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Introduction

This report is a an introduction to the BETA language. The BETA language is pre-
sented to someone who is familiar with one or more object-oriented language such as
C++ or Eiffel.

The overall aspects of the BETA language is presented. The presentation focuses on
the concepts and ideas behind the design of BETA, and includes examples on the use
of most constructs. The tutorial contains sections on basic constructs, patterns and ob-
jects, singular objects, subprocedure, control patterns, nested patterns, virtua
patterns, coroutines, concurrency, and inheritance.

For more details about the BETA language than presented in this tutoria please see
[Madsen 93]. For atutoria on the Mjginer BETA System, please see [MIA 94-24]
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1 Language Concepts

BETA is a modern object-oriented language from the Scandinavian school of object-
orientation where the first object-oriented language Simula was developed. BETA
supports the object-oriented perspective on programming and contains comprehensive
facilities for procedural and functional programming. BETA has powerful abstraction
mechanisms for supporting identification of objects, classification and composition.
BETA is a strongly typed language like Simula, Eiffel and C++ with most type
checking being carried out at compile-time. It is well known that it is not possible to
obtain all type checking at compile time without sacrificing the expressiveness of the
language. BETA has an optimum balance between compile-time type checking and
run-time type checking.

1.1 Powerful Abstraction Mechanisms

BETA has powerful abstraction mechanisms that provide excellent support for design
and implementation, including data definition for persistent data. The powerful ab-
straction mechanisms greatly enhance reusability of designs and implementations.

The abstraction mechanisms include class, procedure, function, coroutine, process,
exception and many more, al unified into the ultimate abstraction mechanism: the
pattern. In addition to the pattern, BETA has subpattern, virtual pattern and pattern
variable. This unification gives a uniform treatment of abstraction mechanisms and a
number of new ones. Most object-oriented languages have classes, subclasses and
virtual procedures, and some have procedure variables. Since a pattern is a general-
ization of abstraction mechanisms like class, procedure, function, etc., the notions of
subpattern, virtual pattern and pattern variable also apply to these abstraction mecha
nisms. In addition to the above mentioned abstraction mechanisms, the pattern sub-
sumes notions such as generic package and task type as known from Ada.

The subpattern covers subclasses as in most other object-oriented languages. In addi-
tion, procedures may be organized in a subprocedure hierarchy in the same way as
classes may be organized in a subclass hierarchy. Since patterns may also be used to
describe functions, coroutines, concurrent processes, and exceptions, these may also
be organized in a pattern hierarchy.

The notion of virtual pattern covers virtual procedures as in C++. In addition, virtual
patterns cover virtual classes, virtual coroutines, virtual concurrent processes, and
virtual exceptions. Virtual classes provide a more general alternative to generic
classes asin Eiffel or templatesasin C++.

BETA includes the notion of pattern variable. Thisimplies that patterns are first class
values, that may be passed around as parameters to other patterns. By using pattern
variables instead of virtual patterns, it is possible dynamically to change the behavior
of an object after its generation. Pattern variables cover procedure variables (i.e. a
variable that may be assigned different procedures). Since patterns may be used as
classes, it is aso possible to have variables that can be assigned classes, etc.

BETA does not only allow for passive objects as in C++ and Eiffel. BETA objects
may also act as coroutines, making it possible to model alternating sequential pro-
cesses and quasi-parallel processes. BETA coroutines may be executed concurrent
(non pre-emptive scheduling in current implementation). The basic mechanism for
synchronization is semaphores, but high-level abstractions for synchronization and
communication, hiding al details about semaphores, are easy to implement, and the
standard library includes monitors, and rendezvous. The user may easily define new
concurrency abstractions including schedulers for processes.
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BETA supports the three main subfunctions of abstraction: identification, classifica-
tion, and composition as described in the following.

1.2 Identification of Objects

It is possible to describe objects that are not generated as instances of a class pattern,
so-called “class-less objects’. Thisisin many cases useful when there is only one ob-
ject of akind. In most object-oriented languages, it is necessary to define superfluous
classes for such objects. In analysis and design, it is absolutely necessary to be able to
describe singular objects without having them as instances of classes.

1.3 Classification

Classification is supported by patterns, subpatterns, and virtual patterns that make it
possible to describe classification hierarchies of objects and patterns (objects, classes,
procedures, functions, coroutines, processes, exceptions, etc.).

1.4 Composition (Aggregation)

Objects and patterns may be defined as a composition of other objects and patterns.
The support for composition includes:

* Whole-part composition: an attribute of an object may be a part-object. This
makes it possible to describe objectsin terms of their physical parts.

» Reference composition: an attribute may be a reference to an object. Reference
composition isthe basis for modeling arbitrary relations between objects.

» Localization: an attribute of an object may be a (nested) pattern—also known as
block-structure. The block-structure makes it easy to create arbitrary nested pat-
terns. This makes it possible for objects to have local patterns used as classes,
procedures, etc. Local patterns greatly enhance the modeling capabilities of an
object-oriented language.

1.5 Inheritance

In BETA, inheritance is not only restricted to inheritance from superpatterns. It is also
possible to inherit from a part-object. Virtua patterns in the part-object may be rede-
fined to influence the enclosing object. Multiple inheritance is supported through in-
heritance from multiple part-objects. This gives a much cleaner structure than inheri-
tance from multiple superpatterns.

1.6 Conceptual Framework

BETA isintended for modeling and design as well as implementation. During the de-
sign of BETA the development of the underlying conceptual framework has been just
as important as the language itself.

BETA is a language for representing/modeling concepts and phenomena from the
application domain and for implementing such concepts and phenomena on a com-
puter system. Part of a BETA program describes objects and patterns that represent
phenomena and concepts from the application model. This part is said to be represen-
tative since BETA elements at this level are meaningful with respect to the applica-
tion domain. Other parts of a BETA program are non-representative, since they do
not correspond to elements of the application domain, but are intended for realizing
the model as a computer system.

