The Mjglner BETA System
Distribution

Reference Manual

Mjelner Informatics Report
MIA 93-25(1.2)
August 1996

Copyright © 1990-96 Mj@lner Informatics ApS.
All rights reserved.
No part of this document may be copied or distributed
without the prior written permission of Mjglner Informatics

Contents

L INTRODUGCTION ..ctiititett ettt ettt ettt ettt e et e s e e e e e st et e e et s e e e e e e e e e e eneenen 5
2. MODEL OVERVIEW ...ttt et e aneens 5
2.1. Thebasic building DIOCKSccuuiiii e 5
2.2. The RemOteabl @ PatLEr N et e e e eenns 6
2.3. The NaMESEN VAN PALTEI M.ttt e et e et e et e et e e an e e e e eeanns 6
24, TRESNEL ..o 7
2.5, ThE ENSEMDIE.t r e 7
B EXAMPLE PROGRAMS ...ttt et et ens 8
000 R O o U = (o PP 8
A 11105 < Y= PP PPTPT 9
B3 XEAIK ettt et e e n s 9
4, REFERENCE MANUAL ..ttt et e e e e e e e e et e e e e e e 9
g R 1 V=R 0T 1 o= 1 (= o 9
4.2. The remotealle PAITEI N e et et et e et e e eab e eeees 10
4.3. TRE SNEIl PAITEIN. ...t e ettt e et e eeent e eees 11
4.4, The NamMESENVEr PAITEIN. i ettt e et e et e et e e et e e e e e e aeeens 11
4.5. The ensembl @ PATEIN. ... e et e e e eaans 12
4.6. The errorHaNAIEr PattErN.....c.uui e e e e e e eaa s 14
4.7. The global ErrorHandler VIrtUal.............ooeuiriiiii e e e e e 16
4.8. The defaultAPPSDIT VIFTUALniiiiii e 17
4.9. The defaultScreenNamE VIrtUALo.u i 17
4.10. The WIthdraW PattEIN........cee et e et e e e e e e e e e e eaa e eanas 18
4.11. Tracing ObjeCt SErTaliZAtiONS.c.uniie et 18
5. SYSTEM DEPENDENCIESttt e e e e e et e e e e et e e e e e e e e et e aneaneen 18
5.1. The ensemblEDEAMON.uiii ittt e e e e e e s 19
5.2. CreateShell dependenCies.cc.uu i iiiiiuiie e 19
5.3. The distributionDir VIrtUal...........coeunie e e 19
5.4. The ensemblePOrt VIFtUAL.......... oo 20
5.5. ThershPath VIFTUAHcoouuiiiiii e 20
5.6. Shipping distributed BETA ProgramS........ccuuueiuieiiieeeieeeiieeie e et e et e e eae e et aesanaesanaeenes 20
6. FURTHER IMPLEMENTATION ISSUES.euttuitieiieeeeeseeeee e e eaae e aeenaeanseaneeaneeaneenneeneenns 21
6.1, ProXy ODJECE LYPES. ..ttt 21
6.2, Parameter SEMANTICS ieti ettt et e e e e e e e e a e aeans 22
6.3. Non-preemptive SCheduling.co.u e 23
6.4. Communication layer implementation.......... ... 23
7. DISTRIBUTION AND X LIBRARIESuitttitiiiiit ettt et e et ae e e e e a et e ane i aaneaneanas 24
o T I N 25
9. INTERFACE DESCRIPTION FOR THE BASICSHELL LIBRARY ...cvuiiiiieiieeieieie e e neaaeneaaeenee 25
10. INTERFACE DESCRIPTION FOR THE REMOTEREFASTEXT LIBRARY ...cviviiiiiieiieiecceieeaeen, 42
11. PINGENSEMBLE.BET EXAMPLE PROGRAMitiiiiiiiiiieiei ettt ie e ane et e e e aaaaanaane e 44
REFERENCES ... e e e 45
I D E X ettt ettt ettt et e 46

1. Introduction

This reference manual describes the BETA distribution library, version 1.2. The
distribution library alows easy implementation of distributed BETA programs
exchanging object references across process and machine boundaries.

This manual describes the usage of the library through descriptions of a number of
demo programs. In addition the manual is a reference manual, and provides the
necessary technical details to be able to use the library efficiently. For a description of
the general distribution model on which the library is based, see [Brandt 93]. For
implementation details, see [Brandt 94].

2. Model Overview

This section provides an overview of the distribution model used in the BETA
distribution library.

The distribution library provides the shel | Env application framework for devel oping
distributed BETA programs. Methods in remote objects can be called the same way
as methods in local objects. The programmer need not worry about low level
communication aspects since shel | Env handles these automatically.

As a special case, the BETA distribution library makes it easy to implement
client/server applications. Clients and servers are smply BETA objects residing in
different processes, possibly on different network hosts. However, the client/server
model is asymmetric in the sense that servers are not allowed to call methods in their
clients. In contrast, with the BETA distribution library object relationships are not
constrained to be asymmetric. This means that the server may call methods in the
client aswell as the client may call methods in the server.

The following sections provide a non-technical overview of the basic building blocks
in the BETA distribution library. Later sections contain a detailed description of the
library, and how to useit.

Communication line

Chrysler host Daimi host Tatra host

C Chrysler Ensemble)4(Daimi Ensemble) (Tatra Ensemble)

Shell 1 [Shell 2| (Shell 3 Shell 4

1

Figure 1: Ensembles, Shellsand Remoteables

2.1. The basic building blocks
The main patterns of the distribution library are:

5

Client/Server

entry

Distribution

* Renot eabl e: The abstract super pattern of patterns whose instances are remotely
accessible.

* Ensenbl e: An instance of the ensemble pattern represents the operating system of
some network host. That is, logically there is exactly one ensemble instance for
each network host".

* Shel | : Each instance of the shel | pattern represents a single physical address
space. A shel | thus corresponds to an operating System process.

* NaneServer : Nameservers provide away for distributed BETA programs to make
their services available to other BETA programs. A server can provide a service
by giving an object reference to some name server, i.e. registering the service in
the name server. Clients may then contact the name server to lookup services
required.

* ErrorHandl er: The error Handl er provides a scope in which exceptions raised
by communication errors may be caught and handled gracefully.

Figure 1 shows an example of a distributed system with three ensembles. The arrows
symbolize object references. For example, a shell instance knows the ensemble on
which it isrunning by having areference to the ensemble object.

2.2. The Remoteable pattern

Objects whose methods can be called from objects residing in other processes must
be instances of remoteable subpatterns. Remoteable provides a nested pattern, the
entry, to be used as a prefix for remotely called methods. For example, a remotely
accessible calculator could be defined as follows:

cal cul ator: renoteabl e
(# plus: entry
(# a,b,c: @nteger;
enter (a,b)
do atb -> ¢
exit ¢
#);

o

In order for a distributed BETA program to provide a calculator service, or some
other network service, the program must create an instance of the cal cul at or the
usua way. Afterwards the cal cul ator reference can be registered in some
nameserver or sent directly to a client shell.

2.3. The NameServer pattern

All object-oriented systems supporting multiple processes need a way to handle the
exchange of object references. In distributed BETA, the approach is the provision of
an abstract superpattern, the NaneSer ver. In short, a name server simply provides a
mapping between textual names and object references. The exact semantics of this
mapping depends on the actual subpattern of the abstract NameSer ver superpattern®,

The put operation takes a textual name and an object reference as parameters, and
saves the association for later retrieval (i.e. registering the object reference).

The get operation in turn retrieves an object reference given its associated name and
a pattern reference used for type checking.

Finally, r enove deletes an object registration.

1 However, the distribution library allows several ensembles to coexist. See section 5.4.

2 An abstract superpattern is a pattern supposed to be used only as a superpattern, and not
instantiated itself.

References

Example BETA code exporting a cal cul at or reference to a name server (ns) is
shown below.

c: “calculator;
ns: “NaneServer;

ké:t],"Si npl e Cal cul ator")->ns. put;

2.4. The Shell

The shel | pattern is the superpattern of all objects that may be instantiated directly
by an ensemble, and may in most respects be thought of as modeling an executable.
An instance of the shel | pattern corresponds to an operating system process with an
address space of its own. Non-shell objects reside in the address space provided by
some shell. The shel | is also a remoteable®, and may therefore provide services to
remote objects. As seen from other, possibly remote, objects, a Shell instance is just
another kind of object with awell defined interface.

A shel | instance knows the ensemble on which it is running through the myEnsenbl e
reference.

2.5. The Ensemble

Since the Ensenbl e is an abstraction modeling the operating system of a network
host, there is a one-to-one correspondence between ensemble instances and network
hosts. Below an abstract presentation of the ensemble pattern is shown.

ensenbl e: shell
(# ...
creat eShel | :
(# ...
execut abl eNane: ~Text;
type: ##Shell;
sh: ~Shel | ;
enter (executabl eNane[], type##)
do ...
exit sh[]
#);
ns: @NanmeServer (# ... #)
#)

Figure 2: Abstract presentation of ensemble

Part of the ensemble is a name server used as the starting point for distributed BETA
processes to get in contact other processes. In a distributed system, there may be any
number of network hosts, and in addition to mapping of textual object names to
object references, the NaneSer ver part ns has the responsibility of binding ensembles
together. ns handles this responsibility by having default knowledge of other
ensembles in the distributed environment. This means that if the ns. get operation is
given eg. the internet name of a network host, a reference to the corresponding
ensemble instance is returned.

An important operating system task is the management of processes. Therefore, an
Important Ensenbl e attribute is the ability to create new shel | instances dynamically
on the operating system represented. Ordinary BETA objects are created by
instantiating patterns. However, as shells are operating system processes, they are
created by instantiating an executable. The cr eat eShel | attribute of ensenbl e takes
the name of an executable and a pattern variable describing the subpattern of Shel |

of which the new shell processis expected to be an instance.

® Shel | isasubpattern of r enot eabl e.

myEnsemble

Ensemble
NameServer

CreateShell

CalcServer
CalcClient

Distribution

The following BETA code illustrates how to dynamically obtain a reference to the
remote ensemble named dai ni . aau. dk followed by the creation of a shell on this
ensemble.

dai m: “ensenbl e;
cs: “cal cServer;

do ...
(ensenbl e##, "dai m . aau. dk") -> nyEnsenbl e. ns. get
->daim|[];
('cal cServer', cal cServer##) -> daim.createShell
-> cs[];

3. Example programs

The example programs described in this section are contained in subdirectories of
~bet a/ demo/r4. 0/ di stribution.

