialization of 'nonBlockingScope', we
 * 'leave' the 'nonBlockingScope' at the first blocking condition.
 * PLEASE NOTE: it is unsafe to execute
 * a 'leave' statement which leaves a 'nonBlockingScope'. If you
 * need to leave it, execute 'leaveNBScope'. The normal usage with
 * and without 'nonBlockingScope' looks like this:
 *
 * /* BLOCKING STYLE */
 * myStreamSocket.getLine /* waits until data has arrived */
 * -> reactOnInput; /* always executed */
 * reactSomeMore; /* always executed */
 * doOtherThings;
 *
 * /* NONBLOCKING STYLE */
 * myStreamSocket.nonBlockingScope
 * (#
 * do
 * myStreamSocket.getLine if no data: leave scope at once
 * -> reactOnInput; only executed if data available
 * reactSomeMore; only executed if data available
 * #);
 * doOtherThings;
 *
 * With some patterns, it is not possible to have a virtual 'Blocking'
 * or 'Idle' pattern. This is because an enter parameter for the
 * operation is supposedly the address of a beta object. Having taken
 * this, it is unsafe to create objects during the execution of the
 * operation. An example is 'BinarySocket.writeData'. However,
 * enclosing such operations in a 'nonBlockingScope' does cause the
 * operation to behave in a non-blocking manner.
 *)

waitForIO:
 (* Make the process sleep until input/output is available,
 * but at most maxWait seconds. If zero is entered (or the enter
 * part isn't evaluated), wait for I/O without timeout.
 *)
 (# maxWait: @integer;
 enter maxWait
 do ...
 #);

assignGuard: (# assigned: @Boolean do true -> assigned #);

propagateException: (# msg: ^Text enter msg[] do INNER #);

pipe:
 (* The pipe is a composition of two interconnected one way streams.
 * What is written on 'writeEnd' can subsequently be read
 * from 'readEnd'.
 *)
 (#
 (* operations *)
 init:<(# error:< propagateException(# do INNER; … #);
 do ...;
 #);

 (* exceptions *)
 pipeException: Exception
 (#
 enter msg
 do (if msg.empty//false then msg.newline if);
 INNER;
 #);
 pipeError:< PipeException;

Interface Description 35

 (* attributes *)
 readEnd: ^Stream;
 writeEnd: ^Stream;

 (* private *)
 private: @...;
 #); (* pipe *)

StreamSocket: Stream
 (#
 (* basics *)
 withPE:
 (# error:< propagateException(# do INNER; msg->otherError #);
 do INNER
 #);
 BasicBlocking:
 (# continue: (# do true->doContinue #);
 doContinue: @boolean;
 doIdle:< Object;
 do INNER;
 (if doContinue//false then leaveNBScope if);
 doIdle;
 #);
 Idle:< Object; (* every local 'Idle' executes this global one *)

 (* operations *)
 open: withPE
 (# Idle:< (# do INNER; this(StreamSocket).Idle #);
 Blocking:< BasicBlocking(# doIdle::< (# do … #) do INNER #);
 do ...
 #);
 close:< withPE
 (#
 do ...
 #);
 flush:< withPE
 (# Idle:< (# do INNER; this(StreamSocket).Idle #);
 Blocking:< BasicBlocking(# doIdle::< (# do … #) do INNER #);
 do ...
 #);
 put::<(# Idle:< (# do INNER; this(StreamSocket).Idle #);
 Blocking:< BasicBlocking(# doIdle::< (# do … #) do INNER #);
 do ...
 #);
 get::<(# Idle:< (# do INNER; this(StreamSocket).Idle #);
 Blocking:< BasicBlocking(# doIdle::< (# do … #) do INNER #);
 do ...
 #);
 peek::<(# Idle:< (# do INNER; this(StreamSocket).Idle #);
 Blocking:< BasicBlocking(# doIdle::< (# do … #) do INNER #);
 do ...
 #);
 eos::<(# Idle:< (# do INNER; this(StreamSocket).Idle #);
 Blocking:< BasicBlocking(# doIdle::< (# do … #) do INNER #);
 do ...
 #);
 putText::<(# Idle:< (# do INNER; this(StreamSocket).Idle #);
 Blocking:< BasicBlocking(# doIdle::< (# do … #) do INNER #);
 do ...
 #);
 getLine::<(# Idle:< (# do INNER; this(StreamSocket).Idle #);
 Blocking:< BasicBlocking(# doIdle::< (# do … #) do INNER #);
 do ...
 #);
 getAtom::<(# Idle:< (# do INNER; this(StreamSocket).Idle #);
 Blocking:< BasicBlocking(# doIdle::< (# do … #) do INNER #);

36 Process Library

 do ...
 #);

 (* nonBlockingScope support *)
 (* don't 'leave' a 'nonBlockingScope'. Use 'leaveNBScope' *)
 nonBlockingScope: (# do ... #);
 leaveNBScope: (# do ... #);

 (* exceptions *)
 sSocketException: streamException
 (#
 enter msg
 do (if msg.empty//false then msg.newline if); INNER
 #);
 otherError::< sSocketException;

 (* attributes *)
 port: @assignGuard(# rep: @integer enter rep exit rep #);

 (* private *)
 private: @...;
 #); (* StreamSocket *)

BinarySocket:
 (#
 (* basics *)
 withPE:
 (# error:< propagateException(# do INNER; msg->otherError #);
 do INNER
 #);
 withIdle: withPE
 (# Idle:< (# do INNER; this(BinarySocket).Idle #);
 Blocking:<(# continue: (# do true->doContinue #);
 doContinue: @boolean;
 do INNER;
 (if doContinue//false then leaveNBScope if);
 Idle;
 #);
 do INNER
 #);
 rawIO: withPE
 (* Abstract pattern. Read/write exactly 'length' bytes of
 * arbitrary data to/from the memory location 'address'.
 * Non-abstract SPECIALIZATIONS MUST BE STATIC items to
 * prevent garbage collection between calculation of 'address'
 * and reference through 'address'.
 *)
 (# address,length: @integer;
 enter (address,length)
 do INNER
 #);
 repIO: withIdle
 (* Abstract pattern. Read/write a block to/from 'rep',
 * returning/using 'header'. The length of the block is
 * stored in/retrived from 'rep.end'.
 *)
 (# rep: ^ExtendedRepstream;
 header: @integer;
 enter rep[]
 do INNER
 #);
 Idle:< Object; (* every local 'Idle' executes this global one *)

 (* operations *)
 open: withIdle(# do ... #);
 close:< withIdle(# do ... #);

Interface Description 37

 writeData: @rawIO(# do ... #);
 readData: @rawIO(# do ... #);
 endOfData:
 (* Returns true if no data is immediately available
 * for reading *)
 (# value: @boolean;
 do ...
 exit value
 #);
 putBlock: @withPE
 (# length,header,address: @integer;
 enter (length,header,address)
 do ...
 #);
 getBlock: @withPE
 (* The 'maxlen' enter parameter specifies the maximum allowed
 * length of the 'data' field in the block. If the block is
 * bigger than that, the rest of 'data' is discarded. The
 * 'length' exit parameter always specifies the block length,
 * so such an overflow has occurred if maxlen<length. If this
 * behaviour is not acceptable, use 'getBlockLen' and
 * 'getBlockRest'.
 *)
 (# address,maxlen,length,header: @integer;
 enter (address,maxlen)
 do ...
 exit (length,header)
 #);
 getBlockLen: withIdle
 (* Exits the length of the next block to receive. Make sure
 * the necessary space is available, and then use
 * 'getBlockRest' to read the block.
 *)
 (# length: @integer;
 do ...
 exit length
 #);
 getBlockRest: @withPE
 (* Reads the next block. IMPORTANT: assumes the
 * length has been read with 'getBlockLen' as the last
 * operation on this(BinarySocket).
 *)
 (# address,header: @integer;
 enter address
 do ...
 exit header
 #);

 putRep: repIO
 (* Read to ExtendedRepstream using
 * above mentioned binary protocol
 *)
 (#
 enter header
 do ...
 #);
 getRep: repIO
 (* Write ExtendedRepstream contents
 * using above mentioned binary protocol
 *)
 (#
 do ...
 exit header
 #);

 (* nonBlockingScope support *)

38 Process Library

 (* don't 'leave' a 'nonBlockingScope'. Use 'leaveNBScope'. *)
 nonBlockingScope: (# do ... #);
 leaveNBScope: (# do ... #);

 (* exceptions *)
 bSocketException: Exception
 (#
 enter msg
 do (if msg.empty//false then msg.newline if); INNER
 #);
 otherError:< bSocketException;