The BETA language as presented in this introduction is for describing objects and
patterns. The objects and patterns constitute the logical structure of a program execu-
tion. The physical structure of a program execution is handled by other components
of the Mjginer BETA System. A tutorial on using the this system is given in [MIA
94-24].



2 Basic Constructs

The most fundamental elements of BETA are objects and patterns. This section de-
scribes the basic patterns and values, simple assignments, control structures, variable
declarations, repetitions and patterns used as composite types.

2.1 Simple Types and Values

The simple types (or also caled basic patterns) are i nt eger, bool ean, char, and,
real . The following table shows the simple types with examples of values, including
text constant. Notice, that text is not a simple type in BETA, but a pattern de-
fined in the basic BETA environment called bet aenv.

Type Value

i nt eger 7, -4, Ox4FFC, 2x101101
bool ean true, false

char ‘¢

r eal 3.141, -1.234E3

text constant |'abc

2.2 Simple Static Variables

In BETA, astatic variable (also called a static reference) is declared like:
i: @nteger;
r: @eal

Variables of the simple types can only be declared static, see below for dynamic ref-
erences.

2.3 Simple Assignments

Simple value assignmentsin BETA goes | eft to right: Value assignmen
2 -> (* assign the value 2 to i *)
i -> (* assign the value of i to j *)
i*j ->k (* assign the value of i*j to k *)

(i,j) -> (x,y) (* assign the value of i to x and
* the value of j toy
*)

2.4 Control Structures

BETA has two build-in control structures: i f and f or, both having two forms. The
simplei f imperative with one boolean expression:

(i f <expression> then if
<i nperatives>
el se
<i nperatives>
if)
and thei f with several alternatives:
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(i f <expression>
/'l <expression> then <inperatives>
/'l <expression> then <inperatives>
(lalll se
<i nperatives>
if)
where// means equals.
Thesimplef or imperative just iterates a given number of times:
(for <expression> repeat <inperatives> for)

but the f or imperative may implicitly declare an iteration variable, only available in-
sidethef or loop, by:

(for <variabl e> <expression> repeat <inperatives> for)

The f or loop always starts in 1 and stops at <expr essi on>. The loop can be termi-
nated or restarted using labels, see below.

The following BETA codeis ageneral object-descriptor (or descriptor for short):

(# <decl arati ons>
enter <enter-list>
do <inperatives>
exit <exit-list>
#)

A descriptor consists of type and variable declarations, an enter part for parameters
(enter <enter-list>), ado-part for the action (do <i nperatives>), and finally an
exit part for theresults (exi t <exit-1ist>). All elementsare optional.

A descriptor can be labeled, and the descriptor can be restarted and/or left using the
label:

L: (# ..leave L ...restart L #)
In general any imperative can have alabel:

L: <inperative>
L: (if ..leave L ... if)
L: (for ...leave L ...for)

| eave L impliesthat control is transferred to immediately after the labeled impera-
tive/descriptor. restart L implies that control is transferred to immediately before
the labeled imperative/descriptor.

2.5 Static and Dynamic Variables

In BETA variables are two examples of reference attributes—static references that
constantly denote the same object, and dynamic references that may denote different
objects.

Static Reference
Examples of static reference variables are:
i: @nteger (* i refers to a sinple type: integer *)

p: @\ (* an instance of Ais automatically generated and
* p always refers to this object *)

s: @# ...#) (* an instance of (# ...#) is automatically generated
* and s always refers to this singular object *)

Dynamic reference

Examples of dynamic reference variables are:
i: “~integer vject
p: "A
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Assignments between dynamic references can be done using the reference operator
‘11’ (read box):

pl[] -> p2[] (* reference assignnent *)

Dynamic reference variables are initially NONE i.e. refers to nothing. Objects can be
created using the new operator ‘&':

&A[] -> p[] (* create an instance of A and assign the reference
* to p *)

Itisillegal to declare dynamic references to simple types.
i: “integer (* |ILLEGAL *)
r: “real (* ILLEGAL *)

Instead use i nt eger Obj ect, char Qbj ect , bool eanbj ect, Or r eal Obj ect defined
inthe Mjginer BETA System basic bet aenv environment.

2.6 Repetitions

In BETA it is possible to declare a repetition of static (ssmple types) or dynamic ref-
erences. A repetition is declared like:

R [10] @nteger (* repetition of 10 static references *)

P: [10] ~A (* repetition of 10 dynam c references *)
R1 ->i (* val ue assignnent *)
P[1]1[]1 -> X[] (* reference assignnment *)

RR [1l] @nteger (* repetition of 1 static reference *)

R->RR (* repetition assignnent:
* all values fromR is copied into RR
* RRis automatically extended if needed
*)
R range (* the size of the repetition *)
n -> R extend (* extends the repetition with n el enents *)
n -> R new (* allocates a new repetition with n elenments *)

Therange of arepetitionis1 toR r ange, thus repetitions always start with 1.

2.7 Composite Types (Records)
Using the object-descriptor it is possible to declare composite types.

point: (# x,y: @nteger #) (* point is a conposite type
* consisting of two integers *)

p: @oint (* static declaration of a point *)
p. X (* renpte access to x *)
circle: (* conposite type using sinple and conposite types *)

(# center: @oint;
radi us: @ nteger;
#)

The declaration of poi nt andcircl e aboveisin general called a pattern declaration.
The pattern will be described in detailsin the following sections.

Reference
assignment

Pattern
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3 Patterns and Objects

Most object-oriented languages supporting the object-oriented perspective have con-
structs such as class, subclass, virtual procedure, and qualified reference variable.
These constructs al originated with Simula. Eiffel and C++ include these constructs
although a different terminology is used. In addition to virtual procedures BETA also
has non-virtual procedures.