3.1. Calculator

The cal cServer shell is a smple server shell containing a number of calculators.
Each calculator is doing work for a single client. The example includes two different
clients; an X based client, Xcal cC i ent, using the At hena widget set, and a non X
client, cal cd i ent. To create the executables of the calculator example, copy the
contents of the calculator directory to a directory of your own and compile:

beta cal cOient cal cServer Xcal cdient.

Before running the calculator example, make sure that an ensenbl eDearon iS running
on the host(s) involved (See section 5.1).

Now execute a cal cServer on some network host, followed by the execution of a
cal cCient.Thecal cdient promptsfor the name of the ensemble where it should
lookup the cal cServer. Answer with the name of the network host on which the
calcServer isrunning.

If acal cServer isnot started explicitly, as was the case above, or if thecal cServer
has terminated’, the cal cd i ent will fail to lookup a cal cServer on the host whose
name it was given. In this case the cal cd i ent will try to start a new cal cSer ver.
For thisto be possible, the following changes to the calcClient code must be made:

1. Editthe defaul t AppsDir virtual in cal cd i ent.bet and Xcal cC i ent. bet . If,
for example, the source files were copied to the directory nydir, edit
cal cdient. bet asfollows:

shel | Env
(# defaul t AppsDir::
(# do 'nydir/$/" ->dir[] #);
" ..
2. Recompilecal cCient and Xcal cCl i ent

3. Movethe cal cServer executable to the machine specific subdirectory of mydi r,
e.g. nydi r/ sun4s on a SPARC running Solaris 2.x.

With the above changes, the cal cd i ent isableto create anew cal cServer if oneis
not already running.

4 Thecal cServer terminates itself when no new calculator has been created for 5 minutes.

References

3.2. TimeServer

This example consists of ati meServer with a number of clients. At startup a client
registers itself with ati neServer. When this is done, the ti meServer will cal a
method in theti ned i ent once each second. Note that this means that in the usual
RPC sense, theti meServer isnow aclient of itsti ned i ent s, Since it is the server
that executes methods in the clients.

ti meServer. bet has no user interface while ti ned i ent. bet isasmple X/ noti f
program displaying the wall-clock time. Furthermore, for the benefit of users who do
not have X notif libraries, sinpleTineCient.bet IS equivaent to
ti med ient. bet, but instead writes the wall-clock time to the console.

To run this example, copy the programs to a directory of your own and compile:
beta tineServer tinedient sinpleTimedient

Now execute a timeServer on some network host (remember that the
ensenbl eDearon should be running already), and finally execute some number of
ti med ients. As command line parameter, the ti ned i ent takes the name of the
ensemble on which thet i meSer ver is expected to run. Default is the local ensemble,
if no parameters are given.

3.3. Xtalk

This is a BETA distribution example, similar to the standard UNIX talk program.
However, xt al k isan X/ noti f program. Two users each running an xt al k instance
may connect and exchange messages by writing in a simple motif text editor.

4. Reference Manual

The interface to the distribution library is contained in the following files:
1. ~betal/distribution/vl.2/basicshell.bet

2. ~betal/distribution/vl.2/shell.bet

3. ~beta/distribution/vl.2/xshell. bet

4. ~betal/distribution/vl. 2/ guienvshell. bet

5. ~betal/distribution/vl. 2/renoteRef AsText . bet

All distribution specific patterns are contained in the file basi cshel I . bet and the
discussion below thus describes these patterns.

+ shell. bet should be used as ORI G Nin programs not using X window libraries.
+ xshel | . bet should be used as ORI G Nin programs using the X window libraries.

« guienvshel | . bet should be used as ORI G N in programs using the gui env user
interface library.

+ basicshell.bet should be used as ORI G N in library fragments that must be
usable in all of the above cases. The shel | Env pattern and all its nested patterns
are contained in thisfile.

« renot eRef AsText . bet contains patterns for converting remote object references
into atextual format and vice versa.

4.1. The shellEnv pattern

The shel | Env pattern from basi cshel I . bet is a subpattern of systentnv from
~bet a/ basi cl i b/ v1. 5/ basi csystenmenv. bet. As a consequence, distributed
programs using shel | Env must have a structure corresponding to that of concurrent

timeServer
timeClient

10

termination

Distribution

programs using syst enEnv. This structure is sketched in figure 3, showing atemplate
for adistributed BETA program not using X window libraries.

ORIA@ N ' ~betal/distribution/vl.2 /shell";
--- programdescriptor ---
shel | Env

(# shell Type:: (# ... #)
#

Figure 3: Template shel | Env program not using X libraries.

As can be seen from figure 3, the program descriptor SLOT must contain a
specialization of shel | Env. The usage of the shel | Type virtual is described in the
section on the shel | pattern.

When writing distributed BETA programs, the progr am descri pt or
SLOT in betaenv must contain a subpattern of shel |l Env. This
instance of shel | Env isfuthermorethe only one allowed.

The template in figure 3 has ORI G N in the shel I fragment since is not using X
window libraries. If the program were to use X libraries, it should have ORI G Ninthe
xshel | fragment. There is no difference between shel|.bet and xshell . bet
concerning the abstractions offered. The only difference is the systenEnv
implementation used. An aternative implementation is necessary to be able to
combine syst enEnv with the event driven X window libraries using a central event
loop. To be able to install a number of callback functions used for scheduling
purposes, the X implementation of syst enEnv needs a reference to the xt env instance
used in the current program. This is handled by the set W ndowenv virtual as
illustrated in figure 4.

ORIG@ N ' ~beta/distribution/vl.2 /xshell";
| NCLUDE ' ~beta/ Xt/v1l.9/xtenv';

- programdescriptor ---
shel | Env
(# shell Type:: (# ... #);

set WndowkEnv:: (# do nyxtenv[] -> theWndowknv[] #);

nmyxtenv: xtenv@# ... #);

#)

Figure 4: Template distributed BETA program using X libraries.

In figure 4, the nyxt env object could as well have been an instance of awenv or
not i f env. What countsisthat it isqualified by xt env.

The singular shel | Env instance in a distributed BETA process is returned by the
get Shel | Env pattern declared in basi cshel | . bet . Library fragments that should be
usable in programs using X as well as programs not using X, must have origin in
basi cshel | . bet .

The shel | Env pattern calls| NNER when it has finished initialization. Initialization of
shel | Env specializations may thus take place in the shel | Env I NNER, or in the
shel | Type | NNER, to be described in section 4.3. Note that the distributed BETA
program will not terminate until t heshel | . kill has been called, even if | NNER
shel I Env and | NNER t heShel | terminates!

The following sections describe the different patterns and virtuals embedded in
shel | Env.

4.2. Theremoteable pattern

Renot eabl e is the superpattern of all objects whose methods may be executed
remotely. The attributes of r enot eabl e are:

entry: The entry pattern must be used as prefix for methods to be executed
remotely, i.e. called from objects in other processes. In the current release,
ent ry subpatterns must be non-virtual .

References

pi ng: Returnst r ue if the object is currently accessible and f al se otherwise.

If anentry iscaled in alocal object, the overhead is limited to a smple boolean
check and an | NNER call. Thus, remoteable entries can be used efficiently also in the
local case.

Subpatterns of remoteable.entry are not allowed to be virtual®.

This restriction may seem critical, but the problem is circumvented through an extra
indirection. To see how, check the example programs.

4.3. The shell pattern

The shel | pattern is a subpattern of renot eabl e describing executables whose
instances are processes. Shells should only be instantiated through
ensenbl e. creat eShel | or as part of distributed BETA programs started from the
commandline®. The shell pattern adds the following attributes to remoteable:

myEnsenbl e: A reference to the ensenbl e on which this shell is running.
ki1 Killsthe corresponding process.
onKi | | : Called before the processiskilled asaresult of acall tokil | .

The shel | Type virtua attribute of shellEnv may be further bound in an application
program. shel | Type is used as the type of the static t hesShel | partobject of
shel | Env. This instance should be the only shell instance created in a distributed
BETA program. Exporting areferencetot heshel | to aremote shell gives the remote
shell the ability to kill the local process by calling the ki || attribute of t heShel I .
Furthermore, thesShell is the object whose reference is returned from
ensenbl e. creat eShel | after the creation of a new shel |l process. A distributed
BETA program is not obliged to further bind the shel | Type virtual unlessit is going
to expoYrt areferencetot heshel | offering more functionality than the standard Shel |

pattern’.

The 1 NNER part of a shell has to pause once in a while for shel | Env to be able to
handle incoming requests from distribution partners. This is due to the non-
preemptive multitasking used. Even if I NNER terminates, the process will not
terminate beforeki I 1 has been called.

4.4. The NameServer pattern

NameSer ver IS an abstract super pattern describing objects that perform a mapping
between logical object names and object references. Subpatterns of NaneSer ver may
perform this mapping differently. Currently the only subpattern of NameServer
implemented is the ns attribute of ensenbl e.

The attributes of the NameSer ver pattern are:

put : Saves the association between a textual name and an object reference entered
as parameters. The overWite virtua is caled if an object of that name is
dready registered. If overwite returns true, the existing (name,object
reference) pair is overwritten with the new one.

get: Given a textual name and a qualification, get returns the object reference
associated with that name, assuming it qualifies to the type entered If no
associated object isfound, not Found is raised and NONE is returned. If an object
with the right name, but wrong type, is found, quaError is raised. The type
entered should be a super pattern to the pattern of the object returned.

® Seesection 6.1 describing the reason for restricting ent ry'sto be non-virtual.

® Inpractice, these cases boil down to the same thing.
" Neither xt al k nor any of thecal cQ i ent s further bindshel | Type.

shellType
theShell

non-preemptive
multitasking

11

12

Target platform

Distribution

renove: Removes the named object from the NameSer ver . not Found israised if no
object of that name is registered in the NameServer.

NameServer is a remoteable, but all the public operations described above do some
work locally before doing callsto the (private) entrys of the NameServer.