 (* attributes *)
 port: @assignGuard(# rep: @integer enter rep exit rep #);

 (* private *)
 private: @...;
 #); (* BinarySocket *)

ActiveStreamSocket: StreamSocket
 (* Initiator of socket communication. Initialize 'host' and 'port'
 * and 'connect' to a passive socket to establish communication.
 *)
 (#
 (* operations *)
 connect: open
 (# enter (host,port)
 do ...;
 #);

 (* attributes *)
 host: @assignGuard(# t: @text; enter t exit t #);
 #); (* ActiveStreamSocket *)

ActiveBinarySocket: BinarySocket
 (* Initiator of socket communication. Initialize 'host' and 'port'
 * and 'connect' to a passive socket to establish communication.
 *)
 (#
 (* operations *)
 connect: open
 (# enter (host,port)
 do ...;
 #);

 (* attributes *)
 host: @assignGuard(# t: @text; enter t exit t #);
 #); (* ActiveBinarySocket *)

PassiveStreamSocket: StreamSocket
 (* 'bind' to port and 'awaitConnection'. Other executions can then
 * connect to the port and communicate through the passive socket.
 * Use a 'nonBlockingScope' to interrupt 'awaitConnection', if no
 * connections are being requested.
 *)
 (#
 (* operations *)
 bind:
 (# error:< propagateException(# do INNER; msg->otherError #);
 enter port
 do ...;
 #);
 awaitConnection: open(# do ...; #);
 close::< (# do ... #);

 (* private *)

Interface Description 39

 private2: @...;
 #); (* PassiveStreamSocket *)

PassiveBinarySocket: BinarySocket
 (* 'bind' to port and 'awaitConnection'. Other executions can then
 * connect to the port and communicate through the passive socket.
 * Use a 'nonBlockingScope' to interrupt 'awaitConnection', if no
 * connections are being requested.
 *)
 (#
 (* operations *)
 bind:
 (# error:< propagateException(# do INNER; msg->otherError #);
 enter port
 do ...;
 #);
 awaitConnection: open(# do ...; #);
 close::< (# do ... #);

 (* private *)
 private2: @...;
 #); (* PassiveBinarySocket *)

SocketGenerator:
 (* Supports creating multiple connections on a single port number;
 * typically used in an application acting as a server for a number
 * of clients. do 'portNumber -> bind' and use "get???Connection"
 * to establish connections to the clients. Use a 'nonBlockingScope'
 * to avoid waiting if no clients are requesting a connection.
 *
 * "get???Connection" exits a reference to a "???Socket" associated
 * with the new connection. You may use this like:
 *
 * mySocketGenerator.getStreamConnection -> aStreamSocketRef[];
 *
 * If you want to work with a specialization of the basic socket
 * patterns, extend the virtuals 'streamSocketType' and/or
 * 'binarySocketType'.
 *)
 (#
 (* basics *)
 streamSocketType:< streamSocket;
 binarySocketType:< binarySocket;
 withIdleAndPE:
 (# Idle:< (# do INNER; this(socketGenerator).Idle #);
 Blocking:<(# continue: (# do true->doContinue #);
 doContinue: @boolean;
 do INNER;
 (if doContinue//false then leaveNBScope if);
 Idle;
 #);
 error:< propagateException(# do INNER; msg->otherError #);
 do INNER
 #);
 Idle:< Object; (* every local 'Idle' executes this global one *)

 (* operations *)
 bind: withIdleAndPE
 (#
 enter port
 do ...
 #);
 close: withIdleAndPE
 (#
 do ...
 #);

40 Process Library

 getStreamConnection: withIdleAndPE
 (# sock: ^streamSocketType;
 do ...;
 exit sock[]
 #);
 getBinaryConnection: withIdleAndPE
 (# sock: ^binarySocketType;
 do ...;
 exit sock[]
 #);

 (* nonBlockingScope support *)
 (* don't 'leave' a 'nonBlockingScope'. Use 'leaveNBScope'. *)
 nonBlockingScope: (# do ... #);
 leaveNBScope: (# do ... #);

 (* exceptions *)
 socketGeneratorException: Exception
 (#
 enter msg
 do (if msg.empty//false then msg.newline if); INNER
 #);
 otherError:< socketGeneratorException;

 (* attributes *)
 port: @assignGuard(# rep: @integer enter rep exit rep #);

 (* private *)
 private: @...;
 #); (* SocketGenerator *)

9.4 connectionPool
(* A connectionPool manages a number of client side
 * communication interfaces (e.g. active sockets), and
 * allows choosing which one of those to use for a
 * communication transfer by means of a
 * portableCommAddress.
 *
 * The communication interfaces are subject to concurrency
 * control, so they must be used in a 'take-it, use-it,
 * give-it-back' fashion. This is achieved by the pattern
 * 'communication' in 'connectionPool'.
 *)

(* The binary connection pool
 *
 * Instances of BinaryConnectionPool are used for managing
 * a number of binary socket connections. The user of a
 * BinaryConnectionPool gives a specification of the
 * receiver, the type of connection, the quality of
 * service etc. in a portableCommAddress to a (specialization
 * of) the control pattern 'communication'. This is used as
 * follows (bcPool is an instance of BinaryConnectionPool):
 *
 * addr[] -> bcPool.communication
 * (# Extend error callbacks here
 * do
 * Within this dopart: use 'sock' to communicate
 * When leaving, forget 'sock' (don`t bring out ref.s to it)
 * #);

Interface Description 41

 *
 * If you want to 'leave' the dopart of a specialization of
 * a 'communication', use
 *
 * leaving(# do leave L #);
 *
 * in stead of
 *
 * leave L;
 *
 * Otherwise some resources may be rendered inaccessible.
 *)
BinaryConnectionPool:
 (#
 (* patterns *)
 socketType:< activeBinarySocket;

 (* operations *)
 init:<
 (#
 do ...
 #);
 communication:
 (# addr: ^portableCommAddress;
 sock: ^socketType;
 leaving: (# do ... #);

 (* hooks *)
 onNewConnection:<
 (* executed when a new connection has been created *)
 (# sock: ^socketType; (* The new connection *)
 context: ^object; (* NB: Should`ve been private *)
 actor: ^|system; (* process to associate with sock *)
 enter (sock[],context[])
 do INNER
 exit actor[]
 #);

 (* operations *)
 removeSock: (* remove sock from this pool *)
 (# dopart: @...;
 do dopart
 #);

 (* exceptions *)
 error:< hiErrCB (* operation level error callback *)
 (#
 do INNER;
 …
 #);
 concrErrCB: hiErrCB
 (*superpattern for concrete error callbacks*)
 (#
 do INNER;
 …
 #);
 addrHasUnknownType:< exception;
 (* Considered fatal, for now *)
 internalError:< concrErrCB(# do INNER #);
 unknownError:< concrErrCB(# do INNER #);
 accessError:< concrErrCB(# do INNER #);
 resourceError:< concrErrCB(# do INNER #);
 addressError:< concrErrCB(# do INNER #);
 refusedError:< concrErrCB(# do INNER #);
 intrError:< concrErrCB(# do INNER #);
 getHostError:< concrErrCB(# do INNER #);

42 Process Library

 (* private *)
 priv: @...;

 enter addr[]
 do ...
 #);
 markAsDead:
 (# dopart: @...;
 sock: ^binarySocket;
 enter sock[]
 do dopart
 #);
 removeSomeConnection:
 (* Removes least recently used currently unused connection *)
 (# noConnectionsRemovable:< object;
 dopart: @...;
 do dopart
 #);
 close:<
 (#
 do ...
 #);

 (* top level error callback *)
 error:< hiErrCB(# do INNER #);

 (* private *)
 private: @...;
 #);

9.5 errorCallback
(* Basic Exception Handling
 * ========================
 *
 * Whenever an error condition is detected on a socket, a
 * corresponding virtual pattern is instantiated and executed.
 * These patterns are specializations of 'errCB', as
 * declared below. Such virtual patterns are hereafter denoted
 * error callback patterns. To catch and treat an error,
 * extend the corresponding error callback.
 *
 * If an error callback is not extended and the
 * corresponding error occurs, an exception is executed
 * and the program terminates. If the error callback
 * is extended, the following holds:
 *
 * - if 'abort' is executed in the extending dopart,
 * the operation (but not the program) is aborted. You may
 * execute 'leave' within a specialization of abort. Don't
 * 'leave' an error callback from any other point, as this
 * may put the object or the process into an unstable
 * state. If you 'abort' but do not 'leave', the operation
 * aborts, but control flow is like when the operation succeeds;
 * in this case, any exited values are dummy values, reflecting
 * that the operation failed. Don't use them!
 *
 * - if 'continue' is executed in the extending dopart,
 * there will be an attempt to recover and finish the operation,
 * after the execution of the error callback terminates.