In this introduction, the BETA version of the above constructs will be described and
compared to other object-oriented languages. The example used in the following is a
company with different kinds of employees, including salesmen and workers. em

pl oyee is an abstract superpattern describing the common properties of all employ-
€es.

enpl oyee:
(# name: @ext;
bi rt hday: @late;
dept: ~Depart nent;
total Hours: @ nteger;
regi st er Wr k:
(# noOF Hours: @ nteger
enter noOf Hours
do noOf Hours + total hours -> total Hours
#);
conput eSal ary: <
(# salary: @nteger

do i nner
exit salary
#)

#)
The elements of the enpl oyee pattern have the following meaning:

e The attributes nane, birt hday, dept and t ot al Hour s are reference attributes
denoting instances of the patternst ext , dat e, depart ment and i nt eger respec-
tively.

* Nane, bi rt hday, and t ot al Hour s refer to part-objects. A part-object is a fixed
part of its enclosed object and is generated together with the enclosing object.
Part-objects are also found in Eiffel and C++.

* Dept isadynamic reference that either has the value NONE or refers to a separate
instance of the pattern depar t nent .

* Theattributesr egi st er Wr k, and conput eSal ary are pattern attributes describ-
ing actions to be executed. They correspond to procedures in most other lan-
guages. The enter-part describes the input parameters of a pattern and the exit-
part describes its output parameters. regi st er Work has one input parameter
noCOf Hour s and conput eSal ary has one output parameter, sal ary.

* registerWrk isanon-virtual pattern attribute. This means that its complete de-
scription is given as part of the description of enpl oyee. It is Similar to non-vir-
tual functionsin C++.

* conputeSal ary is a virtual pattern attribute (specified by using the *: <’ sym-
bol). Only part of its description is given since the computation of the salary is
different for salesmen and workers. The description of a virtual pattern may be
extended in subpatterns of enpl oyee. A virtua pattern attribute is similar to a
virtual functionin C++.



Patterns and Objects

* enpl oyee, registerWrk and conputeSal ary are all examples of patterns.
enpl oyee is an example of a pattern used as a class and is therefore called a
class pattern. r egi st er Wor k and conput eSal ary are examples of patterns used
as procedures and are therefore called procedure patterns. Technically there is
no difference between class patterns and procedure patterns.

The following patterns are subpatterns of enpl oyee corresponding to salesmen and
workers.

wor ker: enpl oyee
(# seniority: @nteger;
conput eSal ary: : <
(# do noOX Hour s*80+seni ority*4->sal ary; 0->total Hours #)
#)
sal esman: enpl oyee
(# noOF Sol dUni ts: @ nteger;
conput eSal ary: : <
(# do noOf Hour s*80+noC Sol dUni t s*6- >sal ary;
0- >noCf Sol dUni t s- >t ot al Hour s
#)
#)

» The class pattern wor ker adds the attribute seni ori ty and extends the defini-
tion of conput eSal ary. The salary for aworker is a function of the noCf Hour s
being worked and the seni ori ty of the worker.

» The class pattern sal esman adds the attribute noOf Sol duni ts and describes
another extension of conput eSal ary. The salary for a salesman is a function of
the noOr Hour s being worked and the noOrf Sol duni t s.

* The symbol ‘:: <’ describe the fact that the definition of conmput eSal ary from
the superpattern enpl oyee is extended.

The above examples have shown instantiation of objects from patterns in the form of
part-object attributes (like bi rt hday: @lat e). An instance of, say wor ker, may in a
similar way be generated by a declaration of the form:

mary: @wrker

The above examples have aso shown a dynamic reference (like dept:
~depar t nent ). Such areferenceisinitially NONE. A dynamic reference to instances of
wor ker may be declared as follows:

t heFor eman: ~wor ker

t heFor eman may be assigned a reference to the object referred by mar y by execution
of the following imperative:

mary[] -> theForeman[]

Note that the opposite assignment (t heFor enan[ ] - >mary[]) is hot legal since mary
Is a static reference. An instance of wor ker may be generated and its reference as-
signed to t heFor eman by executing the following imperative:

&wor ker[] -> theForeman[]
A few additional comments about constructs used so far:
* Thesymbol & means new.
* Thesymbol - > isused for assignment of state.

* Anexpression R[] denotes the reference to the object referred by R, whereas an
expression R denotes the object itself. The above assignment thus means that the
qualified reference t heFor eman is assigned a reference to the generated instance
of wor ker .

* Anassignment of the form nar y- >t heFor eman means that the state of the object
referred by mary is enforced upon the state of the object referred by t heFor e-

Class and
procedure
patterns

Subpatterns of
Employee

Part object

Dynamic refer-
ence
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man. Thisform of assignment is called value assignment. If X and Y are i nt eger
objectsthen X -> Y means that the value of X is assigned to the object Y.

In this section, it was shown how the most common object-oriented constructs may be
expressed in BETA. In the following sections, examples of the more unique con-
structs will be given.



4  Singular Objects

Often there is only one object of a given type. In most languages it is necessary to
make a class and generate a single instance. In BETA it is possible to describe a sin-
gular object directly. There is only one president of our company and he may be de-
scribed as the following singular object:

president: @npl oyee(# conputeSalary::< (# do BIG ->salary #) #)

The declaration pr esi dent issimilar to the declaration of nary. The difference isthat
in the declaration of mary, a pattern name (wor ker ) describes the objects whereas a
compl ete object description is used to describe the president.

The presi dent object is an example of a singular data object corresponding to an in-
stance of a class pattern. It is also possible to describe singular action objects corre-
sponding to an instance of a procedure pattern. Examples of singular action objects
are given below in section 6.