4.5. The ensemble pattern
Ensenbl e isarepresentation of network hosts. It has the following attributes:
host nane: The host name of the network host represented.

creat eShel | : Allows the creation of shells, i.e. processes, on the host represented
by the ensemble. Cr eat eShel | isdescribed in the next section.

ns: A NanmeServer subpattern with added functionality. ns is described in more
details below.

Never create ensemble instances on your own. The only sound way to obtain an
ensemble referenceisfrom shel | . nyEnsenbl e, ensenbl e. ns. get or by transferring
ensembl e references between shells.

45.1. CreateShell

Parameters to cr eat eShel | are the expected qualification of the shel | created and
the executable name from which to create it. Before using the execNane name
entered, it is appended to the value returned from the appsDi r virtual, and $ signsin
the resulting string expanded to the name of the target platform in lower case.

A number of virtuals defined locally to cr eat eshel | allow the passing of parameters
and environment variables to the newly created process. These virtuals are described
below.

appsDi r: The appsDi r virtual names the directory where executables are located.
Default value is given by the shel | Env. def aul t AppsDi r virtual described in
section 4.8. In order to override the default, further bind and assign a pathname
to di r. The interpretation given to dir is described in section 4.8. Notice that
the value of di r should be afull path.

screenNanme: New shells created using cr eat eShel | have no associated standard
input or standard output. As a consequence, such shells are not allowed to read
from standard in, and if they write to standard out or standard error, default is
to redirect the output into some "black hole". On UNIX platforms a standard
black holeis/dev/ nul I . This default may be changed by further binding the
screenNane Vvirtual, and assign a file name including full path to name. Further
binding screenNanme overrides the def aul t ScreenNarme virtual of the new
shell created. For more information on redirecting standard output, see section
4.9 describing the def aul t Scr eenNane virtual.

envi ronment: TO Set envi ronnent variables for the newly created shell, further
bind the environment virtual and call addEnvVvar for each environment variable
to be added. For example:

(timeClient##, 'tinedient')->nmyEnsenbl e. creat eShel |
(# environnent::

(# do (' DI SPLAY',' bl anche: 0') -> addEnvVar #)
#) -> newClient[];

par anet er s should be further bound and addPar am called for each command line
parameter to be given to the new shell. For example:

References

(timelient##, '"timedient')->myEnsenbl e. creat eShel |
(# paraneters::
(# do '-serverNanme' -> addParam
'dai mi . aau. dk' -> addParam
#)
#) -> newdient[];
4.5.2. CreateShell Implementation

Since the distribution library is currently available only on UNIX platforms, the
description in this section is UNIX specific. The implementation of Cr eat eShel | on
e.g. a Macintosh target is different. See also section 5 that describes system
dependencies.

Below, "old shell” refers to the shell executing a cr eat eShel |, whereas "new shell”
refers to the shell being created. Assuming the new shell is created on a remote host,
Creat eShel | uses UNIX rsh to run the renot eSt art script on the remote host. If
the rsh process could not be forked, the processCreati onFail ed exception is
raised. Thus, processCr eat i onFai | ed signals lack of resources on the local host.

Otherwise, if forking r sh succeeds, the old shell reads from the standard output of the
rsh process, i.e. what is written by the renot eStart script, to determine whether
things went all right. renoteStart determines the target machine type and then
executes the machine specific st art AsDeanon executable. If the st art AsDeanon
executable or the shell executable could not be found, the execNot Found exception is
raised. Errors different from processCreationFail ed, relating to process start,
raise the unknownEr r or exception.

Finally, if the new shell process seems to have been successfully created, the thread in
the old shell thread doing cr eat eShel | waits for a callback from the new shell. If the
callback® is not received within the time limit set by the active errorHandl er, a
ti meQut exceptionisraisedinthat error Handl er . In the mean time, other threads in
the old shell are allowed to do some work.

When the callback arrives, areference to the new shell is included as a parameter. If
the new shell does not qualify to the t ype entered as parameter to cr eat eShel | , the
t ypeError exception israised.

The above description assumed that the target host was different from the local host.
If the new shell is created on the local host, sh is used to execute the r enot eSt ar t

script directly. That is, rsh is not used in the local case, making local cr eat eShel |

calls more efficient.

45.3. The ensemble.ns NameServer

get: The primary responsibility of ns is to bind together all ensembles in the
distributed environment. Thus, if ns. get is asked to look up an ensemble
instance, the name parameter is expected to be an internet name, i.e.
nj ol ner. dk, and the usual name services are used to determine the internet
address of the corresponding network host. Using the expected port number of
the ensemble process (see section 5.4 describing the ensenbl ePort virtua),
ns. get isableto synthesize a reference to the ensemble requested. In addition,
ns provides a flat namespace in which objects may be saved and retrieved
using ns. put and ns. get .

put : Saves the association between a textual name and an object reference entered
as parameters. The overwite virtua is called if an object of that name is
aready registered. If overWrite returns true, the existing (name,object
reference) pair is overwritten with the new one.

scanNanes: lterates over the names currently registered in the nameServer.

8 Thecallback is of course made automatically be the system.

rsh

remoteStart
startAsDeamon

14

dynamic chain

active
errorhandler

error propagation

controlling
propagation

error pattern

Distribution

4.6. The errorHandler pattern

The errorHandl er supports flexible handling of network related errors. An
error Handl er effectively defines a dynamic scope in which network errors may be
caught and handled.

A dynamic chain of error handlers is maintained for each systenmenv system
coroutine (see [MIA 90-08]). On entry to an error Handl er, default is to push the
handler entered onto the front of the dynamic chain of error handlers related to the
current system, thereby making it the active errorHandl er. Likewise, when the
error Handl er isleft, it isremoved from the dynamic chain of error handlers, and the
previously active er r or Handl er becomes active again.

When a network related error occurs, a corresponding exception is raised in the active
error Handl er . If the active error handler does not further bind the exception raised,
the exception is automatically propagated to the previous handler in the dynamic
chain. The propagation of an exception continues until either some handler catches
the exception (by further binding the corresponding er r or Handl er virtual), or until
the end of the dynamic chain is reached. If that happens, the exception is propagated
to the gl obal Handl er. If even the gl obal Handl er does not catch the error, default
action isto kill the current shell. If an error occurs in a coroutine that never entered an
er r or Handl er , the corresponding exception is raised directly in the gl obal Handl er.

Note that by default each syst emcoroutine has its own dynamic error handler chain.
If the top of this chain is reached, control is passed to the gl obal Handl er, and not,
for example, to the handler chain of the syst emthat forked the failing coroutine.

As described above, default is to push a newly entered error Handl er onto the
currently active chain of error handlers. This means that exceptions not handled by
some errorHandler eh are automatically propagated to the error Handl er that was
active before entry to eh and, if enh wasthefirst er r or Handl er entered by the current
syst em coroutine, errors not handled by eh are propagated to the global handler.
However, this default may be changed by supplying an errorHandl er
(pr evHandl er) as enter parameter when entering anew er r or Handl er eh. Thisway,
exceptions not handled by eh will be propagated to prevHandl er. As an example,
this may be used to transfer errors automatically from a coroutine to the creator of
that coroutine.

The error pattern is an abstract super pattern for all communication exception
virtuals. The virtual subpatterns of error thus correspond to different kinds of
network errors, as described in the next section.

4.6.1. Error types

The network errors handled by the subpatterns of err or insideer r or Handl er arethe
following.

connect i onFai | ed israised when a message send fails.

connect i onBr oken is raised when message send succeded, but the connection to
the remote shell was broken before an answer could be received.

ti meQut israised if the remote shell failed to answer within the time limit specified
by ti meQut Val ue in the active error Handl er . Default ti neCut Val ue is to
wait for ever, specified by ati mecut Val ue of -1. Further bind t i mecut Vval ue
to limit the alowed waiting time. ti meQut is also raised if a creat eShel |
request did not finish within the time limit specified by t i mecut Vval ue.

server Overl oad is raised if the remote shell was busy and therefore refused to
handle the request. The number of concurrently alowed requests is set by
concurrent Request Li m t in gl obal Handl er of the remote shell.

unknownQbj ect israised if the remote shell did not know the object requested. This
is a consequence of the remote shell doing awi t hDr aw on the object requested.
Thus unknownQbj ect corresponds to the detection of a distributed dangling
reference.

References

unknownPat t er n is raised if one of the patterns needed to unpack objects was not
present in the local or in the remote shell. If unknownPat t ern. | ocal IS FALSE,
some pattern needed to unpack the request was missing in the remote shell.
This means that the request has not been executed. If unknownPat t er n. | ocal
IS TRUE, some pattern needed to unpack the answer was missing in the local
shell, and thus the request has actually been executed in the server shell.

wr ongAnswer israised if the answer from the remote shell did not have the expected
format. This could mean that the remote shell is not the onewethink itis, i.e. it
could be another process at the same port.

4.6.2. Error handling

To handle network errors, further bind the corresponding error virtual as listed
above. Within further bindings, one of the patterns i gnore, continue or abort
should be called as the last action. Note that if there are imperatives following the call
to eg. continue, they will not be executed! ignore, continue and abort are
described below.

abort: is default if the further binding of some error does not call either i gnore,
continue or abort. If abort is called and not further specified, the remote
cal that failed is aborted, and the shell killed. However, to prevent the calling
shell from being killed, abort can be further specified. In the further
specification, it isallowed to do al eave in the dopart. For example:

do myLabel : errorHandl er
(# connectionFail ed::

(#
do abort (# do | eave myLabel #)
#)

do server.opl; ...; server.opn;

#)
To ensure proper clean up, it is not allowed to | eave the dopart of an
error virtual outside the scope of an abort .

That is, the following code is not alowed. In the worst case it may lead to
segmentation faults. In the best case, a number of communication resources
may not be released properly.

do nylLabel : errorHandl er
(# connectionFail ed::

(#
do | eave nylLabel
#)
do server.opl; ...; server.opn;

#);

i gnore: Terminates the failing remote call, but pretends as if the remote call
succeded. Control flow continues after the remote call causing the error. For
example:

do errorHandl er

(# connectionFailed:: (# do ignore #);

do serverl.opl; server2.o0p2;

#)
If the server.opl remote cal fails, control flow continues with the
server.op2 cal. This may of course result in rather strange program
behaviour, but is the responsibility of the programmer. It makes no sense to
further specify the ignore pattern since it never calls INNER.

cont i nue: Depending on the actual exception, retries or continues the operation that
caused the error. For example. in the case of ati neCut, conti nue means that
the communication subsystem will wait once again for the number of seconds
specified in the timecQutvalue virtual in effect. In the case of a

abort
continue

ignore

15

16

Distribution

connect i onFai | ed, connection is retried. As with i gnor e, it makes no sense
the further bind cont i nue.