Interface Description 43

 *
 * - if 'fatal' is executed in the extending dopart,
 * an exception will be executed and the program terminated,
 * before the execution of the error callback returns. (This
 * is also the default, but with hierarchical error callbacks,
 * you may need 'fatal' to undo a 'continue' at a higher level).
 *
 * In case it happens more than once that an operation
 * from the set 'abort','continue','fatal' is executed,
 * the one executed as the last takes precedence.
 *
 * Propagating exceptions
 * ======================
 *
 * The error callback patterns are present at three different
 * levels: Concrete error callbacks, operation level error
 * callbacks, and socket level error callbacks.
 *
 * The concrete error callbacks provide the greatest level of
 * detail: their names indicate the kind of error condition
 * detected. This makes it possible to treat different errors
 * differently.
 *
 * The operation level error callback is executed whenever
 * an error condition is detected during the execution of
 * that operation. In a extending of this kind of error
 * callback, you can adjust the default action for all the
 * concrete error callbacks in this operation.
 *
 * The single socket level error callback is executed whenever
 * any operation detects any error condition. In a extending
 * of this error callback, you can adjust the default action
 * for all operation level error callbacks.
 *
 * The means for adjusting the behaviour is in all cases to
 * execute 'abort' (probably "abort(# leave L #)") 'continue',
 * or 'fatal', and the semantics of these imperatives are
 * like in concrete error callbacks.
 *
 * Error callback extendings normally take precedence
 * like this: concrete > operation level > socket level.
 * This means that the higher level specifies a default, and
 * the more concrete level overrides this default if it
 * executes 'continue', 'abort', or 'fatal'. This doesn't
 * hold, however, if you "abort(# do leave L #)" at a higher
 * level: In this case, the more concrete levels will never
 * get a chance to undo the 'leave'.
 *)
--- lib:attributes ---

errCB_initialValue: (# exit -1 #);
errCB_abortProgram: (# exit 0 #);
errCB_abortOperation: (# exit 1 #);
errCB_continueOperation: (# exit 2 #);

errCB: IntegerValue
 (# abort: (# do ... #);
 continue: (# do ... #);
 fatal: (# do ... #);
 addMsg: (# t: ^text enter t[] ... #);
 exceptionType:< exception;
 cleanup: ^object;
 private: @...;
 enter cleanup[]
 do ...
 #);

44 Process Library

hiErrCB: IntegerObject
 (# abort: (# do ... #);
 continue: (# do ... #);
 fatal: (# do ... #);
 cleanup: ^object;
 enter cleanup[]
 do INNER
 #);

9.6 idScheduler
idSchedElement:
 (#
 suspend_sem: @semaphore;
 id: @integer;
 #);

idScheduler:
 (#
 isElement:< idSchedElement;
 prefix:
 (# id: @integer;
 elm: ^isElement;
 enter id
 do INNER
 #);

 (* operations *)
 init:<
 (#
 do ...
 #);
 id_suspend: prefix
 (# dopart: @...;
 do dopart; INNER;
 #);
 id_resume: prefix
 (# found:< object;
 not_found:< object;
 dopart: @...;
 do dopart
 #);

 (* private *)
 private: @...
 #);

idTimeoutScheduler: idScheduler
 (#
 (* operations *)
 init::<
 (#
 do ...
 #);
 id_timeoutSuspend: prefix
 (# timeoutValue: @integer;
 retry:< BooleanValue;
 onSuccess:< object;
 onTimeout:< object;
 dopart: @...;

Interface Description 45

 enter timeoutValue
 do dopart
 #);

 (* private *)
 private2: @...;
 #);

9.7 osinterface
osinterface:
 (#
 <<SLOT OSInterfaceLib:attributes>>;

 init:< (# do ...; INNER #);
 hostMachine:
 (# theMachine: @text
 do ...
 exit theMachine
 #);
 hostName:
 (# error:<OSError;
 result: @text;
 do ...;
 exit result
 #);
 getHostAddr:
 (# addr: ^Text;
 do ...
 exit addr[]
 #);
 thisProcess: @Process
 (#
 scanArguments:
 (# current: @Text;
 do ...;
 #);
 #); (* the process referring to this program execution *)

 do init; INNER;
 #);

OSError: Exception
 (# message: @Text;
 enter message
 do ...;
 INNER;
 #);

9.8 processmanager
(* The ProcessManager models the concepts of program executions and
 * communication between program executions.
 *
 * A program execution is modelled as a process.
 * A process can be started (executed) and stopped (terminated).

46 Process Library

 * Processes can communicate to each other using either pipes or
 * sockets. Using pipes as communication model, processes can make
 * simple communication though redirection of standard input/output
 * streams (screen and keyboard). Using sockets as communication
 * model, processes can communicate through any specified stream.
 *)

(* Notice, this(Process) can only be executed once.
 *
 * Two program executions of the same Process,
 * can be executed by instantiating and executing two different BETA
 * objects from the same Process.
 *)

Process:
 (#
 <<SLOT ProcessLib:attributes>>;

 name: ^Text;
 init:< (# enter name[] do ...; INNER #);

 argType:
 (# argument: @Text;
 putArg:
 (# t: ^Text;
 enter t[]
 do ...
 #);
 append: @putArg;
 scanArguments: (* calls INNER for each argument *)
 (# current: @Text;
 do ...;
 #);
 #);
 argument: @argType; (* arguments to this(Process) *)

 (* operations *)

 start: (* starts this(Process)'s program execution *)
 (# error:< ProcessManagerException;
 twoCurrent:< ProcessManagerException;
 do ...; INNER;
 #);

 stop: (* stops this(Process)'s program execution *)
 (# error:< ProcessManagerException;
 do ...; INNER;
 #);

 awaitStopped: (* Returns when THIS(Process) stops *)
 (# error:< ProcessManagerException;
 do ...; INNER;
 #);

 stillRunning: (* Returns true if THIS(Process) is still running*)
 (# error:< ProcessManagerException;
 value: @Boolean;
 do ...; INNER;
 exit value
 #);

 (* input/output redirection *)

 connectToProcess:
 (* connect output of this(process) to toProcess's input
 * In Unix terms: this(Process) | toProcess

Interface Description 47

 *)
 (# error:< ProcessManagerException;
 toProcess: ^Process;
 enter toProcess[]
 do ...;
 #);

 connectInPipe:
 (* connect output of fromProcess to input of this(process)
 * In Unix terms: fromProcess | this(Process)
 *)
 (# error:< ProcessManagerException;
 fromProcess: ^Process;
 enter fromProcess[]
 do ...;
 #);

 redirectFromFile:
 (* redirect input to this(process) from inputFile
 * In Unix terms: this(Process) < inputFile
 *)
 (# error:< ProcessManagerException;
 inputFile: ^File;
 enter inputFile[]
 do ...;
 #);

 redirectToFile:
 (* redirect output of this(process) to outputFile
 * In Unix terms: this(Process) > outputFile
 *)
 (# error:< ProcessManagerException;
 outputFile: ^File;
 enter outputFile[]
 do ...;
 #);

 redirectFromChannel:
 (* redirect input to this(process) from inputChannel *)
 (# error:< ProcessManagerException;
 inputChannel: ^Stream;
 enter inputChannel[]
 do ...;
 #);

 redirectToChannel:
 (* redirect output of this(process) to outputChannel *)
 (# error:< ProcessManagerException;
 outputChannel: ^Stream;
 enter outputChannel[]
 do ...;
 #);

 (* Virtual callbacks: called when the proper action has occurred *)

 onStart:< (# do INNER #);
 onStop:< (# do INNER #);

 doDebug: @Boolean;
 private: @...;
 #);

ProcessManagerException: Exception
 (# message: ^Text;
 enter message[]
 do ...;

48 Process Library

 INNER;
 #);