Abstract proce-
dure pattern

5  Subprocedure

The previous sections has shown examples of patterns used as classes and procedures.
For class patterns, examples of subpatterns have been given. Subpatterns may also be
used for procedure patterns. For attributes, subpatterns may add new attributes and
extend definitions of virtual patternsin the superpattern. In addition, a subpattern may
specify further imperatives which have to be combined with the imperatives of the
superpattern. The combination of the imperatives is handled by the i nner construct.
Consider the following objects:

mut ex: @enmaphore; sharedVar: @ nteger

The variable shar edvar is shared by a number of concurrent processes. Mutual ac-
cess to the variable is handled by the semaphore nut ex. Update of shar edvar should
then be performed as follows:

nmut ex. P; mtsharedVar -> sharedVar; nutex.V

This pattern of actions must be used whenever shar edvar and other shared objects
have to be accessed. Instead of manipulating the semaphore directly it is possible to
encapsulate these operations in an abstract procedure pattern. The pattern ent ry can
describe this encapsulation:

entry: (# do nutex.P; inner; mutex.V #)

Execution of ent ry locks nut ex before the i nner and releases it afterwards. i nner
may then in subpatterns of entry be replaced by arbitrary imperatives. The
subpattern updat eShar ed of ent ry updates shar edVar :

updat eShared: entry
(# m @nteger
enter m
do sharedVar+m > shar edVar
#)

Execution of an imperative

123 -> updat eShar ed
will then result in execution of the actions

nmut ex. P; shar edVar +123- >shar edVar; nutex.V
We may now define an abstract superpattern corresponding to a monitor:

noni tor:
(# mutex: @emaphore;
entry: (# do nmutex.P; inner; nmutex.V #);
init:< (# do mutex.V(*initially open*); inner #)
#)
A (singular) moni t or object may now be declared like shar ed below:
shared: @mnitor
(# var: @nteger;
update: entry(# m @nteger enter mdo var+m >var #);

get: entry(# v: @nteger do var->v exit v #)
#)

Semaphores are the basic mechanism in BETA for synchronization. They can express
most synchronization problems, but may be complicated to use. It is therefore

10
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mandatory that high level abstraction mechanisms like monitor can be defined. In
section 9 below, further details about concurrency in BETA will be given.
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6 Control Patterns

Sub (procedure) patterns are used intensively in BETA for defining control patterns
(control structures). This includes simple control patterns like cycl e, f or To, €tc. It
also includes so-called iterators on data objects like | i st, set andregi ster. A pat-
tern describing aregister of objects may have the following interface:

register:
(# has: (# E ~type; B: @oolean enter E[] do ...exit B #);
insert: (# E. ~type enter E[] do ..#);
delete: (# E "type enter E[] do ...#);
scan: (# current: “type do ...inner ..#);

#)

A number of details have been left out from the example. These include the represen-
tation and implementation of the r egi st er. A regi st er may include instances of the
patternt ype, which has not been specified. Type is an example of avirtual class pat-
tern which will be introduced later. For the moment t ype is assumed to stand for the
pattern obj ect which is a superclass of all patterns, i.e. aregi ster may include in-
stances of all patterns. Aninstance of r egi st er may be declared and used as follows:

enpl oyees: @ egi ster;

Hﬁry[]—>enployees.insert;
(if boss[]->enpl oyees. has then ...if)

The control pattern scan may be used as follows:

0->t ot al Sal ary;
enpl oyees. scan

(# do current.conputeSal ary+total Sal ary->total Sal ary #);
t ot al Sal ary- >screen. putint

Thisworks asfollows:

* The imperative enpl oyees. scan(# ... #) is an example of a singular action
object as mentioned in section 4.

* Thedo-part of scan hasani nner imperative which is executed for each element
in the register. The details of this are not shown, but it may be implemented as a
loop that steps through the elements of the register and executesi nner for each
element.

» Theattributecurrent of scan isused asanindex variable that for each iteration
refers to the current element of the register. This may be implemented by assign-
ing the reference of the current element to cur rent before i nner is executed.

» The effect of executing the above singular action object is that cur-
rent.conput eSal ary+t ot al Sal ary->t ot al Sal ary IS executed for each ee-
ment in the register.

12



7 Nested Patterns

One of the characteristics of Algol-like languages is block-structure, which allows for
arbitrary nesting of procedures. The possibility of nesting has been carried over to
BETA where patterns can be arbitrarily nested. Block-structure is a powerful mecha-
nism that extends the modeling capabilities of languages. However, besides Simula
and BETA, none of the mainstream object-oriented languages supports block-struc-
ture. In most object-oriented languages, an object may be characterized by data at-
tributes (instance variables) and procedure attributes. In BETA, an object may in ad-
dition be characterized by class pattern attributes.

In the examples presented so far, there have been two levels of nesting. The outer
level corresponds to class patterns, like enpl oyee, and the inner level corresponds to
procedure patterns, like conput eSal ary. In procedural languages like Algol and Pas-
cal it is common practice to define procedures with local procedures. This is aso
possiblein BETA.

The possibility of nesting classes is a powerful feature which is not possible in lan-
guages like C++ and Eiffel. The following example shows a class pattern that de-
scribes a product of our company:

pr oduct Descri pti on:
(# name: @ext;
price: @nteger;
noCF Sol dUnits: @ nteger;
order:
(# orderDate: @late;
c: “customer;

print:<

(#

do name[] -> puttext;
"Price: '->puttext; price -> putint; ' '->put;

No of units sold: '->puttext;

noCf Sol dUni ts->putint; ' '->put;
orderDate. print;
C. print;
i nner

#)

#)
#),
One of the attributes of a pr oduct Descri pti on object isthe class pattern or der . An
instance of or der describes an order made on this product by some customer. The at-
tributes of an or der object include the date of the order, the number of units ordered,
the customer ordering the product, and apri nt operation. Consider the objects:

P1, P2: @roduct; ol,02: @1l.order; 03,04: @%2.order

The objects o1 and o2 are instances of P1. or der whereaso3 and o4 are instances of
P2. or der . The block-structure makes it possible to refer to global names in enclosing
objects. In the above example, the pri nt operation refers to names in the enclosing
or der object. This resembles most object-oriented languages where operations inside
a procedure refer to names in the enclosing object. The pri nt operation, however,
also refers to names in the surrounding pr oduct Descri pti on object. Execution of
say ol. print will thus print the values of P1. nane, P1. price, P1. noOf Sol dUni t s,
ol.orderDate, andol. c.