In order to maintain the er r or Handl er chain, it is not allowed to leave the dopart of
an errorHandl er directly. Leaving an errorHandler must be done from inside the
dopart of al eaveHandl er:

do sonelLabel : errorHandl er
(#
do ...;
| eaveHandl er (# do | eave sonelLabel #)
#)

However, from inside the error.abort pattern, the errorHandl er currently
handling the error may be left directly, as was shown in the abort example above.

NOTICE: It is not allowed to | eave the dopart of an error Handl er
outside the scope of al eaveHandl er .

If multiple error Handl er s are left simultaneoudly, the | eaveHandl er nested inside
the outermost er r or Handl er in the dynamic call chain must be used. For example:

do el: errorHandl er
(# leaveFirst: |eaveHandl er (# do |INNER #);
do e2: errorHandl er
(# | eaveSecond: |eaveHandl er (# do | NNER #)
do e3: errorHandl er
(#
do leaveFirst (# do |eave el #);
#)
#)
#)]

4.7. The globalErrorHandler virtual

The gl obal Error Handl er isavirtua error Handl er specifying the default handling
of network errors. Further bind gl obal ErrorHandl er to specify the global
error Handl er for shel | Env. If communication exceptions are not caught by another
errorHandl er they will eventually propagate to gl obal Handl er, which is an
instance of gl obal Er r or Handl er . If the exception is not handled there, the processis
terminated by calling t heShel I . ki I I .

Additional attributes of gl obal Err or Handl er are asfollows:

concurrent RequestLim t: The maximum number of simultaneous incoming
requests to this shell that is alowed. Default (-1) corresponds to no limit. If
handling a request would result in breaking this limit, the request will be
ignored and the client side exception ser ver Over | oad raised.

wor ker Pool Si ze: Determines the size of the pool of workers to handle incoming
requests. A worker is a collection of resources needed to handle a request.
Because it is cheaper to reuse these resources than to allocate new ones, the
wor ker Pool keeps track of unemployed workers ready for reuse. A reasonable
value for wor ker Pool Si ze is the expected mean number of requests handled
simultaneously. If a request is always executed to end without suspending
implicitly of explicitly, asingle worker is adequate.

4.8. The defaultAppsDir virtual

When using ensenbl e. creat eShel | to start processes, def aul t AppsDi r Specifies
the default directory (full path) on the remote host in which the executable is expected
to be found.

The default value returned from def aul t AppsDi r IS
fusr/local/lib/betal/distribution/vl.2 /aps/$/

References

but this value may be changed in two ways:

1. Setting the BETALIB environment variable. If BETALIB is found in the
environment of the shell process, the value returned from def aul t AppsDi r IS
$(BETALIB)/distribution/vl.2 /aps/$/.

2. By further binding def aul t AppsDi r and setting di r to whatever full path is

convenient:
shel | Env
(# ...
def aul t AppsDir:: <

(#
do '/ myhore/ nmyapps/ $/' -> dir[];
#)

#)

Alternatively the directory may be changed individually on each cr eat eShel | call by
further binding the ensenbl e. creat eShel | . appsDi r virtual.

Similar to specifying | NCLUDE and BODY paths in the BETA fragment system, you
may use $ to specify machine dependent executable paths. That is, assume dir is
assigned the value / nydi r/ $/, and the remote host on which the new shell is to be
created is of type sun4s. Then, the execName parameter to cr eat eShel | is appended
to di r, and al occurrences of $ in the resulting string is replaced by sun4s before
using the resulting text string as the full path of an executable.

49. The defaultScreenName virtual

Instances of shel | Env created by ensenbl e. creat eShel | cannot use the standard
inputs and outputs of the process. By default standard output is redirected to
/ dev/ nul I on UNIX.

To redirect output to a file, specify a filename by further binding
def aul t Scr eenName. Alternatively scr eenNane may be set individually for created
shells by using the ensenbl e. creat eShel | . screenNane virtual. This allows the
creator to override the def aul t Scr eenNane of the shell created.

st dout aswell as stderr are redirected to the file named in def aul t Scr eenName or
in ensenbl e. cr eat eShel | . screenNane. Since output on st dout and st derr from
remotely started shells should normally be restricted to debugging output, st dout and
st derr are unbuffered in order to ensure that al output is actually written to the file
specified, and in the order the output was written to st dout respectively stderr. If a
shell is started from the commandline, def aul t Scr eennane has no effect, since
st dout and st derr are then used without modification.

Shells started by cr eat eShel | have no st di n, and is thus not allowed to read from
standard input.

4.10. The withdraw pattern

Due to the lack of distributed garbage collection, we need a way to explicitly
withdraw the possibility of remote access to objects whose reference has crossed the
shell boundary. That is, whenever a reference to a local object crosses the shell
boundary for the first time, the object reference is saved in an interna table and is
therefore never garbage collected. Calling wi t hdr aw with alocal remoteable instance
whose reference has been exported deletes the object from the interna table, thereby
making it possible to garbage collect the object unless other local references exist. If a
request to a withdrawn object arrives from a client, the request will fail with the
unknownObj ect exception raised at the client side. This corresponds to following a
distributed dangling reference, and cannot be avoided without distributed garbage
collection.

$ expansion

stdout, stderr

stdin

distributed
garbage
collection

17

18

debugging

Distribution

4.11. Tracing object serializations

When performing a remote invocation, one or more objects are serialized to be sent
across the network connection. In some cases, large object graphs are serialized this
way. Currently there is no way to specify alimitation on the serialization traversal (as
is possible in the persistent store), and sometimes more objects than expected gets
serialized, leading to unexpected errors. Most often the error message resulting is
'‘components not handl ed', that is triggered when trying to pack an active object
(i.e. a component). A number of shel | Env attributes support the debugging of
problems like these. These attributes are described below.

Serialization tracing is initiated by setting the Tr aceSer boolean to TRUE. When this
has been done, the Bef oreSer, AfterSer and AfterUnser Virtuals are caled as
described below:

Bef or eSer is called just before an object is about to be serialized, either as a result
of being sent in a remote request, or as a result of being returned as a result
parameter. The object about to be serialized is given as parameter.

Af t er Ser is called when the object has been serialized.

Aft er Unser iscalled when some object received, either as part of an incoming call,
or as part of athe result received, has been unserialized.

Renot eabl e instances are not actually serialized. Instead a network representation
of the corresponding object reference is sent. In case of a non-remoteable, the
object is serialized and all references it contains followed.

By further binding these virtuals, it is possible to trace what objects are serialized in
remote calls. A ssimple dump of an object may be achieved using the pri nt Qbj ect
method found in ~bet a/ sysuti | s/ v1. 4/ obji nterface. bet.

5. System Dependencies

This section describes the system files and executables needed for distributed BETA
programs to work. Apart from subsection 5.1 that describes how to start the
ensenbl eDeanon, the rest of this section describes non-standard ways of tailoring the
distribution library. Therefore, most of this section can be skipped on first read of this
manual .

The $ sign is used to denote the actual machinetype. For example, on a Sun SPARC
running Solaris 2.x, $ should be read assun4s.

5.1. The ensembleDeamon

In order to run any distributed BETA program, a network host must run an instance of
the ensenbl eDeanon executable. This deamon implements the NameServer
(ensenbl e. ns) functionality of the ensemble as well as being responsible for
generating world-wide unique object ID's for distributed BETA objects created on the
host on which the deamon is running.

The ensenbl eDeanon is installed by running the st art ensenbl e script, residing in
~bet a/ bi n/ st art ensenbl e. The ~bet a/ bi n directory should be in the path of all
BETA users. The startensenble script simply executes the correct
ensenbl eDeanon executable for the current hardware and operating system platform?.

The ensenbl eDeanon has no network security critical responsibilities and has no
need for super user privileges. Therefore it makes no difference what user starts the

9 These executables, named " MACHI NETYPE' ensenbl eDeanon, are located in the
~beta/ di stribution/vl.2 directory, and may also be executed directly.

References

deamon. However, like other deamons ensenbl eDeanon might as well be installed by
i ni t when the operating system is bootet.

Section 11 contains a complete distributed BETA program that may be used to check
whether an ensemble is already running on some network host.

5.2. CreateShell dependencies

For the Ensenbl e operation createShell to work, the owner of the executing
process must have execution rights to the script

~beta/distribution/vl. 2/ private/ external/renoteStart
and the

~bet a/ distribution/vl. 2/ privatel/external/$/startAsDeanon

executable on the target host. By default these executables are installed with
execution rights for everyone.

renoteStart is a smple shell script determining the current machine type before
invoking the machine specific st ar t AsDeanon executable, which in turn executes the
shell executable as a deamon. r enot eSt art is executed using r sh (r ensh on HP UX
platforms) on remote network hosts, or executed directly by the distributed BETA
process, in case the new shell is started on the local host. If rsh is not found in the
standard directory for the platform, the r shPat h virtual described in section 5.5 can
be used to tell shel | Env about the location of ther sh executable.

5.3. The distributionDir virtual

When using ensenbl e. cr eat eShel | to start shell processes, cr eat eShel | needs to
know the location of the renot eSt art script and the st art AsDeanon executable on
the target host. Default location of these scripts is in a subdirectory of the directory
containing BETA distribution source files.

In the current MBS installation, renoteStart is by default placed in the
~beta/ di stribution/vl. 2/ private/external directory, which is aso the
default value returned from di st ri but i onDi r *°.

However, when shipping applications, as described in section 5.6, it is convenient to
be able to put these system executables into another directory chosen by the
application developer.

Asfor def aul t AppsDir, di stributionDir ischanged by either setting the BETALI B
environment variable, or by further binding di st ri buti onDi r and assign a full path
to di r within the further binding.