9.9 systemComm
(* Expected context:
 * =================
 *
 * Instances of the patterns of this fragment are expected to be
 * executed from components (co-routines). Whenever an operation
 * is about to block, the current component will be suspended.
 * It will be resumed some time later, when the requested IO
 * is available. This means that communication related
 * functionality can be written in a simple, blocking style; it
 * will behave approximately as if the scheduler were preemptive.
 *
 * Communication concepts:
 * =======================
 *
 * Pipe: Communication channel between two processes.
 * For pure standard communication, using standard input/output.
 * Both processes are unaware of the identity of their
 * communication partner.
 *
 * Socket: A stream, conceptually an endpoint of a two-way
 * comminication line. Two endpoints are connected by letting
 * an ActiveSocket connect to a PassiveSocket. The
 * PassiveSocket just waits for the ActiveSocket to connect.
 * After connection both sockets can read/write on their
 * streams.
 *
 * SocketGenerators are used in client/server type communication.
 * Sockets are divided into the categories stream socket and binary
 * socket.
 *
 * Stream sockets:
 *
 * A stream socket is suitable for transferring data, which is
 * readable for human beings, like the data transferred in a UNIX
 * 'talk' session, or like the more formal communication between a
 * mail program and an SMTP mail server. A stream socket is a stream,
 * so you may 'put', 'get' etc. However, don't use this kind of socket
 * when transferring data which may contain zero-valued bytes, such as
 * arbitrary binary data.
 *
 * Binary sockets:
 *
 * A binary socket is guaranteed to transfer any given block of
 * arbitrary bytes unmodified, but you must always specify the
 * length of the data block, both for sending and receiving. You may
 * 'readData' and 'writeData' on a binary socket, which constitutes
 * the lowest level interface.
 *
 * The operations 'getBlock' and 'putBlock' provide support for
 * a very simple, binary data transfer protocol. In this protocol,
 * all data is transferred in blocks with the following layout:
 *
 * len header data
 * |--------|--------|---------------------------------|
 *
 * The 'len' field is a four byte integer value, in big-endian byte

Interface Description 49

 * order. The 'header' field is a four byte big-endian integer value,
 * identifying the kind of data in the 'data' field, the purpose
 * of the block, or whatever. The 'data' field length is 4*'len'
 * bytes. The sender and the recipient must agree on the
 * interpretation of the 'header' and 'data' fields, which is left
 * unspecified by this protocol.
 *
 * The operations 'putRep' and 'getRep' are provided for transferring
 * data to and from a ExtendedRepstream object, using this protocol.
 * The usage of this level of functionality is recommended whenever
 * possible, as it encapsulates (and hides) references to raw memory
 * addresses.
 *
 * The operations 'putRepObj' and 'getRepObj' are similar to 'putRep'
 * and 'getRep', apart from: (1) The objects sent or received are
 * instances of the pattern RepetitionObject. (2) the protocol has
 * no header field, and the length field is the first element in
 * the repetition from the repetitionObject:
 *
 * len data
 * |--------|---------------------------------|
 *
 * Otherwise, it is like the above protocol.
 *
 * The 'Idle' patterns:
 * ====================
 *
 * Many operations on sockets have an 'Idle' virtual pattern.
 * It may be executed one or more times if the operation cannot
 * finish right away. This is not guaranteed to happen, so don't
 * rely on 'Idle' being executed even once. Extend this virtual
 * to keep your application "alive" during a (possibly) lenghty
 * operation. Don't execute operations on this(Socket) in an
 * enclosed 'Idle'. Don't stop the operation from within an 'Idle' -
 * the operation is unfinished; you may for instance have received
 * half a block, which makes the stop a serious break wrt the
 * protocol; use 'nonBlockingScope' and 'Blocking' for this purpose.
 *
 * The 'nonBlockingScope' and 'Blocking' patterns:
 * ===
 *
 * The 'nonBlockingScope' pattern is used for specifying non-blocking
 * communication. This means that operations which cannot begin
 * right away are discontinued. An example is: We try to read from a
 * socket, but no data at all is available to read. If any
 * irreversibleactions have been taken in an operation (e.g. reading a
 * few bytes), it will not be interrupted by the 'nonBlockingScope'
 * mechanism. This means it is always safe to interrupt an operation
 * by enclosing it in a 'nonBlockingScope', and to retry it later.
 *
 * With each 'Idle' pattern comes a 'Blocking' virtual. This is
 * executed if the current operation is blocking, i.e. if nothing can
 * be done right away. You may extend this virtual to take some action
 * in response to the operation being blocked. If the operation is
 * enclosed in a 'nonBlockingScope', your 'Blocking'-code gets
 * executed immediately before the operation is interrupted. If you
 * don't want to interrupt the operation, execute 'continue' in the
 * extending of 'Blocking'.
 *
 * USAGE: Normally the communication will be blocking. But if you
 * enclosean operation in a specialization of 'nonBlockingScope', we
 * 'leave' the 'nonBlockingScope' at the first blocking condition.
 * PLEASE NOTE: it is unsafe to execute a 'leave' statement which
 * leaves a 'nonBlockingScope'. If you need to leave it, execute
 * 'leaveNBScope'. The normal usage with and without
 * 'nonBlockingScope' looks like this:

50 Process Library

 *
 * BLOCKING STYLE
 * myStreamSocket.getLine waits until data has arrived
 * -> reactOnInput; always executed
 * reactSomeMore; always executed
 * doOtherThings;
 *
 * NONBLOCKING STYLE
 * myStreamSocket.nonBlockingScope
 * (#
 * do
 * myStreamSocket.getLine if no data: leave scope at once
 * -> reactOnInput; only executed if data available
 * reactSomeMore; only executed if data available
 * #);
 * doOtherThings;
 *
 * With some patterns, it is not possible to have a virtual 'Blocking'
 * or 'Idle' pattern. This is because an enter parameter for the
 * operation is supposedly the address of a beta object. Having taken
 * this, it is unsafe to create objects during the execution of the
 * operation. An example is 'BinarySocket.writeData'. However,
 * enclosing such operations in a 'nonBlockingScope' does cause the
 * operation to behave in a non-blocking manner.
 *
 * Exception Handling
 * ==================
 *
 * Uses error callbacks. Read about these in 'errorCallback.bet'.
 *
 * The error callbacks used have the following meaning:
 *
 *
 * Error callback name Meaning
 * ---
 * accessError Insufficient access rights
 * addressError Address (i.e. (host,port)) in use or
 * invalid
 * badMsgError (hardly documented in man page)
 * connBrokenError The connection has become unusable
 * eosError End-of-stream
 * getHostError Error when getting hostname
 * internalError Should not happen; please report if it
 * does!
 * intrError Operation interrupted by signal
 * refusedError Connection refused by peer
 * resourceError Too few file descriptors/buffers etc.
 * timedOut Specified timeout period has expired
 * timedOutInTransfer Timed out, and some data have been
 * transferred
 * unknownError OS reports unknown errno (new OS?)
 * usageError Eg: you must initialize port before
 * connecting
 *
 * nospaceError (StreamSocket) returned by op. on
 * fdStream
 * otherError (StreamSocket) from fdStream
 * readError (StreamSocket) from fdStream
 * writeError (StreamSocket) from fdStream
 * accessError (also occurs as an fdStream error)
 *)

waitForever: (* Default for timeouts *)
 IntegerValue(# do -1->value; INNER #);

assignGuard: (# assigned: @Boolean do true -> assigned #);

Interface Description 51

propagateException: (# msg: ^Text enter msg[] do INNER #);

pipe:
 (* The pipe is a composition of two interconnected one way streams.
 * What is written on 'writeEnd' can subsequently be read
 * from 'readEnd'.
 *)
 (#
 (* operations *)
 init:<(# error:< propagateException(# do INNER; … #);
 do ...
 #);

 (* !!!! exceptions *)
 pipeException: Exception
 (#
 enter msg
 do (if msg.empty//false then msg.newline if);
 INNER;
 #);
 pipeError:< PipeException;

 (* attributes *)
 readEnd: ^Stream;
 writeEnd: ^Stream;

 (* private *)
 private: @...;
 #); (* pipe *)

StreamSocket: Stream
 (#
 (* basics *)
 withPE:
 (# error:< hiErrCB (* operation level error callback *)
 (#
 do INNER;
 (if errCB_initialValue // value then
 (value,cleanup[])->this(StreamSocket).error->value;
 if);
 #);
 loErrCB: errCB (*superpattern for concrete error callbacks*)
 (#
 do INNER;
 (if errCB_initialValue // value then
 (value,cleanup[])->error->value;
 if);
 #);
 accessError:< loErrCB(# do INNER #);
 nospaceError:< loErrCB(# do INNER #);
 writeError:< loErrCB(# do INNER #);
 usageError:< loErrCB(# do INNER #);
 otherError:< loErrCB(# do INNER #);
 timedOut:< loErrCB(# do INNER #);
 timeout: @integer;
 enter timeout
 do INNER
 #);
 BasicBlocking:
 (# continue: (# do true->doContinue #);
 doContinue: @boolean;
 doIdle:< Object;
 do INNER;
 (if doContinue//false then leaveNBScope if);
 doIdle;