13
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8 Virtual Pattern

In the example in section 3 it was mentioned that a redefinition of a virtual procedure
pattern is not a redefinition (overriding) asin C++. In fact a virtual pattern in BETA
can only be extended and cannot be completely redefined. The rationale behind thisis
that a subpattern should have the same properties as its superpattern including which
imperatives are executed. |deally a subpattern should be behaviorally equivalent to its
superpattern. This will, however, require a correctness proof. The subpattern mecha
nism of BETA supports aform of structural equivalence between a subpattern and its
superpattern.

Consider the following patterns:

A (# V:< (# x: ...do I1; inner; 12 #) #);
AA: A(# Vi< (#y: ...do I13; inner; |4#) #)

The pattern A has a virtual procedure attribute v. Vv has an attribute x and its do-part
contains the execution of 1 1; inner; 12. The subpattern AA of A extends the defini-
tion of v. The extended definition of v in AA corresponds to the following object-de-
scriptor (except for scope rules):

(# x: .3 y: ...do I1; 13; inner; 14; 12 #)

As may be seen the Vv attribute of AA hasthe attributesx and y and the do-part consists
of I1; 13; inner; 14; 12. The definition of v is an extension of the one from A
and not a replacement.

The subpattern AB of A describes another extension of Vv:
AB: A(# V::< (# z: ..do I5; inner; 16 #) #)
Here Vv corresponds to the following object descriptor:
Vi (# x: .., z: ..do11; I5; inner; 16; 12 #)
The definition of v may be further extended in subpatterns of AA aso as shown in the
definition AAA:
AAA: AA(# Vi< (# q: ...do | 7; inner; |18 #) #)
The definition of v corresponds to the following object-descriptor:
Vi (# x: .. y: ., ...do I1; 13; I7; inner; 18; 14; 12 #)

As may be seen, the pattern v is a combination of the definitions of v from A, AA and
AAA,

The definition of v may be extended using a final binding (::) in subpatterns of A as
shown in the definition AC:

AC. A(# V::(# q: ..do 12; inner; 14 #) #)

The final binding of v means that v cannot be extended in subpatterns of AC. The ex-
tended definition of v in AC corresponds to the following object-descriptor (except for
scope rules):

(# x: .3 y: ...do I1; 13; inner; 14; 12 #)

The virtua mechanism in BETA guarantees that behavior defined in a superpattern
cannot be replaced in a subpattern. This form of structural equivalence is useful when
defining libraries of patterns that are supposed to execute a certain sequence of ac-
tions. In C++, the programmer must explicitly invoke the actions from the superclass

14



Virtual Pattern

15

by means of supercl ass:: functionnane. Thisis illustrated by the example in the
next section.

The i nner construct is more general than shown above, since a pattern may have
more than one inner and inner may appear inside control structures and nested singu-
lar object descriptors.

8.1 Virtual Procedure Pattern

The attribute conput eSal ary of pattern enpl oyee is an example of a virtual proce-
dure pattern. In this example the do-part of the virtual definition in enpl oyee is very
simple, only consisting of an i nner -imperative. The extended definitions of com
put eSal ary in wor ker and sal esman both include the code noO Hour s*80 and 0-
>t ot al Hour s. This code may instead be defined in the definition of conput eSal ary
in enpl oyee as shown below:

enpl oyee:
(# ...
conput eSal ary: <
(# salary: @nteger
do noOf Hour s*80- >sal ary; inner; O0->total Hours
exit salary

#)
#);
wor ker: enpl oyee
(# ...
conputeSal ary:: < (# do seniority*4+sal ary->sal ary; inner #)
#)
sal esman: enpl oyee
(# ...
conput eSal ary: : <
(#
do noOf Sol dUni t s*6+sal ary ->sal ary;
0 ->noCF Sol duni ts;
i nner
#)
#)

The extended definitions of conput eSal ary inwor ker and sal esman have ani nner
to enable further extensions of conput eSal ary in subpatterns of wor ker and sal es-
man.

8.2 Virtual Class Pattern

Virtual patterns may also be used to parameterize general container patterns such as
the regi st er pattern described above. For ther egi st er pattern we assumed the ex-
istence of a type pattern defining the elements of the regi ster, i.e. elements of a
regi st er must be instances of the pattern t ype. The patternt ype may be declared as
avirtual pattern attribute of r egi st er as shown below:

register:
(# type: < object;
insert:< (# e: "type enter e[] do .#)

#)

The declaration type: < obj ect specifies that t ype is either the pattern obj ect or
some subpattern of obj ect . In the definition of regi ster, type may be used as an
alias for obj ect , e.g. references qualified by t ype are known to be at least vj ect s.
Since obj ect is the most general superpattern, t ype may potentially be any other
pattern. The virtual attributet ype may be bound to a subpattern of obj ect in subpat-
terns of register. The following declaration shows a pattern wor ker Regi st er
whichisar egi st er wherethet ype attribute has been bound to wor ker :

ComputeSalary is
a virtual proce-
dure pattern

type is avirtual
class pattern
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wor ker Regi ster: register
(# type:: < worker;
findd dest Seni ority:
(# old: @nteger
do scan
(# do (if current.seniority > old then
current.seniority->old
i f)#)
exit old
#)
#)
In the definition of wor ker Regi st er, the virtual pattern t ype may be used as a syn-
onym for the pattern wor ker . This means that all references qualified by t ype may be
used as if they were qualified by wor ker . The reference current of the scan opera-
tion is used in this way by the operation f i ndd dest Seni ori t y which computes the
oldest seniority of the register. The expression current.seniority is legal since
current isqualified by type which inwor ker Regi st er isat least awor ker .