5.4. The ensemblePort virtual

This release of the BETA distribution library uses TCP/IP for communication
between distributed BETA processes. However, the only system port number
"hardcoded" into the distribution library is the port number assigned to the ensemble
shell, i.e. the ensenbl eDeanon process started using the ~bet a/ bi n/ st art ensenbl e.

By default, the ensemble uses the port number 5188. However, in order to alow
several ensemble instances to run on the same host without conflicting, e.g. in order
to allow different groups to run BETA distribution without sharing the ensemble, this
may be changed in one of the following ways:

e Set the BETA ENSEMBLE PORT environment variable before starting the

distributed program that should use an aternative ensemble port number. For
example:
 In future releases, all system executables will be placed in the

~bet a/ di stri buti on/v?.?/ bi n directory.

18
remoteStart
startAsDeammon
rsh

communication
port

BETA_ENSEM-
BLE_PORT

20

proxy

Distribution

setenv BETA ENSEMBLE _PORT 5211

Notice that this should also be done before starting the ensenbl eDeanon to use
the alternative port number.

Remember that the ensenbl e. creat eShel | . envi ronment virtual may be
used to set the environment of shells started using cr eat eShel | .

* Alternatively, further bind the ensenbl ePort virtual. For example:

shel | Env
(# ensenbl ePort:: (# do 5211->val ue #);

#)

5.5. The rshPath virtual

Currently, ensenbl e. creat eShel | depends on rsh in order to start new shells on
remote hosts. To support systems with rsh installed in a non-standard directory, the
rshPat h virtual allows for the specification of the location of the rsh system
command. r shPat h should be specified to the full path of rsh (remsh on HP-UX). If
rshPat h is not further specified, the system default is used. Usually there should be
no need for changing ther shpPat h.

5.6. Shipping distributed BETA programs

As described in previous sections, distributed BETA applications rely on the presence
of the ensenbl eDeanon process. In addition, if using the ensenbl e. cr eat eShel |
method, the r enot eSt ar t script and the machine specific st ar t AsDeanon executable
must be present.

When shipping distributed BETA applications, these system scripts and executables
must therefore be shipped along. To allow renoteStart and st art AsDeanon to be
located in a directory chosen by the application developer, shel | Env includes the
distributionDir virtual, making it possible to specify an aternative path.
di stributionDir isdescribed in section 5.3.

6. Further Implementation Issues

This section briefly describes the implementation of the distribution library. Only the
implementation details necessary to understand how the library should be used, are
explained.

The implementation of the BETA distribution library builds on the notion of proxy
objects. This means that references to remote objects are really references to local
objects representing the remote object, asillustrated in figure 5.

Shell 1 Shell 2
4) 4)
ol }— - — 02
- J - J

Figure 5: The proxy concept.

References

Proxies are automatically instantiated by the distribution library when areferenceto a
remote object enters a shell for the first time. Likewise, unused proxies are
automatically garbage collected. In figure 5, the object o1 has a reference to the
remote object o2. In practice this means that o1 has a reference to a local proxy p2
representing o2. Method calls to p2 are automatically redirected to o2 by sending the
request across the network.

6.1. Proxy object types

In principle the type of a proxy object is exactly the same as the type of the object it
represents. It would be pretty impractical, however, if the current implementation
demanded this, for at least the following reasons™

» The proxy would have the same size as the real object had before initialization.

« Asdynamic linking is not currently supported™the full code corresponding to the
implementation of a pattern would have to be linked in with every client using the
service provided by that pattern. Even with dynamic linking it would not be a
feasible solution to link in server code in the client process.

The solution used in the current release of BETA distribution is to instantiate proxy
objects as instances of the most specific pattern known to the client and that is
declared in the shel | EnvLi b: attributes SLOT of shel | Env. This means that all
operations to be used remotely must be declared in this SLOT, but the actual object
may be an instance of any subpattern declared where it might be appropriate.

One unfortunate side effect of the implementation described above is that virtual
entry's are not supported. This has to do with the implementation of virtual dispatch
in BETA, and is outside the scope of this manual. However, keep in mind that

Subpatterns of r enot eabl e. ent ry are not allowed to bevirtual.

6.2. Parameter semantics

The current release is restricted in the sense that only instances of r enot eabl e may
be accessed remotely. This has implications for the parameter semantics of reference
parameters if the referred objects are not remoteables. The parameter semantics when
executing ent ry' s of remote objects are described below.

Before an entry in aremoteable is executed, it is first checked whether the enclosing
remoteable is a proxy or not. If it is not, the do part of the entry is executed as in any
ordinary object invocation:

entry:
(#
do (if isProxy then
<<SLOT renot eabl eCal | renot e: descri pt or >>
el se | NNER
if);
#)
If the remoteable is a proxy, a copy of the transitive closure” of the entry to be
executed is created on the receiver side before the receiver side copy of the entry is
executed. After execution, the transitive closure of the entry is sent back and
corresponding objects updated. If the transitive closure of the ent ry object contains
renot eabl e instances, these are not copied, but instead a proxy is created on the
receiver side.

" Note that none of these reasons are principal problems, but they are practical problems in the
current release.

2|t will bein afuture MBS release.
13 |.e the set of all objects reachable from the entry object.

21

22 Distribution

Below a formal description of the parameter semantics concerning non-remoteables
in the transitive closure of the entry is given. Note that the parameter semantics of
remoteables in the transitive closure are exactly as ordinary reference parameter
semantics. The semantics of other types of reference parameters are a consequence of
trying to support all kinds of parameters despite the current restrictions, and are
shown here to give an understanding of why, in most cases, it is possible to use any
kind of parameters as usual, and why it may result in unexpected behaviour in some
cases if not used with caution. The semantics are thus a compromise between on one
side supporting all kinds of parameters and on the other side preserving usual BETA
parameter semantics also in the distributed case.

Now, denote by trans(e,s;t) the set of objects reachable through object references
from the entry e in the shell sat time t. The set trans(e,s;t) is built by doing atraversal
of the object graph rooted in e, and following all references that do not reference a
r enot eabl e instance, the BETAENV object or the singular Shel | Env object.

L et state(o,t) denote the state of the object o at time t. Furthermore, define the relation
M (read isthe cause of) by
ap bU bwascreated asacopy of a

The parameter semantics operates with four sets of objects. Below e denotes the entry
object about to be executed at the sender side. Note that object state as denoted by
state only changes during execution of the entry €.

A: Thetransitive closure of e immediately after assignment of the enter parameters:
A = trang e, sender, before)

B: Thereceiver side copy of the set A before the receiver side copy of the entry e, €,
IS executed.

B = trans(eq; receiver ,before) Ue p e
C: Thetransitive closure of € at the receiver side after it has been executed:
C = trans(e¢; receiver , after) Ue p e¢
D: Thetransitive closure of e at the sender side after execution:
D = trans(e, sender, after)
Now, the parameter semantics are described by the following FOPL formulas:
1. The set B contains copies of all objectsin the set A
(" ol A$0¢l B.(o p 0 Ustate(o, before) = state(oq; before))) U|A =|H

2. Theset D contains copies of al objectsin C. Objectsin D are either members of
A (asis the entry €), or they are copies of objects in C that are not inB. (A is
exclusiveor.)
"ol C.$0¢i D.state(oGafter) = state(o,after) U((o¢l AUotu o)A (ol BUop 09)
U
ICl =D

The semantics described above have at |east the following implications:

In/Out semantics » Reference parameters referring to non-remoteables have approximately Adalike
in/out semantics. The object referred is copied before execution of the entry, and,
assuming that it is still in the transitive closure of the entry, updated from the copy
after execution.

Deep Copying » If wanted, the parameter mechanism may be used to transfer deep copies of any
kind of object between different shells. The notion of deep object copying may be
useful, but is orthogonal to distribution. In future versions of BETA distribution,

References

the parameter semantics described above will hopefully be obsolete by removing
the restriction that only remoteable instances may be accessed remotely. Instead
direct support for object copying may be provided, but not as part of the
distribution library. Instead future versions of distribution will support the notion
of object movement between different shells.

* The seridization traversal stops when a r enot eabl e, the BETAENV object or the
shel | Env object ismet.

6.3. Non-preemptive scheduling

The scheduler implemented by syst enEnv IS non-preemptive, and as a consequence
control is only transferred between coroutines when an explicit or implicit suspend is
executed. Implicit suspend may be done when executing semaphore P operations,
when calling submethods of systemenv.nonitor.entry, on execution of
syst enEnv. pause and on communication with remote shells through submethods of
renot eabl e. entry. When this happens, another coroutine may be attached to
execute until it suspends implicitly or explicitly.

If any coroutine makes blocking system calls, this will block al coroutines, as the
BETA process is seen as a single process from the operating system.

6.4. Communication layer implementation

The current implementation of the distribution library uses TCP/IP for
communication between shells. On first communication between two shells, a socket
connection is established, and this connection is reused for future communications.

The socket connections opened may be closed in response to one of the following
conditions:

« An error occurs on the connection, leading to the conclusion that the connection is
not sound anymore. In most situations this occurs when trying to communicate
with a dead shell process.

* No more file descriptors are available in the current process. In that case the least
recently used connection is closed down to make it possible to open a new
connection to some other shell. The closed connection may be reopened if it is
later needed.

e The connection is to an ensemble. Since any distributed BETA program that
exports object references need to communicate with the ensemble, it is expected
that the ensemble will communicate with a large number of processes during its
lifetime. Thus, the ensemble automatically closes down connections that have not
been used for some time.

7. Distribution and X libraries

Since shel | Env is based on syst enEnv, and syst enEnv is capable of cooperating
with the X user interface libraries, this of course goes for shel | Env too. However,
notice that e.g. xshel | . bet must be used as origin for programs combining X and
distribution (see section 4.1).

One minor catch should be noted when combining X and shel | Env. Consider the
skeleton program below combining not i f env withshel | Env.

Serialization
limits

23

24

Distribution

ORIG N ' ~beta/distribution/vl.2/xshell";
| NCLUDE ' ~beta/ Xt/v1. 9/ motifenv';
- programdescriptor ---
shel | Env
(# set WndowEnv: :
(# do nmyW ndowenv|[]->t heW ndowenv|[] #);
nmyW ndowEnv: @oti f Env

(# ...
do <<Initialize myWndowEnv>>
#);

shel | Type:: (# ... #)

#)

The setWndowenv virtual and thewndowenv reference are declared in
basi csyst emenv. myW ndowEnv does not have to be anot i f env instance aslong asit
isat least an xt env instance. (one of awenv, not i f env Of xt env).