52 Process Library

 #);
 Idle:< Object; (* every local 'Idle' executes this global one *)
 timeoutValue:< waitForever; (*length in seconds, all operations*)

 (* operations *)
 sameConnection: booleanValue
 (* do 'this' and 'other' wrap the same OS level connection? *)
 (# other: ^StreamSocket;
 enter other[]
 ...
 #);
 getPortableAddress:
 (# addr: ^portablePortAddress;
 dopart: @...;
 do dopart
 exit addr[]
 #);
 open: withPE
 (# Idle:< (# do INNER; this(StreamSocket).Idle #);
 Blocking:< BasicBlocking(# doIdle::< (# do … #) do INNER #);
 do ...
 #);
 close:< withPE
 (#
 do ...
 #);
 flush: withPE
 (# Idle:< (# do INNER; this(StreamSocket).Idle #);
 Blocking:< BasicBlocking(# doIdle::< (# do … #) do INNER #);
 dopart: @...;
 do dopart
 #);
 put::
 (# Idle:< (# do INNER; this(StreamSocket).Idle #);
 Blocking:< BasicBlocking(# doIdle::< (# do … #) do INNER #);
 error:< hiErrCB (* operation level error callback *)
 (#
 do INNER;
 …
 #);
 loErrCB: errCB (*superpattern for concrete error callbacks*)
 (#
 do INNER;
 …
 #);
 writeError:< loErrCB(# do INNER #);
 timedOut:< loErrCB(# do INNER #);
 dopart: @...;
 do dopart
 #);
 get::
 (# Idle:< (# do INNER; this(StreamSocket).Idle #);
 Blocking:< BasicBlocking(# doIdle::< (# do … #) do INNER #);
 error:< hiErrCB (* operation level error callback *)
 (#
 do INNER;
 …
 #);
 loErrCB: errCB (*superpattern for concrete error callbacks*)
 (#
 do INNER;
 …
 #);
 readError:< loErrCB(# do INNER #);
 eosError:< loErrCB(# do INNER #);
 connBrokenError:< loErrCB(# do INNER #);

Interface Description 53

 timedOut:< loErrCB(# do INNER #);
 dopart: @...;
 do dopart
 #);
 peek::
 (# Idle:< (# do INNER; this(StreamSocket).Idle #);
 Blocking:< BasicBlocking(# doIdle::< (# do … #) do INNER #);
 error:< hiErrCB (* operation level error callback *)
 (#
 do INNER;
 …
 #);
 loErrCB: errCB (*superpattern for concrete error callbacks*)
 (#
 do INNER;
 …
 #);
 readError:< loErrCB(# do INNER #);
 eosError:< loErrCB(# do INNER #);
 connBrokenError:< loErrCB(# do INNER #);
 timedOut:< loErrCB(# do INNER #);
 dopart: @...;
 do dopart
 #);
 eos::
 (# Idle:< (# do INNER; this(StreamSocket).Idle #);
 Blocking:< BasicBlocking(# doIdle::< (# do … #) do INNER #);
 error:< hiErrCB (* operation level error callback *)
 (#
 do INNER;
 …
 #);
 loErrCB: errCB (*superpattern for concrete error callbacks*)
 (#
 do INNER;
 …
 #);
 connBrokenError:< loErrCB(# do INNER #);
 internalError:< loErrCB(# do INNER #);
 unknownError:< loErrCB(# do INNER #);
 dopart: @...;
 do dopart
 #);
 putText::
 (# Idle:< (# do INNER; this(StreamSocket).Idle #);
 Blocking:< BasicBlocking(# doIdle::< (# do … #) do INNER #);
 error:< hiErrCB (* operation level error callback *)
 (#
 do INNER;
 …
 #);
 loErrCB: errCB (*superpattern for concrete error callbacks*)
 (#
 do INNER;
 …
 #);
 writeError:< loErrCB(# do INNER #);
 timedOut:< loErrCB(# do INNER #);
 dopart: @...;
 do dopart
 #);
 getLine::
 (# Idle:< (# do INNER; this(StreamSocket).Idle #);
 Blocking:< BasicBlocking(# doIdle::< (# do … #) do INNER #);
 error:< hiErrCB (* operation level error callback *)
 (#

54 Process Library

 do INNER;
 …
 #);
 loErrCB: errCB (*superpattern for concrete error callbacks*)
 (#
 do INNER;
 …
 #);
 readError:< loErrCB(# do INNER #);
 eosError:< loErrCB(# do INNER #);
 connBrokenError:< loErrCB(# do INNER #);
 timedOut:< loErrCB(# do INNER #);
 dopart: @...;
 do dopart
 #);
 getAtom::
 (# Idle:< (# do INNER; this(StreamSocket).Idle #);
 Blocking:< BasicBlocking(# doIdle::< (# do … #) do INNER #);
 error:< hiErrCB (* operation level error callback *)
 (#
 do INNER;
 …
 #);
 loErrCB: errCB (*superpattern for concrete error callbacks*)
 (#
 do INNER;
 …
 #);
 readError:< loErrCB(# do INNER #);
 eosError:< loErrCB(# do INNER #);
 connBrokenError:< loErrCB(# do INNER #);
 timedOut:< loErrCB(# do INNER #);
 dopart: @...;
 do dopart
 #);
 forceTimeout:< (# do ... #);
 usageTimestamp:< integerValue(# ... #);

 (* nonBlockingScope support *)
 (* don`t 'leave' a 'nonBlockingScope'. Use 'leaveNBScope' *)
 nonBlockingScope: (# do ... #);
 leaveNBScope: (# do ... #);

 (* socket level error callback *)
 error:< hiErrCB(# do INNER #);

 (* attributes *)
 host: @assignGuard(# t: @text; enter t exit t #);
 port: @assignGuard(# rep: @integer enter rep exit rep #);
 inetAddr: @assignGuard(# rep: @integer enter rep exit rep #);

 (* private *)
 private: @...;
 #); (* StreamSocket *)

BinarySocket:
 (#
 (* basics *)
 withPE:
 (# error:< hiErrCB (* operation level error callback *)
 (#
 do INNER;
 …
 #);
 loErrCB: errCB (*superpattern for concrete error callbacks*)
 (#

Interface Description 55

 do INNER;
 …
 #);
 timedOut:< loErrCB(# do INNER #);
 timedOutInTransfer:< loErrCB(# do INNER #);
 internalError:< loErrCB(# do INNER #);
 connBrokenError:< loErrCB(# do INNER #);
 usageError:< loErrCB(# do INNER #);
 unknownError:< loErrCB(# do INNER #);
 timeout: @integer;
 enter timeout
 do INNER
 #);
 withIdle: withPE
 (# Idle:< (# do INNER; this(BinarySocket).Idle #);
 Blocking:<(# continue: (# do true->doContinue #);
 doContinue: @boolean;
 do INNER;
 (if doContinue//false then leaveNBScope if);
 Idle;
 #);
 do INNER
 #);
 repIO: withIdle
 (* Abstract pattern. Read/write a block to/from 'rep',
 * returning/using 'header'. The length of the block is
 * stored in/retrived from 'rep.end'.
 *)
 (# resourceError:< loErrCB(# do INNER #);
 badMsgError:< loErrCB(# do INNER #);
 rep: ^ExtendedRepstream;
 header: @integer;
 enter rep[]
 do INNER
 #);
 repObjIO: withIdle
 (* Abstract pattern. Read/write a block to/from 'rep',
 * The length of the block is stored in/retrived from
 * 'rep.end'.
 *)
 (# resourceError:< loErrCB(# do INNER #);
 badMsgError:< loErrCB(# do INNER #);
 rep: ^RepetitionObject;
 enter rep[]
 do INNER
 #);
 Idle:< Object; (* every local 'Idle' executes this global one *)

 (* operations *)
 sameConnection: booleanValue
 (* do 'this' and 'other' wrap the same OS level connection? *)
 (# other: ^BinarySocket;
 enter other[]
 ...
 #);
 getPortableAddress:
 (# addr: ^portablePortAddress;
 dopart: @...;
 do dopart
 exit addr[]
 #);
 open: withIdle(# do ... #);
 close:< withIdle(# do ... #);
 endOfData: @endOfDataPattern;
 putRep: @putRepPattern;
 getRep: @getRepPattern;