In subpatterns of wor ker Regi ster it is possible to make further bindings of t ype
thereby restricting the possible members of the register. Suppose that nanager is a
subpattern of wor ker. A nmanager register may then be defined as a subpattern of
wor ker Regi st er:

manager Regi ster: worker Regi ster(# type:: < manager #)

In the definition of nanager Regi st er, t ype may be used as a synonym for nanager,
i.e. al references qualified by t ype are aso qualified by nanager .

Virtual patterns make it possible to define general parameterized patterns liker egi s-
t er and to restrict the member type of the elements. In this way virtual class patterns
provide an alternative to templates as found in C++.



9 Coroutines and Concurrency

A BETA object may be the basis for an execution thread. Such a thread will consist
of a stack of objects currently being executed. An object which can be used as the
basis for an execution thread has to be declared as an object of kind component as
shown in the following declaration:

A @ activity

The symbol “|” describes that the object A is a component. A component (thread)
may be executed as a coroutine or it may be forked as a concurrent process. Consider
the following description of acti vity:

activity:
(#
do cycle
(#
do get Order; suspend;
processOrder; suspend;
del i ver Order; suspend
#) #)

The component object may be invoked by an imperative

A

which implies that the do-part is executed. The execution of A is temporarily sus-
pended when A executes a suspend-imperative. In the above example this happens
after the execution of get Or der . A subsequent invocation of A will resume execution
after the suspend-imperative. In the above example this means that pr ocessO der

will be executed. If B isaso an instance of act i vi ty, then the calling object may al-
ternate between executing A and B:

cycle(# do A, ...B; ...#)

The above example shows how to use components as deterministic coroutines in the
sense that the calling object controls the scheduling of the coroutines. In section 9.1
below another example of using coroutines will be given.

It is also possible to execute component objects concurrently. By executing

A ]->fork; B[]->fork

the component objects A and B will be executed concurrently. As for the deterministic
coroutine situation, A and B will temporarily suspend execution when they execute a
suspend-imperative. Further examples of concurrent objects will be given below in
section 9.2.

9.1 Coroutines

Deterministic coroutines have demonstrated their usefulness through many years of
usage. Below we give atypical example of using coroutines.

Suppose we have a register for the permanent workers and another one for the hourly
paid workers. Suppose also that it is possible to sort these registers according to a
given criterion like the total hours worked by the employee. Suppose that we want to
produce a list of names of all employees sorted according to the total hours worked.
This may be done by merging the two registers. A r egi st er object hasa scan opera
tion that makes it possible to go through all elements of the register. Instead we define
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an operation of r egi st er intheform of acoroutine get Next , which delivers the next
element of the register when called:

register:
(# ..
getNext: | @
(# elm ~enpl oyee
do scan(# do current[]->eln{]; suspend #);
none- >el ni |
exit eln]
#);
#);
pReg: @er manent Regi ster; hReg: @ourl yPai dRegi ster;

pReg. get Next - >el1[]; hReg. get next->e2[];
L: cycle
(#
do (if el[] none then (*enpty hReg*); leave L if);
(if e2[] none then (*enpty pReg*); leave L if);
(if el.total Hours < e2.total Hours then
el.print; pReg.getNext->el[]
el se
e2.print; hReg.get Next->e2[]
if)

#)

The attributes get Next of the objects pReg and hReg have their own thread of execu-
tion. When called in an imperative like pReg. get Next - >e1[ ], the thread is executed
until it either executes a suspend or terminates. If it executes asuspend, it may be
called again in which case it will resume execution at the point of suspend. Thefirst
time get Next iscalled, it will start executing scan. For each element in the register, it
will suspend execution and exit the current element viathe exit variable el n{ ] . When
the register is empty, NONE is returned.

9.2 Concurrency

As previously mentioned, it is possible to perform concurrent execution of compo-
nents by means of the fork operation as sketched in the following example:

(# S1: @ (# ..do ...#);

S2: @ (# ...do ...#);

S3: @ (# ..do ...#)

do S1[] -> fork; S2[] -> fork; S3[] -> fork;
#)

The execution of S1, s2 and S3 will take place concurrently with each other and with
the object executing the f or k operations. Concurrent objects may access the same
shared objects without synchronization, but may synchronize access to shared objects
by means of semaphores. In section 5 above the pattern semaphore has been de-
scribed. It is well known that a semaphore is alow level synchronization mechanism
which may be difficult to use in other than simple situations. For this reason the
Mjeglner BETA library has a number of patterns defining higher level synchronization
mechanisms. This library includes anoni t or pattern as described in section 5 above.
The library also includes patterns defining synchronization in the form of rendezvous
asin Ada

Monitor Example

The following example describes a company with a number of salesmen, workers and
carriers. The salesmen obtain orders from customers and store them in an order pool.
The workers obtain orders from the order pool, process them and deliver the resulting
item in an item pool. The carriers pick up the items from the item pool and bring them
to the customer. Salesmen, workers and carriers are described as active objects
whereas the order- and item pools are represented as monitor objects.
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(# sal esman: enpl oyee

(# getOrder: (# ..exit anOrder[] #)
do cycle (# do getOrder -> jobPool.put #)
#);
S1,S2, ... @sal esnan;
j obPool : @oni tor
(# jobs: @egister(# type::< order #);

put: entry
(# ord: ~order enter ord[] do ord[] ->jobs.insert #);
get: entry

(# ord: "~order do jobs.renobve -> ord[] exit ord[] #)
#);
wor ker: enpl oyee
(# processJob: (# ...enter anOrder[] do ..exit anlten{] #)
do cycl e(# do jobPool.get -> processJob -> itenPool.put #)
#)
WL, W2, .. @ worker;
itenPool : @monitor(# ...#);
carrier: enployee
(# deliverltem (# enter anlten{] do ...#)
do cycl e(# do itenPool.get ->Deliverltem#)
#);
Cl,C2, .. @ carrier;

do jobPool .init; itenPool.init;

conc(# do S1[]->start; ...W[]->start; ..Cl[]->start; ..#)

The procedure pattern conc is another example of a high-level concurrency pattern  Procedure pat-
from the Mj@iner BETA library. It does not terminate execution until components be-  tern conc
ing started (by S1[] - >st art, etc.) have terminated their execution.