And now for the catch: The do-part of myW ndowenv is executed by syst enEnv as
soon as it has finished initialisation. Unfortunately this means that shel | Env has not
yet been properly initialized. To avoid problems, the do-part of myW ndowenv should
be empty, and initialisation should be done by an explicit i ni t method called when
shel | Env has been properly initialised:

ORIGA N ' ~beta/distribution/vl.2/xshell";
| NCLUDE ' ~beta/ Xt/v1. 9/ motifenv';
- programdescriptor ---
shel | Env
(# set WndowEnv: :
(# do nyW ndowenv|[]->t heW ndowkEnv[] #);
nyW ndowEnv: @oti f Env

(# ...
init:
(#
do <<lInitialize nmyW ndowEnv>>
#);
do (* Nothing *)
#);
shel | Type:: (# ... #)
do nmyW ndowEnv.init;...

#)
This problem will be solved in future releases of syst enenv.

8. Restrictions

The following restrictions should be kept in mind when writing distributed BETA
programs based on version 1.2 of the distribution library. They have all been
described in details in previous sections.

* Only remoteables can be accessed remotely.

» The public (remotely accessible) part of r enot eabl e patterns must be declared in
shel | EnvLi b: attri but es SLOT of shel | Env.

e Parameters to remoteable ent ry's must be attributes of the ent ry object and not
attributes of e.g. ther enot eabl e that isthe static father of the entry.

* Renot eabl e entries should not be virtual. If they are, the patterns of the real
object must be linked with the client and should be declared in the
shel | EnvLi b: attri but es SLOT of shel | Env.

» Asthereisno support for dynamic linking, objects transferred between shells (see
section 6.2) must be instances of patterns known to both shells, i.e. the patterns

References

must be linked into both shells. If they are not, an unknownPat t er n exception
will result.

9. Interface Description for the
basicshell library

ORI G N ' ~bet a/ basi cl i b/v1. 5/ basi csyst enenv’
(*
* $RCSfile: basicshell.bet,v $

$Revision: 1.5 $

$Dat e: 1996/ 06/ 21 10:49:48 $

*

*

*

* COPYRI GHT
* Copyright Mol ner Informatics, 1992-96
* Al'l rights reserved.

*
*

Use xshell or shell as origin for distributed BETA prograns.
*)
BODY ' privat e/ shel | Body"' ;

I NCLUDE ' ~bet a/ obj ect server/v2. 4/ Cbj ect Seri al i zer';
I NCLUDE ' ~bet a/sysutils/vl.5/ envstring'

I NCLUDE ' ~bet a/ process/v1. 5/ commAddr ess'

I NCLUDE ' private/rpc_interface'

--- librattributes ---

*

* Returns the uni que shell Env instance running. *)

get Shel | Env:
(# theShel | Env: ~shel | Env;
do shel | Env## -> obj ect Pool . strucGet
(#init::<
(#
do ...
#)#) -> theShell Env[];
exit theShel |l Env[]
#)]

(* SHELLENV

When maki ng di stributed BETA prograns,

the "program descriptor" SLOT

in betaenv nust be filled with a subpattern of shell Env.
This is also

the only instance of shell Env allowed. *)

* Ok Ok Ok k%

shel | Env: systenenv
(#

*

* Furtherbind to specify the kind of Shell. *)

shel | Type: < Shel | ;
theShel | : @hel | Type;

25

26

~
*

*

* % X X X X %k X X F

Distribution

SHELLENVLI B

Pattern definitions used as interfaces to renote

obj ects nust be declared in the shell EnvLi b SLOT.

Ref erences to objects being instances of subpatterns

of these patterns may be exported for renote access

wi t hout being declared in this attribute slot, but at

| east the superpattern containing the entrys to be called
renotely should be declared in Shell EnvLi b, to nake them

visible in the client. *)

<<SLOT shel | EnvLi b: attri but es>>

(*

*

* %k X X kX X X

REMOTEABLE

Superpattern of all objects that nay be accessed renotely.

Met hods to be called renotely rmust be non-virtual and be
subpatterns of entry.

ping returns true if the object is currently accessible and
fal se otherw se. *)

r enpt eabl e:

(*

*

L T R R T R

(# entry:
(#
do (if isProxy //true then
el se | NNER
if);
#);
pi ng: bool eanValue (# do ... #);

(* private

ri: “renotelnfo;
i sProxy: @Bool ean;

<<SLOT renot eabl ePrivateEntries:attributes>>;

do | NNER

#);
SHELL
Pattern describing execut abl es whose i nstances are processes.
Shell s should only be instantiated through
ensenbl e. cr eat eShel
or started fromthe conmandl i ne.
nyEnsenble is a reference to the ensenbl e on which this shel
i s running.
kill kills the correspondi ng process. The onKill virtual is
call ed before killing the process.

The I NNER part of a shell has to pause once in a while for
shel Env to be able to handl e i ncom ng requests.

This is due to the non-preenptive multitasking used.

References

* F * *

Even if INNER terninates, the process will not terninate
before kill has been call ed.
(O course nasty signals may do the job.) *)

shel | : renot eAbl e

—~
*

*

L R T . S S . N . T

(#
nyEnsenbl e: “~ensenbl e;
onKill:< (bject;
kill: (# do ... #);
Shell Private: @..;

<<SLOT shell PrivateEntries:attri butes>>

do | NNER;
#)
NAMVESERVER

Per forms mappi ng between | ogi cal object nanes and obj ect
ref erences. Subpatterns nmay performthis nmapping differently.

put saves an object reference under the name given

The overWite virtual is called if an object of that name is
al ready registered.

If overWite returns true, the existing (nane, objectref) pair
is overwitten with the new one.

get looks for an object with the given nanme and type. If no
mat chi ng object is found, notFound is call ed.

If an object with

the right name, but wong type is found, quaError is raised.

renove undoes put.

NanmeServer is a renoteAble, but all public operations does
some work locally before calling renote. *)

NanmeSer ver: renot eAbl e

(#
el ement Type: < Renot eAbl e;

put: <
(# overWite: < Bool eanVal ue;
nane: ~Text; obj: "el enent Type;
enter (obj[], nane[])
do | NNER
#)]

get: <

(# not Found: < Notification;
quaError: < Exception
nane: ~Text; type: ##object;
obj: ~el enent Type;

enter (type##, nane[])

do | NNER

exit obj[]

#);

renmove: <
(# not Found: < Notification;
name: “Text;
enter nane[]

27

28

(*

*

E o B R T R . S B N N . N S R R . T B N N N R N R I B R R TR S N T S

Distribution

do | NNER
#),

<<SLOT NaneServerAttri butes:attri butes>>;

do | NNER
#),
ENSENMBLE

A representation of network hosts.

hostnane is the hostnane of the host represented.
(surprise surprise)

createShell allows creation of shells on the host represented.

The executabl e nane without path is given by the "execNane"
paraneter, and the expected type of the shell created by
"instances"

of this executable is given by the "shell Type" paraneter

appsDir is the directory where executabl es are expected to
be found.

You shoul d al so check the description of the

"shel | Env. def aul t AppsDir" vi rtual

screenNanme nanmes the redirection file for screen output from
t he new

shell. If screenNane is not furtherbound, screen output is
redirected

to the file specified in the shell Env of the shell created.

The execNot Found exception is raised if the executable could
not
be found.

processCreationFailed is raised if the process could not be
creat ed.

typeError is raised if the shell created does not have the
expect ed type.

O her kinds of errors raises the unknownError exception.

Furt herbi nd environnent and call addEnvVar for each
envi r onnent
variable to be added to the environnment of the new shell

Fur t her bi nd paraneters and call addParam for each conmand
line parameter to be given to the new shell

ns is a NaneServer with default know edge of the ensenbles in
the distributed environnment. It is therefore possible to

| ookup

ot her ensenbles using ns. Apart fromthis, ns provides a flat
nanespace in which objects may be saved and retrieved using
ns. put

and ns.get. ns.scanNanes nmay be used to iterate over the nanes
explicitly registered in the ensenbl e using ns. get.

do NOT CREATE | NSTANCES OF ENSEMBLE ON YOUR OMNI!. *)

Ensenbl e: shel

(# host Nane: ~Text;

References

creat eShel | :
(# appsDir: <
(# dir: ~Text
do defaul t AppsDir -> dir[];
| NNER;
exit dir[]
#)]

screenNane: <
(# name: ~Text;

do | NNER
exit name[]
#)

envi ronnent : <
(# addEnvVar:
(# name, value: "Text;
enter (nane[],value[])

do ...
#)]
(* private: *) env: "Text; envCount:
do | NNER
exit (env[], envCount)

#);

paraneters: <
(# addPar am
(# val ue: "Text;
enter val ue[]
do ...
#)]
(* private: *)
parans: “~Text; paranmCount: @ nteger;
do | NNER;
exit (parans[], paranCount)

execNot Found: < Excepti on

(#
do | NNER;
#)
processCreationFail ed: < Exception
(#
do | NNER;
if);
#)
typeError: < Exception
(#
do INNER ...
if);
#)
unknownError: < Exception
(#
do | NNER;
#)

shel | Type: ##Shel | ;
execNanme: ~"Text;
sh: ~Shel |;
enter (shell Type##, execNane[])
do ...
exit sh[]

@ nt eger ;

29

30

~
*

*

L T N S B T I S B N T B S R I N R RN I N N R R R S I . R N R N]

Distribution

#);

ns: @NanmeServer
(# put:: (# do ... #);
get:: (# do ... #);
renove:: (# do ... #);
scanNanes:
(# current: "Text;
do ...
#);
#);

(* private

<<SLOT ensenbl eAttri butes:attri butes>>;

ensenbl ePrivate: @..;

#);

ERRORHANDLER

The "error" pattern is an abstract super pattern for al
comuni cati on

exception virtuals. The virtual subpatterns of error thus
corresponds

to different kinds of network errors.