56 Process Library

 putRepObj: @putRepObjPattern;
 getRepObj: @getRepObjPattern;
 forceTimeout:< (# do ... #);
 usageTimestamp:< integerValue(# ... #);

 endOfDataPattern:
 (* Returns true if no data is immediately
 * available for reading *)
 (# error:< hiErrCB (* operation level error callback *)
 (#
 do INNER;
 …
 #);
 loErrCB: errCB (*superpattern for concrete error callbacks*)
 (#
 do INNER;
 …
 #);
 connBrokenError:< loErrCB(# do INNER #);
 internalError:< loErrCB(# do INNER #);
 unknownError:< loErrCB(# do INNER #);
 value: @boolean;
 dopart: @...;
 do dopart
 exit value
 #);
 putRepPattern: repIO
 (* Read to ExtendedRepstream using
 * above mentioned binary protocol
 *)
 (# dopart: @...;
 enter header
 do dopart
 #);
 getRepPattern: repIO
 (* Write ExtendedRepstream contents
 * using above mentioned binary protocol
 *)
 (# dopart: @...;
 do dopart
 exit header
 #);
 putRepObjPattern: repObjIO
 (* Read to RepetitionObject, using headerless protocol *)
 (# dopart: @...;
 do dopart
 #);
 getRepObjPattern: repObjIO
 (* Write RepetitionObject, using headerless protocol *)
 (# dopart: @...;
 do dopart
 #);

 (* nonBlockingScope support *)
 (* don`t 'leave' a 'nonBlockingScope'. Use 'leaveNBScope'. *)
 nonBlockingScope: (# do ... #);
 leaveNBScope: (# do ... #);

 (* socket level error callback *)
 error:< hiErrCB(# do INNER #);

 (* attributes *)
 host: @assignGuard(# t: @text; enter t exit t #);
 port: @assignGuard(# rep: @integer enter rep exit rep #);
 inetAddr: @assignGuard(# rep: @integer enter rep exit rep #);

Interface Description 57

 (* private *)
 private: @...;
 #); (* BinarySocket *)

ActiveStreamSocket: StreamSocket
 (* Initiator of socket communication. Initialize 'host' and 'port'
 * and 'connect' to a passive socket to establish communication.
 *)
 (#
 (* operations *)
 connect: open
 (# resourceError:< loErrCB(# do INNER #);
 addressError:< loErrCB(# do INNER #);
 refusedError:< loErrCB(# do INNER #);
 intrError:< loErrCB(# do INNER #);
 getHostError:< loErrCB(# do INNER #);
 connBrokenError:< loErrCB(# do INNER #);
 unknownError:< loErrCB(# do INNER #);
 internalError:< loErrCB(# do INNER #);
 dopart: @...;
 enter (host,port)
 do dopart
 #);
 #); (* ActiveStreamSocket *)

ActiveBinarySocket: BinarySocket
 (* Initiator of socket communication. Initialize 'host' and 'port'
 * and 'connect' to a passive socket to establish communication.
 *)
 (#
 (* operations *)
 connect: open
 (# accessError:< loErrCB(# do INNER #);
 resourceError:< loErrCB(# do INNER #);
 addressError:< loErrCB(# do INNER #);
 refusedError:< loErrCB(# do INNER #);
 intrError:< loErrCB(# do INNER #);
 getHostError:< loErrCB(# do INNER #);
 dopart: @...;
 enter (host,port)
 do dopart
 #);
 #); (* ActiveBinarySocket *)

PassiveStreamSocket: StreamSocket
 (* 'bind' to port and 'awaitConnection'. Other executions can then
 * connect to the port and communicate through the passive socket.
 * Use a 'nonBlockingScope' to interrupt 'awaitConnection', if no
 * connections are being requested.
 *)
 (#
 (* operations *)
 bind:
 (# error:< hiErrCB (* operation level error callback *)
 (#
 do INNER;
 …
 #);
 loErrCB: errCB (*superpattern for concrete error callbacks*)
 (#
 do INNER;
 …
 #);
 connBrokenError:< loErrCB(# do INNER #);
 accessError:< loErrCB(# do INNER #);
 addressError:< loErrCB(# do INNER #);

58 Process Library

 intrError:< loErrCB(# do INNER #);
 resourceError:< loErrCB(# do INNER #);
 internalError:< loErrCB(# do INNER #);
 unknownError:< loErrCB(# do INNER #);
 usageError:< loErrCB(# do INNER #);
 dopart: @...;
 enter port
 do dopart
 #);
 awaitConnection: open
 (# connBrokenError:< loErrCB(# do INNER #);
 resourceError:< loErrCB(# do INNER #);
 internalError:< loErrCB(# do INNER #);
 unknownError:< loErrCB(# do INNER #);
 dopart: @...;
 do dopart
 #);
 close::< (# do ... #);
 forceTimeout::< (# do ... #);
 usageTimestamp::< (# ... #);

 (* private *)
 private2: @...;
 #); (* PassiveStreamSocket *)

PassiveBinarySocket: BinarySocket
 (* 'bind' to port and 'awaitConnection'. Other executions can then
 * connect to the port and communicate through the passive socket.
 * Use a 'nonBlockingScope' to interrupt 'awaitConnection', if no
 * connections are being requested.
 *)
 (#
 (* operations *)
 bind:
 (# error:< hiErrCB (* operation level error callback *)
 (#
 do INNER;
 …
 #);
 loErrCB: errCB (*superpattern for concrete error callbacks*)
 (#
 do INNER;
 …
 #);
 connBrokenError:< loErrCB(# do INNER #);
 accessError:< loErrCB(# do INNER #);
 addressError:< loErrCB(# do INNER #);
 intrError:< loErrCB(# do INNER #);
 resourceError:< loErrCB(# do INNER #);
 internalError:< loErrCB(# do INNER #);
 unknownError:< loErrCB(# do INNER #);
 usageError:< loErrCB(# do INNER #);
 dopart: @...;
 enter port
 do dopart
 #);
 awaitConnection: open
 (# accessError:< loErrCB(# do INNER #);
 connBrokenError:< loErrCB(# do INNER #);
 resourceError:< loErrCB(# do INNER #);
 dopart: @...;
 do dopart
 #);
 close::< (# do ... #);
 forceTimeout::< (# do ... #);
 usageTimestamp::< (# ... #);

Interface Description 59

 (* private *)
 private2: @...;
 #); (* PassiveBinarySocket *)

SocketGenerator:
 (* Supports creating multiple connections on a single port number;
 * typically used in an application acting as a server for a number
 * of clients. do 'portNumber -> bind' and use "get???Connection"
 * to establish connections to the clients. Use a 'nonBlockingScope'
 * to avoid waiting if no clients are requesting a connection.
 *
 * "get???Connection" exits a reference to a "???Socket" associated
 * with the new connection. You may use this like:
 *
 * mySocketGenerator.getStreamConnection -> aStreamSocketRef[];
 *
 * If you want to work with a specialization of the basic socket
 * patterns, extend the virtuals 'streamSocketType' and/or
 * 'binarySocketType'.
 *)
 (#
 (* basics *)
 streamSocketType:< streamSocket;
 binarySocketType:< binarySocket;
 withIdleAndPE:
 (# error:< hiErrCB (* operation level error callback *)
 (#
 do INNER;
 …
 #);
 loErrCB: errCB (*superpattern for concrete error callbacks*)
 (#
 do INNER;
 …
 #);
 usageError:< loErrCB(# do INNER #);
 resourceError:< loErrCB(# do INNER #);
 accessError:< loErrCB(# do INNER #);
 addressError:< loErrCB(# do INNER #);
 connBrokenError:< loErrCB(# do INNER #);
 intrError:< loErrCB(# do INNER #);
 internalError:< loErrCB(# do INNER #);
 unknownError:< loErrCB(# do INNER #);
 timedOut:< loErrCB(# do INNER #);
 Idle:< (# do INNER; this(socketGenerator).Idle #);
 Blocking:<(# continue: (# do true->doContinue #);
 doContinue: @boolean;
 do INNER;
 (if doContinue//false then leaveNBScope if);
 Idle;
 #);
 do INNER
 #);
 Idle:< Object; (* every local 'Idle' executes this global one *)

 (* operations *)
 getPortableAddress:
 (# addr: ^portablePortAddress;
 dopart: @...;
 do dopart
 exit addr[]
 #);
 bind: withIdleAndPE
 (# dopart: @...;
 enter port