Rendezvous Example

Next we show an example of using the library patterns for describing synchronized
rendezvous. The example shows a drink machine that provides coffee and soup. A
customer operates the machine by pushing either makeCof f ee or makeSoup. If nake-
Cof f ee has been pushed, then the customer may obtain the coffee by means of get -
Cof f ee. Similarly if makeSoup has been pushed then the soup may be obtained by
means of get Soup.

The syst empattern hasa port attribute which may be used to define synchronization
ports. The drink machine described below has three such ports, acti vate, cof -
f eeReady, and soupReady. A port object has a pattern attribute ent r y which may be
used to define procedure patterns associated with port . For the port act i vat e, two
procedure patterns makeCof f ee and makeSoup are defined. For cof f eeReady and
soupReady, the procedure patterns get Cof f ee and get Soup are defined.

An execution of a port-entry operation like abr i nkMachi ne. makeCof f ee will only be
executed if the dr i nkMachi ne has executed a corresponding accept by means of ac-
tivate.accept.

Initially adri nkMachi ne isready to accept either makeCof f ee Or makeSoup.

If e.g. makeCof f ee is executed, then when “the coffee has been made’, the
dri nkMachi ne iswilling to accept the operation get Cof f ee. Thisis signaled by
executing an accept on the port cof f eeReady. Technically this is implemented
by assigning a reference to cof f eeReady to the port reference dri nkReady. The
do-part of dri nkMachi ne then makes an accept on dri nkReady.

When the operation get Cof f ee, has been executed, the dri nkMachi ne is again
ready to accept a new operation associated with the act i vat e port.

dri nkMachi ne: system

(# activate: @ort;
makeCof f ee: activate.entry
(# do ...cof feeReady[]->drinkReady[] #);
makeSoup: activate.entry(# do ...soupReady[]->drinkReady[] #);
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cof f eeReady, soupReady: @ort;
get Cof fee: coffeeReady.entry(# do ...exit soneCoffee [] #);
get Soup: soupReady.entry(# do ...exit someSoup [] #);
dri nkReady: “port
do cycle(# do activate.accept; drinkReady.accept #)
#)

Thedri nkMachi ne may be used in the following way:

aDri nkMachine: @ drinkMachi ne

él&)ri nkMachi ne. nakeCof f ee; ...aDri nkMachi ne. get Cof f ee;
aDri nkMachi ne. makeSoup; ...aDri nkMachi ne. get Soup;

As may be seen the use of the patterns syst em port and ent ry makes it possible to
describe a concurrent program in the style of Ada tasks that synchronize their execu-
tion by means of rendezvous. A port object defines two semaphores for controlling
the execution of the associated entry patterns. The actual details will not be given in
this language introduction.

It is possible to specialize the dr i nkMachi ne into a machine that accepts further oper-
ations:

ext endedDri nkMachi ne: dri nkMachi ne
(# makeTea: activate.entry(# do ...teaReady[]->drinkReady[] #);
t eaReady: @ort;
get Tea: teaReady.entry(# ...exit soneTeal[] #)
#)

The ext endedDr i nkMachi ne inherits the operations and protocol from dri nkMa-
chi ne and adds new operations to the protocol.

The basic mechanisms in BETA for providing concurrency are component-objects
(providing threads), the fork-imperative (for initiating concurrent execution) and the
semaphore (for providing synchronization). As has been mentioned already, these
mechanisms are inadequate for many situations. The abstraction mechanisms of
BETA make it possible to define higher-level abstractions for concurrency and syn-
chronization.

Please see the manual [MIA 90-8] for details about the concurrency library.



10 Inheritance

The subpattern mechanism combined with the possibility of redefining/extending vir-
tual procedures is widely recognized as a major benefit of object-oriented languages.
This mechanism is often called inheritance since a subpattern is said to inherit proper-
ties (code) from its superpattern. Inheritance makes it easy to define new patterns
from other patterns. In practice this has implied that subpatterns are often used for
sheer inheritance of code without any concern for the relation between a pattern and
its subpatterns in terms of generalization/specialization. The use of multiple inheri-
tance isin most cases justified in inheritance of code and may lead to complicated in-
heritance structures.

In BETA subpatterns are intended for representing classification and inheritance of  Classification anc
code is a (useful) side effect. In BETA it is not possible to define a pattern with mul-  inheritance

tiple superpatterns corresponding to multiple inheritance. There are indeed cases

where it is useful to represent classification hierarchies that are not tree structured.

However, a technical solution that justifies the extra complexity has not yet been

found.

BETA does support multiple inheritance, but in the form of inheritance from part-ob-  Inheritance from
jects. A compound object inherits from its parts as well as its superpattern. Thereason  Part-objects
that this has not been more widely explored/accepted is that in most languages inheri-

tance from part-objects lacks the possibility of redefining/extending virtual proce-

dures in the same way as for inheritance from superpatterns. Block-structure and sin-

gular objects make this possible in BETA.