When an errorHandl er exception is raised that is not

further specified, the exception is automatically propagated
to the

previous handler in the dynamic call chain. This chain of
error Handl ers

is built by pushing an errorHandler onto the front of the
chai n when

the errorHandl er is entered. The propagati on of an exception
conti nues

until either sone handl er catches the exception (by further
bi ndi ng the correspondi ng errorHandl er virtual), or unti

t he gl obal Handl er is reached. If even the gl obal Handl er does
not

catch the error, default action is to kill the current shel
process.

By default each coroutine has its own dynanic errorhandl er
chai n.

If the top of this chain is reached, control is passed to the
gl obal

handl er, and not, for exanple, to the handler chain of the
corouti ne

that forked the active coroutine.

If the entered errorHandler (prevHandler) is not NONE, it wll
be

used as the previous handler instead of the currently active
errorHandl er. This may be used to transfer errors between

di f ferent

corouti nes.

To gracefully handle network errors, further bind the

cor respondi ng

error virtual. Wthin further bindings, one of the nested
patterns

"ignore", "continue" or "abort" should be called as the |ast
action of

the errorHandl er. Note that if there are inperatives follow ng
t he

References

L I S T T R T T R N R S R AR R S R N T T N N N S N R N N N R R I . N N R I R

call to e.g. "continue", these inperatives will not be
execut ed!

abort: DEFAULT!! |f abort is called and not further
speci fi ed,
the renote call that failed is aborted, and the
shell killed. However, to prevent the shell from
being killed, it is allowed to further specify
the abort, and do a "leave sonelLabel" inside the
further specification.
For exanpl e:

do nyLabel : errorHandl er
(# connectionFail ed:
(# do abort (# do |eave nyLabel #)#);
do server.opl;

server. opn;
#)

IT IS NOT ALLONED TO LEAVE AN ERROR VI RTUAL
QUTSI DE
THE SCOPE OF AN ABORT | NSTANCE! !'!

i gnore: Abort the failing renote call, but pretend as if
t he
rempte call succeded. Control flow continues
after the

renote call causing the error
For exanpl e:

do errorHandl er
(# connectionFailed:: (# do ignore #);
do serverl. opl;
i gn: server2.o0p2

#)]
If the "server.opl" renmote call fails, contro
fl ow
continues at the "ign:" label. This nmay of course
result
in rather strange program behaviour. It makes no
sense to
further specify the ignore pattern since it never
calls
| NNER.
continue: Retry or continue the operation that caused the
error.
Fx. in the case of a tineout, continue neans
that the
conmuni cati on subsystemwi Il wait once again
for the

nunber of seconds specified in the tinmeQutVal ue
virtual in effect.

The network errors handl ed by the errorHandler virtuals are
descri bed bel ow

connectionFailed is raised when we fail to send a nessage to a
renote shell.

connecti onBroken is raised when nessage send succeded, but the
connection to the renote shell was broken before an answer

31

Distribution

coul d be received.

tinmeQut is raised if the remote shell failed to answer within

the tine imt specified by tinmeQutValue. Default timeQutVal ue
istowait for ever for answer when doing renote calls.
Furtherbind to limt the allowed waitingtine.

serverOverload is raised if the rempte shell was busy and
therefore

refused to handl e the request. The nunmber of concurrently

al | owed

requests is set by gl obal ErrorHandl er. concurrent RequestLimt.

unknownObject is raised if the renote shell did not know the
obj ect

requested. This is a consequence of the renpte shell doing a
wi t hDraw on the obj ect requested. Thus unknownChj ect
corresponds

to detection of a distributed dangling reference.

unknownPattern is raised if one of the objects sent to the

renot e

host was an instance of a pattern unknown there (| ocal =FALSE)
or if

the pattern of a returned object was not known |ocally

(1 ocal =TRUE)

In the case of unknown pattern it makes no sense to retry the
request.

wrongAnswer is raised if the answer fromthe renote shell does
not have the expected format. This could nean that the renote

shell is not the one we think it is, i.e. it could be another

process at the sane port.

NOTICE!'! It is not allowed to do a "leave" fromwthin the
dopart of an

errorHandler. If it is necessary to | eave the scope of an
error Handl er,

use the "l eaveHandl er" pattern as foll ows:

do sonelLabel : errorHandl er
(#
do ...;
| eaveHandl er (# do | eave sonelLabel #)
#);

If nultiple errorHandlers are left this way, use the

| eaveHandl er

nested inside the outernobst errorHandler in the dynanic cal
chain. *)

L N S T T S I T N R A N N N S I R T S T R

error Handl er:
(#
<<SLOT errorHandl erLi b: attri butes>>;

* is the abstract super pattern of all network rel ated
exceptions.

*)

error:
(# <<SLOT errorHandl erErrorlLib:attributes>>;

abort: failureAction

References

(# ... #);

continue: failureAction
(# ... #);

i gnore: failureAction
(# ... #);

t hebj: ~renvoteAbl g;
theEntry: “~theQbj.entry;
cl eanup: "“EH cl eanup;

enter (thej[], theEntry[],
do | NNER
#)

(* NETWORK EXCEPTI ONS
*

*)

connectionFail ed: < E failed;
connecti onBroken: < E_broken;
unknownCbj ect : < E_unknownQbj ;
unknownPat t ern: < E_unknownPat ;
timeQut: < E tineQut;

server Over Load: < E_overl oad;
wr ongAnswer : < E_answer;

*

* Further bind and set "sec"
* "wait for ever" policy. *)

ti meCut Val ue: < V_ti meQut;

V_ timeQut: (# sec: @ nteger

cl eanup[])

in order to change the default

do ...

exit sec

#);
E failed: error (# do ... #);
E broken: error (# do ... #);
E timeQut: error (# do ... #);
E overload: error (# do ... #);
E answer: error (# do ... #);

E_unknownObj: error (# do ...
E_unknownPat: error

(# local: @Bool ean

enter | ocal

do ...

#)

(* PRI VATE!!

failureAction:
(# calllnner: @Bool ean
do | NNER
#)]

EH cl eanup:
(# todo : @nteger;
fa: ~failureAction;
enter (todo ,fa[])
do | NNER
#);

prevHandl er: “errorHandl er;

#);

33

34

~
*

*

L T R R R R B N N N B I N I

g

g
(*

*

L T N T T B T R . R

Distribution

enterHandler: @..;
| eaveHandl er: (# ... #);

enter prevHandl er[]
do enterHandl er; | NNER; | eaveHandl er
#)

GLOBALERRORHANDLER

Furt herbi nd gl obal ErrorHandl er to specify a gl oba
errorHandl er.

concurrent RequestLimt is the maxi mum nunber of sinultaneous
requests this shell will allow. -1 neans no limt. If handling
a request would result in breaking this limt, the request

wi | |

be ignored and the client-side exception overLoadError will be
rai sed.

wor ker Pool Si ze determines the size of the pool of workers to
handl e i ncom ng requests. A worker is a collection of

resour ces

needed to handl e a request. Because it is cheaper to reuse

t hese

resources than to allocate new ones, the workerPool keeps
track of unenployed workers ready for reuse. A reasonable
val ue for

wor ker Pool Si ze is probably the expected nean nunber of
requests

handl ed sinultaneously. If a request is always executed to end
wi t hout suspending inmplicitly of explicitly, a single worker
i s adequate. *)

obal Error Handl er: < errorHandl er
(# concurrent RequestLimt: < IntegerVal ue
(# do -1 -> value; INNER #);
wor ker Pool Si ze: < | nt eger Val ue
(# do 5 -> value; I NNER #);
#);
obal Handl er: @l obal Error Handl er

DEFAULTAPPSDI R

VWhen usi ng ensenbl e. createShell to start processes,

this is the default directory on the renote host in

whi ch the executable is expected to be found. The default
may be overridden using this virtual. Alternatively the
directory may be changed individually on each createShel
call by furtherbinding the ensenbl e.createShell.appsDir
virtual .

As is the case when specifying | NCLUDE and BODY paths in the
BETA fragment system you may use '$' to specify machine
dependent executabl e paths. That is, assune "dir" is assigned
t he

value '/mydir/$/', and the rempte host on which the new shel
isto

be created is of type 'sun4s'. Then, the "execNanme" paraneter
to

createShell is appended to "dir", and all occurrences of '$
in the

resulting string then replaced by 'sund4s' before it is used as
the full path of an executable.

References 35

By default, the defaultAppsDir directory is
"/usr/local/lib/betal/distribution/vl.2/aps/$/

but this may be changed either by the environnment variable
BETALI B, having default val ue

"fusr/local/lib/betal

or by furtherbinding the defaultAppsDir virtual and assigning
to "dir". *)

defaul t AppsDir: <

(# dir: ~Text

o ' $(BETALIB)' -> expandEnvVar
(# defaul tVal ue::<
(# do '"/usr/local/lib/beta/' -> envvarvalue[] #);
#) ->dir[];
(if dir.length -> dir.inxGet // '/' then else
/' -> dir.append;
if);
"distribution/vl.2/aps/$/' -> dir.append;
| NNER;

exit dir[]
#)

DEFAUL TSCREENNANME

Shel | Env i nstances created by ensenbl e. creat eShel | cannot
use the standard outputs of the process.

To redirect output you may specify the nanme of a file by
furtherbindi ng defaul t ScreenName. I f you miss to do so,
output fromrenotely started shells is put into /dev/null

Al ternatively screenNanme may be set individually for created
shel I s by using the ensenbl e. createShell.screenNane virtual
This allows the creator to override the defaultScreenNanme of
the shell created

stdout as well as stderr are redirected to the file naned in
def aul t ScreenName or in ensenbl e. createShell. screenNane.

Si nce output on stdout and stderr fromrenotely started shells
should normally be restricted to debuggi ng output, stdout

and stderr are unbuffered in order to ensure that all output
is actually witten to the file specified, and in the order
the output was witten to stdout respectively stderr

If this shell is started fromthe commandl i ne,

def aul t Scr eennane

has no effect, since stdout and stderr are then used w t hout
nmodi fication. *)

def aul t Scr eenNane: <

(

*
*
*
*
*
*
*

(# name: ~"Text;
do | NNER
exit name[]

#);

DI STRI BUTI ONDI R

When using ensenbl e. createShell to start processes,

cr eat eShel

needs to know the location of certain scripts. The default
| ocation of these scripts is in a subdirectory of the

Distribution

directory containing BETA distribution source files.
By default the distribution directory is
" ~beta/distribution/vl.2/private/external’

where ~beta is found by inspecting the BETALIB environment
variable. (Default value for BETALIB is
"/fusr/local/lib/beta').