60 Process Library

 do dopart
 #);
 close: withIdleAndPE
 (# dopart: @...;
 do dopart
 #);
 getStreamConnection: withIdleAndPE
 (# sock: ^streamSocketType;
 timeout: @integer;
 dopart: @...;
 enter timeout
 do dopart
 exit sock[]
 #);
 getBinaryConnection: withIdleAndPE
 (# sock: ^binarySocketType;
 timeout: @integer;
 dopart: @...;
 enter timeout
 do dopart
 exit sock[]
 #);
 forceTimeout: @
 (# dopart: @...
 do dopart
 #);
 usageTimestamp: @integerValue
 (#
 ...
 #);

 (* nonBlockingScope support *)
 (* don`t 'leave' a 'nonBlockingScope'. Use 'leaveNBScope'. *)
 nonBlockingScope: (# do ... #);
 leaveNBScope: (# do ... #);

 (* socket level error callback *)
 error:< hiErrCB(# do INNER #);

 (* attributes *)
 host: @assignGuard(# t: @text; enter t exit t #);
 port: @assignGuard(# rep: @integer enter rep exit rep #);
 inetAddr: @assignGuard(# rep: @integer enter rep exit rep #);

 (* private *)
 private: @...;
 #)

References

[Knudsen 94] J. L. Knudsen, M. Löfgren, O. L. Madsen, B. Magnusson
(eds.): Object-Oriented Environments – The Mjølner Ap-
proach, Prentice Hall, 1994, ISBN 0-13-009291-6.

[Madsen 93] O. L. Madsen, B. Møller-Pedersen, K. Nygaard: Object-
Oriented Programming in the BETA Programming Lan-
guage, Addison-Wesley, 1993, ISBN 0-201-62430-3

[MIA 90-1] Mjølner Informatics: The Mjølner BETA System: –
Overview, Mjølner Informatics Report MIA 90-1.

[MIA 90-2] Mjølner Informatics: The Mjølner BETA System: BETA
Compiler Reference Manual Mjølner Informatics Report
MIA 90-2.

[MIA 91-20] Mjølner Informatics: The Mjølner BETA System – Persis-
tent Store, MjølnerInformatics Report MIA 91-20.

[MIA 94-24] Mjølner Informatics: The Mjølner BETA System – The
Mjølner BETA System Tutorial, MjølnerInformatics
Report MIA 94-24.

[MIA 93-25] Mjølner Informatics: The Mjølner BETA System –
Distribution MjølnerInformatics Report MIA 94-25.

[MIA 94-26] Mjølner Informatics: The Mjølner BETA System – BETA
Language Introduction MjølnerInformatics Report MIA
94-26.

61

Index

The entries in the index with italic pagenumbers are the identifiers defined in
the public interface of the libraries:

The minor level entries refer to identifiers defined local to the identifier of the
major level entry. For those index entries referring to patterns with super- or
subpatterns within the library, these patterns are specified in special sections of
the minor level index for that identifier.

Entries with plain pagenumbers refer to the text of this manual.

addMsg 43 . getBlock 37
addr 28 . getBlockLen 37
addresses 15 . . superpattern:
argType 46 . . . withIdle 36
argument 46 . getBlockRest 37
assigned 34; 50 . getPortableAddress 55
AssignGuard 10; 34; 50 . getRep 37; 55
. assigned 34; 50 . . superpattern:
asText 28; 30 . . . repIO 36
asTextPattern 28; 29; 30; 31 . getRepObj 56
awaitConnection 38; 39; 58 . getRepObjPattern 56
awaitStopped 2; 46 . . superpattern:
BasicBlocking 35; 51 . . . repObjIO 55
Binary socket 5 . getRepPattern 56
binaryConnectionPool 18; 41 . . superpattern:
. close 42 . . . repIO 36
. communication 41 . host 56
. error 42 . Idle 36; 55
. . superpattern: . inetAddr 56
. . . hiErrCB 60 . leaveNBScope 38; 56
. init 41 . nonBlockingScope 38; 56
. markAsDead 42 . open 36; 55
. private 42 . . superpattern:
. removeSomeConnection 42 . . . withIdle 36
. socketType 41 . otherError 38
binarySocket 6; 10; 36; 54 . port 38; 56
. subpatterns: . private 38; 57
. . ActiveBinarySocket 38; 57 . putBlock 37
. . PassiveBinarySocket 39; 58 . putRep 37; 55
. bSocketException 38 . . superpattern:
. . superpattern: . . . repIO 36
. . . Exception 60 . putRepObj 56
. close 36; 55 . putRepObjPattern 56
. . superpattern: . . superpattern:
. . . withIdle 36 . . . repObjIO 55
. endOfData 37; 55 . putRepPattern 56
. endOfDataPattern 56 . . superpattern:
. error 56 . . . repIO 36
. . superpattern: . rawIO 36
. . . hiErrCB 60 . . superpattern:
. forceTimeout 56 . . . withPE 36

63

64 Process Library

. readData 37 commProtocol_udp 32

. repIO 36; 55 commProtocol_unix 32

. . superpattern: commRely_contents 32

. . . withIdle 36 commRely_dontcare 32

. . subpatterns: commRely_dup 32

. . . getRep 37 commRely_loss 32

. . . getRepPattern 56 commRely_order 32

. . . putRep 37 commRely_reliable 32

. . . putRepPattern 56 commRely_unreliable 32

. repObjIO 55 communication 41

. . superpattern: ConcretePortAddress 16; 30

. . . withIdle 36 . subpatterns:

. . subpatterns: . . memPortAddress 31

. . . getRepObjPattern 56 . . ppcPortAddress 31

. . . putRepObjPattern 56 . . unixAbstractPortAddress 30

. sameConnection 55 . . unixPortAddress 30

. . superpattern: . asText 30

. . . booleanValue 60 . asTextPattern 30

. usageTimestamp 56 . conformsTo 30

. . superpattern: . . superpattern:

. . . integerValue 60 . . . BooleanValue 60

. withIdle 36; 55 . private 30

. . superpattern: . protName 30

. . . withPE 36 . protocol 30

. . subpatterns: concurrency control 18

. . . close 36; 55 conformsTo 30

. . . getBlockLen 37 connect 38; 57

. . . open 36; 55 connectInPipe 47

. . . repIO 36; 55 connectToProcess 46

. . . repObjIO 55 continue 43; 44

. withPE 36; 54 cType 27

. . subpatterns: delete 29

. . . rawIO 36 demo 22

. . . withIdle 36; 55 doDebug 47

. writeData 37 endOfData 6; 37; 55
binarySocketType 39; 59 endOfDataPattern 56
bind 38; 39; 57; 58; 59 enterSpec 28
bSocketException 38 eos 35; 53
bufferID 31 errCB 43
Bugs and Inconveniences 25 . superpattern:
Categories of Errors 13 . . IntegerValue 43
cleanup 43; 44 . abort 43
close 35; 36; 38; 39; 42; 52; 55; 58; 60 . addMsg 43
co-routines 9; 20 . cleanup 43
commAddress 15 . continue 43
commError_connBroken 31 . exceptionType 43
commError_connRefused 31 . fatal 43
commError_noError 31 . private 43
commError_noHost 31 errCB_abortOperation 43
commError_nomoreSockets 31 errCB_abortProgram 43
commError_timeOut 31 errCB_continueOperation 43
commProtName_mem 32 errCB_initialValue 43
commProtName_ppc 32 error 7; 12; 42; 54; 56; 60
commProtName_tcp 32 errorCallback 12
commProtName_udp 32 Exception
commProtName_unix 32 . subpatterns:
commProtocol_dontcare 32 . . OSError 45
commProtocol_mem 32 . . ProcessManagerException 47
commProtocol_ppc 32 exceptionType 43
commProtocol_tcp 32 ExtendedRepstream 7

Index 65

fatal 43; 44 . private2 45
flush 35; 52 id_resume 20; 44
ForceTimeout 10; 54; 56; 58; 60 id_suspend 20; 44
get 35; 52 id_timeoutSuspend 44
getAtom 10; 35; 54 id_timeoutSuspended 20
getBinaryConnection 40; 60 inetAddr 11; 30; 54; 56; 60
getBlock 7; 37 init 28; 34; 41; 44; 45; 46; 51
getBlockLen 37 insert 28; 29
getBlockRest 37 IntegerObject
getHostAddr 45 . subpatterns:
getLine 10; 35; 53 . . hiErrCB 44
getMemPort 29 IntegerValue
getPortableAddress 10; 52; 55; 59 . subpatterns:
getPpcPort 29 . . errCB 43
getRep 7; 11; 37; 55 . . waitForever 50
getRepObj 56 Inter-process communication 4
getRepObjPattern 56 isElement 44
getRepPattern 56 leaveNBScope 11; 36; 38; 40; 54; 56;