Assume that we have a set of patterns for handling addresses. An address has proper-
ties such as street name, street number, city, etc., and a virtual procedure for printing
the address. In addition we have a pattern defining an address register.

addr ess:
(# streetName: @ext; streetNo: @nteger; city: @ext;
print:<
(#
do i nner;
st reet Nane- >put t ext;
streetNo->putint; (*etc.?*)
#);
#);

addressRegi ster: register(# elenment::< address #)

We may use the addr ess pattern for defining part-objects of enpl oyee/conpany ob-
Jects:

enpl oyee:
(# name: @ext; {the nane of the enpl oyee*)
adr: @ddress(# print:: (# do name->puttext #)#)
#);
conpany:
(# name: @ext; (*the nanme of the conpany*)
adr: @ddress(# print:: (# do name->puttext #) #)
#);

The object adr of enpl oyee isdefined as asingular addr ess object where the virtua
print pattern is defined to print the name of the enpl oyee. Ascan be seen it is possi-
ble to define a part-object and define its virtual procedures to have an effect on the
whole object. The conpany pattern is defined in asimilar way.
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It is possible to handle the address aspect of employees and companies. An example
isan address register:

AReg: @ddressRegi ster;

éﬁpl oyeel. adr[]->AReg. i nsert; enployee2.adr[]->AReg.insert;
conpanyl. adr[]->AReg. i nsert; conpany2.adr[]->AReg.insert;
AReg. scan(# do current.print #)

The AReg register will contain addr ess objects which are part of either enpl oyee ob-
jects or conmpany objects. For the purpose of the register this does not matter. When
the pri nt procedure of one of these addr ess objects is invoked it will call the print
procedure associated with either enpl oyee or conpany. The scanning of the AReg
register is an example of invoking the pri nt pattern.

The example shows that in BETA inheritance from part-objects may be used as an
aternative to inheritance from superpatterns. The choice in a given situation depends
of course on the actual concepts and phenomena to be modeled. I1n the above example
it seems reasonable to model the address as a part instead of defining enpl oyee and
conpany as specidizations of addr ess.

In general it is possible to specify multiple inheritance from part-objects since it is
possible to have several part-objects like the address object above. This form of
multiple inheritance provides most of the functionality of multiple inheritance from
C++ and Eiffel. It is simpler since the programmer must be explicit about the combi-
nation of virtual operations. It does, however, not handle so-called overlapping super-
classes. The programmer must also explicitly redefine the attributes of the component
classes. This may be tedious if there is a large number of attributes. However, a re-
naming mechanism for making this easier has been proposed for BETA, but it is not
yet implemented in the Mjginer BETA System. Multiple inheritance from part-
objects should be used when there is a part-of relationship between the components
and the compound. This also covers situations where implementations are inherited. It
should not be used as a replacement for multiple specialization hierarchies.

A common example of using multiple inheritance is modeling windows with titles
and borders. This may be modeled using block-structure. Since awindow may have a
title, a border or both, the following class hierarchy using multiple inheritance is often
used:

Window

WindowWithTitle WindowWithBorder

WindowWithTitleAndBorder
In BETA this can be described using nested patterns:

wi ndow.
(# title: (# ...8);
border: (# ...#);

W
aWndow. @M ndow(# T: @itle; B: @order #)

The descriptions for ti t1 e and bor der are made using nested patterns. For a given

window, like aw ndow, atitle object and a bor der object may be instantiated. If

e.g. two titles are needed, two instances of ti t| e are made. This example illustrates

another situation where multiple inheritance may be avoided.



Appendix
BETA Quick Reference Card

A summary of all special characters in BETA, and a short list of the syntax of the
language is given below along with a short description of their semantics:

Special characters

Semantics

@

N
##t
@

"

[ range]

&
&
->
[
#t
(#
#)
/1
do

enter exit inner

| eave restart

(if if) then el se
(for for) repeat
none this suspend

Pattern Declaration

Static object reference declaration

Dynamic object reference declaration

Pattern reference declaration

Static component declaration

Dynamic component declaration

Declaration of repetition. r ange must be an integer evaluation
Virtual declaration

Extended binding of virtual declaration

Final binding of virtual declaration

Dynamic creation of item; new

Dynamic creation of component

Assignment

Object reference

Pattern reference

Object descriptor begin

Object descriptor end

Selection in if-imperative

Beginning of action part

Additional keywords (for their usage, see below)
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Short syntax

Semantics

P. (# ..do ...#)
PP: P(# ...do ...#)
ent er

exit

i nner P

t hi s(P)
this(P)[]

E.P

(B).P

L: Inp

L: (# ...do ...#)
| eave L

restart L
suspend

El -> E2

(if E then Inmpl

else Inp 2

if)

(if E

/1 E1 then Inpl

/1 En then Inpn

el se Inp

if)

(for range repeat
Y

for)

(for I: range repeat

Y
for)

NONE

Ri:j]

R ]

(el, e2, ., en)

Definition of a pattern

Definition of a subpattern
Specification of enter-parameters
Specification of exit-parameters

Execute the actions in the subpattern.
P is an optional name of an enclosing pattern.

Denotation of this object

Reference to this object

Remote name

Computed remote name

In action part: labeled imperative

In action part: labeled imperative

Terminate labeled imperative or object instance L

Goto beginning of labeled imperative or object instance L
Component suspension

Assignment imperative

Simple if:
Evaluation of E, Imp1 is executed if E is true, otherwise
Imp2' is executed. ‘else Imp2’ is optional

General selection imperative:

Sequential evaluation of E, E1, ... En. First Impi is executed
where Ei=E If no Ei=E, then Imp is executed 'else Imp' is op-
tional

Repetition imperative:
Execute Imp 1..range] times

Repetition imperative:
| is a locally scoped integer variable within Imp. Execute Imp
with | assigned each value in [1..range]

The nil reference value
Repetition slice

Indexed repetition element
Evaluation list

Please note, that the above description is by no means complete, and in some cases
ambiguous. The ultimate reference is naturaly the BETA grammar as defined in the

BETA book [Madsen 93].
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