60getStreamConnection 40; 60
getTcpPort 29 MacTCP 17
getUdpPort 29 markAsDead 19; 42
getUnixPort 29 maxWait 34
hiErrCB 44 memPortAddress 31
. superpattern: . superpattern:
. . IntegerObject 44 . . concretePortAddress 31
. abort 44 . asTextPattern 31
. cleanup 44 . bufferID 31
. continue 44 . protName 31
. fatal 44 . protocol 31
host 31; 38; 54; 56; 60 message 45; 47
hostMachine 3; 45 monitor 9
hostName 45 msg 34; 51
id 44 name 46
idle 8; 35; 36; 39; 52; 55; 59 NonBlockingScope 6; 11; 36; 38; 40;

54; 56; 60idSchedElement 44
. id 44 onStart 2; 47
. suspend_sem 44 onStop 47
idScheduler 20; 44 open 35; 36; 52; 55
. subpatterns: OSError 45
. . idTimeoutScheduler 44 . superpattern:
. id_resume 44 . . Exception 45
. . superpattern: . message 45
. . . prefix 44 osinterface 45
. id_suspend 44 . getHostAddr 45
. . superpattern: . hostMachine 45
. . . prefix 44 . hostName 45
. init 44 . init 45
. isElement 44 . thisProcess 45
. prefix 44 otherError 36; 38; 40
. . subpatterns: parseError 28
. . . id_resume 44 passiveBinarySocket 5; 39; 58
. . . id_suspend 44 . superpattern:
. private 44 . . BinarySocket 39
idTimeoutScheduler 20; 44 . awaitConnection 39; 58
. superpattern: . . superpattern:
. . idScheduler 44 . . . open 60
. id_timeoutSuspend 44 . bind 39; 58
. . superpattern: . close 39; 58
. . . prefix 60 . forceTimeout 58
. init 44 . private2 39; 59

66 Process Library

. usageTimestamp 58 . private2 30
passiveStreamSocket 5; 7; 11; 38; 57 portNo 30; 31
. superpattern: ppcPortAddress 31
. . StreamSocket 38 . superpattern:
. awaitConnection 38; 58 . . concretePortAddress 31
. . superpattern: . asTextPattern 31
. . . open 60 . host 31
. bind 38; 57 . portNo 31
. close 38; 58 . protName 31
. forceTimeout 58 . protocol 31
. private2 39; 58 . sessionId 31
. usageTimestamp 58 prefix 44
pathName 30 private 28; 30; 35; 36; 38; 40; 42; 43;

44; 47; 51; 54; 57; 60peek 35; 53
pipe 6; 10; 34; 51 private2 29; 30; 39; 45; 58; 59
. init 34; 51 process 2; 46
. pipeError 34; 51 . argType 46
. pipeException 34; 51 . argument 46
. . superpattern: . awaitStopped 46
. . . Exception 60 . connectInPipe 47
. private 35; 51 . connectToProcess 46
. readEnd 35; 51 . doDebug 47
. writeEnd 35; 51 . init 46
pipeError 34; 51 . name 46
pipeException 34; 51 . onStart 47
Pipes 4 . onStop 47
port 11; 36; 38; 40; 54; 56; 60 . private 47
portableCommAddress 16; 28 . redirectFromChannel 47
. subpatterns: . redirectFromFile 47
. . portableMultiAddress 28 . redirectToChannel 47
. . portablePortAddress 29 . redirectToFile 47
. asText 28 . start 46
. asTextPattern 28 . stillRunning 46
. enterSpec 28 . stop 46
. init 28 ProcessManagerException 47
. private 28 . superpattern:
portableCommAddressFromText 28 . . Exception 47
. addr 28 . message 47
. parseError 28 propagateException 34; 51
. txt 28 . msg 34; 51
portableCommunicationAddress 12 protName 30; 31
portableMultiAddress 16; 28 protocol 30; 31
. superpattern: protocolSpec 15; 27
. . portableCommAddress 28 . cType 27
. asTextPattern 29 . rType 27
. delete 29 put 35; 52
. init 28 putBlock 7; 37
. insert 28 putRep 7; 11; 37; 55
. private2 29 putRepObj 56
portablePortAddress 16; 29 putRepObjPattern 56
. superpattern: putRepPattern 56
. . portableCommAddress 29 PutText 10; 35; 53
. asTextPattern 29 rawIO 36
. delete 29 readData 37
. getMemPort 29 readEnd 35; 51
. getPpcPort 29 redirectFromChannel 2; 6; 47
. getTcpPort 29 redirectFromFile 2; 47
. getUdpPort 29 redirectToChannel 2; 6; 47
. getUnixPort 29 redirectToFile 2; 47
. insert 29 removeSomeConnection 19; 42

Index 67

repIO 36; 55 . . PassiveStreamSocket 38; 57
repObjIO 55 . BasicBlocking 35; 51
rType 27 . close 35; 52
sameConnection 10; 52; 55 . . superpattern:
semaphore 9 . . . withPE 35
sessionId 31 . eos 35; 53
socketGenerator 5; 8; 39; 59 . error 54
. binarySocketType 39; 59 . . superpattern:
. bind 39; 59 . . . hiErrCB 60
. . superpattern: . flush 35; 52
. . . withIdleAndPE 39 . . superpattern:
. close 39; 60 . . . withPE 35
. . superpattern: . forceTimeout 54
. . . withIdleAndPE 39 . get 35; 52
. error 60 . getAtom 35; 54
. . superpattern: . getLine 35; 53
. . . hiErrCB 60 . getPortableAddress 52
. forceTimeout 60 . host 54
. getBinaryConnection 40; 60 . Idle 35; 52
. . superpattern: . inetAddr 54
. . . withIdleAndPE 39 . leaveNBScope 36; 54
. getPortableAddress 59 . nonBlockingScope 36; 54
. getStreamConnection 40; 60 . open 35; 52
. . superpattern: . . superpattern:
. . . withIdleAndPE 39 . . . withPE 35
. host 60 . otherError 36
. Idle 39; 59 . peek 35; 53
. inetAddr 60 . port 36; 54
. leaveNBScope 40; 60 . private 36; 54
. nonBlockingScope 40; 60 . put 35; 52
. otherError 40 . putText 35; 53
. port 40; 60 . sameConnection 52
. private 40; 60 . . superpattern:
. socketGeneratorException 40 . . . booleanValue 60
. . superpattern: . sSocketException 36
. . . Exception 60 . . superpattern:
. streamSocketType 39; 59 . . . streamException 60
. usageTimestamp 60 . timeoutValue 52
. withIdleAndPE 39; 59 . usageTimestamp 54
. . subpatterns: . . superpattern:
. . . bind 39; 59 . . . integerValue 60
. . . close 39; 60 . withPE 35; 51
. . . getBinaryConnection 40; 60 . . subpatterns:
. . . getStreamConnection 40; 60 . . . close 35; 52
socketGeneratorException 40 . . . flush 35; 52
Sockets 4 . . . open 35; 52
socketType 41 streamSocketType 39; 59
sSocketException 36 suspend_sem 44
start 2; 46 systemComm 9
stillRunning 2; 46 systemEnv 9
stop 46 TCP 17
Stream TCP/IP 15
. subpatterns: tcpPortAddress 17; 30
. . StreamSocket 35; 51 . superpattern:
Stream socket 5 . . unixAbstractPortAddress 30
StreamSocket 6; 10; 35; 51 . protName 30
. superpattern: . protocol 30
. . Stream 35 thisProcess 3; 45
. subpatterns: timeout 14
. . ActiveStreamSocket 38; 57 timeoutValue 52

68 Process Library

txt 28
UDP 17
udpPortAddress 17; 30
. superpattern:
. . unixAbstractPortAddress 30
. protName 30
. protocol 30
unixAbstractPortAddress 17; 30
. superpattern:
. . concretePortAddress 30
. subpatterns:
. . tcpPortAddress 30
. . udpPortAddress 30
. asTextPattern 30
. inetAddr 30
. portNo 30
unixPortAddress 30
. superpattern:
. . concretePortAddress 30
. asTextPattern 30
. pathName 30
. protName 31
. protocol 31
usageTimeStamp 12; 54; 56; 58; 60
WaitForever 10; 50
. superpattern:
. . IntegerValue 50
WaitForIO 6; 34
. maxWait 34
withIdle 36; 55
withIdleAndPE 39; 59
withPE 35; 36; 51; 54
writeData 37
writeEnd 35; 51