On order of increasing priority, the default may be changed in
one of the follow ng ways:

1. Further binding the distributionDir virtual and assigning
to
“dir".
2. Setting the BETA DI STRI BUTI ONDI R envi ronnent variable. *)

E B N S T N . N B N N N

di stributionDir:<
(# dir: ~Text;
do ' $(BETA DI STRI BUTI ONDI R) ' - >expandEnvVar
(# defaul tVal ue:
(#
do (* BETA_DI STRI BUTI ONDI R not set.
* |f distributionDir is not
* further bound, use default. *)
I NNER di stributionDir;
(if dir[]=NONE then
' $(BETALI B) ' - >expandEnvVar
(# defaul tVal ue:
(# do '"/usr/local/libl/betal’
-> envvarval ue[] #)
#)->dir[];
(if (dir.length->dir.inxGet)<>/" then
"/ ->dir.append

if);
"distribution/vl. 2/ private/ external/'
-> dir. append;
if);
dir[]->envVarVal ue[];
#)
#)->dir[];
(if (dir.length->dir.inxGet)<>'/"' then '/'->dir.append if);
exit dir[]

#);

(* ENSENMBLEPORT

This rel ease of the BETA distribution library uses TCP/IP for
al

conmuni cati on between distributed BETA processes. The only
system

port nunber hardcoded into the distribution library is the
port nunber

assigned to the ensenble shell (the "ensenbl eDeanon" program
started

on the local host using the "~betal/bin/startensenble" script).
By default, the ensenble uses the port nunber 5190. However,
in order to allow several ensenble instances to run on the
sane host wi thout conflicting, e.g. in order to all ow

di fferent groups to run BETA distribution w thout sharing the
ensenbl e, this may be changed in one of the foll owi ng ways:

b T I R T N B . N N

1. Set the BETA ENSEMBLE PORT environment variable before

References 37

L S T RN N . . N . . . N I N

)

starting the distributed program supposed to use an
alternative port nunber. For exanpl e:

setenv BETA ENSEMBLE_PORT 5211

Note that this should be done before starting the
ensenble to

use the alternative portnunber. Remenber that the
ensenbl e. creat eShel | . environnent virtual nmay be used to
set the

environnment of shells started from other shells.

2. Furtherbind the ensenbl ePort virtual found bel ow
For exanpl e:

--- programdescriptor ---
shel | Env
(# ...
ensenbl ePort::< (# do 5211 -> val ue #);

#)

ensenbl ePort: < | ntegerVal ue
(# val ueAsText: ~Text;

—~
*

*

LR S R

d

0 ' $(BETA_ENSEMBLE PCRT)' -> expandEnvVar
(# defaultValue::< (# do '5190' -> envvarvalue[] #)#);
-> val ueAsText[];
val ueAsText . reset;
val ueAsText.getlnt -> val ue;
| NNER;

#);

RSHPATH

Currently ensenbl e. createShell depends on "rsh" in order to
start new shells on renpte hosts. |In order to support systens
with rsh

installed in a non-standard directory, this virtual allows for
the specification of the | ocation of the rsh system command.
rshpath should be specified to the full path of the "rsh"
("rensh" on HP UX) system command. |f rshpath is not further
specified, the systemdefault is used. Usually there should be
no need for changing the rshpath. *)

rshPat h: <

(*

(

path: ~Text;

do | NNER
exit path[]
#)

* Returns usernanme of process owner. *)

user Name: @

*

(

t:. "Text;

do (if t[] //NONE then ... if)
exit t[]
#)]

38

L B R T T B T S R T N R R . B

Wi

—~
*

*

L N R T I I R T N I T D . T I N R

Distribution

Due to the lack of distributed garbage collection, we need a
way

to explicitly withdraw the possibility of renote access to
obj ects

whose reference has crossed the shell boundary. Wenever that
happens,

the object reference is saved in an internal table and is
therefore

never garbage collected. Calling withdraw with a | ocal object
whose

ref erence has been exported deletes the object fromthe

i nterna

table, thereby nmaking it possible to garbage collect the

obj ect unl ess

other local references exists. If a request to a w thdrawn
obj ect

arrives froma client, it will fail with an 'unknownCbj ect
exception.

This corresponds to following a distributed dangling
reference, and

there is no way to avoid this w thout distributed garbage
col l ecti on.

Proxy objects are garbage collected automatically as is any
ordi nary
obj ect.

)

t hDr aw.

(# ra: "“renoteAble
enter raf]

do ...

#);

TRACI NG OBJECT SERI ALI ZATI ONS

When perfornming a renote invocation, one or nore objects are
serialized (marshalled) to be sent across the network
connecti on.

In sone cases | arge object graphs are serialized this way.
Currently

there is no way of specifying a limtation on this
serialization

traversal (as is possible in the persistent store), and
somet i nes

nore obj ects than expected gets serialized, |eading to
unexpect ed

errors. Most often the error nessage resulting is "components
not

handl ed", which is triggered when trying to serialize an
active

object. To debug problenms |ike these, a nunber of patterns are
of fered
bel ow.

Tracing is initiated by setting the "TraceSer" bool ean
to TRUE. When

this has been done, the "BeforeSer", "AfterSer"

and "AfterUnser"”

virtuals are called as descri bed bel ow

BeforeSer is called just before an object is about to be
serialized, either as a result of being sent in a renote
request, or

as a result of being returned as a result paraneter.

References 39

L S S . T I I B I

AfterSer is called when the object has been serialized.

AfterUnser is called when sone object received, either as
part of

an inconmng call, or as part of a the result received,
has been

unseriali zed.

Renot eabl e i nstances are not actually serialized. Instead

a networ k

representation of the correspondi ng object reference is sent.
In case

of a non-renoteable, the object is serialized and al
references it

contains followed. *)

TraceSer: @Bool ean

Bef oreSer: <

(# o: "(bject
enter of]

do | NNER

#)

AfterSer:<

(# o: "(bject
enter of]

do | NNER

#);

AfterUnser: <

(* EVERYTHI NG BELOW | S PRI VATE
*

(# o: ~Object

enter of]
do | NNER
#);

*)

senvPriv: @..;

(

[S T R T T R I N S

REMOTEABLETYPE

The renot eAbl eType is a network representati on of renoteAble
subpatterns. The type represented includes the part of the
superpattern chain having origin in shell Env, excluding
renoteAble as this is the basepattern for all patterns

repr esent ed.

groupNanes are the nanmes of the groups corresponding to
groups.

The path of the groupNanmes are not included. Instead a check
i s made

at startup tine, that no two groups in the executable have the
sane

name, as this cannot be allowed. The reason for this is to
avoi d the

usual problens with pathnanmes, but it neans that no two
programfiles

can have the sanme nane.

groups are the indices in the local execG oupTable
corresponding to

groupNames. |f a groupNane does not exist in the |oca
execG oupTabl e,

group will be -1.

40

do

#)

* 0% Xk kX X X X %

Distribution

protos are the indices of prototypes in the groups.

best Known is the nost specific superpattern of the represented
type

that is known to the local shell and that has origin in
shel | Env.

renot eAbl eType instances are created by typeAllocator in
shel | Body. *)

r enot eAbl eType

(*

*

L B R R T R N

(# groupNanmes: [1]~Text;
groups: [1] @nteger;
protos: [1] @nteger;
| ast: @nteger;

best Known: ##r enpt eAbl e;
#);

REMOTEI NFO

A speci alization of (bjectTabl eEl enent contai ni ng address
i nfornmati on on the correspondi ng object ra.

shellODis the OD of the shell containing ra
shel | Adr is the network address of the shell containing ra.
net Type is the network representation of the type of ra.

ensenbl eAdr is the network address of the ensenbl e where
a renpteAbl e exi sts. ensenbl eNane is the nane of the ensenbl e.

ensenbl eAdr and ensenbl eNane are NONE unl ess the renotelnfo
corresponds to a shell or an ensenble. *)

renot el nfo: Obj ect Tabl eEl enent

(# shel O D @ Dtype;

shel | Adr: ~portabl ePort Addr ess;

net Type: “renoteAbl eType;

ensenbl eAdr AsText: ~Text;

ensenbl eNane: "Text;
enter
(shell A D, shel |l Adr[], net Type[], ensenbl eAdr AsText[], ensenbl eNane[])
exit
(shell O D, shel |l Adr[], net Type[], ensenbl eAdr AsText[], ensenbl eNane[])
#);

i ni t BeforeSchedul er:: <

(#
do ...
#)

i sEnsenbl e: < Bool eanVal ue;

| NNER

References

10. Interface Description for the
RemoteRefAsText library

ORI G N ' basi cshel | ';
BODY ' pri vat e/ r enot eRef AsText Body' ;

--- shell EnvLi b: attri butes ---

(* REFASTEXT

* —==—m==—==

*

* Converts a renoteable reference into a text.

* The text may later be converted into a reference

* using refFronText.

*

* | f the renoteble given as paraneter does not already
*

have a gl obally unique O D, one is assigned. *)

ref AsText:
(# r: ~renoteable; t: ~Text;
enter r[]
do ...
exit t[]
#)]

(* REFFROMIEXT

L

i nformation. *)

r ef FronText :
(# t: ~Text; r: “renoteabl e;

enter t[]
do ...
exit r[]

#)

Converts a text earlier created by ref AsText back into the
original object reference. Doing so involves conmunication
with the Shell containing the object in order to obtain type

42

Distribution

11. pingEnsemble.bet example
program

pi ngEnsenbl e. bet

Thi s program may be used to check whether an ensenble
i s al ready running.

Execute as:

pi ngEnsenbl e <ensenbl eNane>
wher e <ensenbl eNane> is the name of the network host
on which to check for ensenble presence. *)

L S T R

ORIG N ' ~beta/distribution/vl.2/shell";
--- programdescriptor ---
shel | Env
(# shel | Type:
(# ensenbl eNanme: ~Text;
do (if NoOfF Arguments = 2 then
"Usage: pingEnsenbl e <ensenbl eNane>' - >put Li ne;
kill;
if);
1 -> argunents -> ensenbl eNane[];
(ensenbl eNane[], ensenbl e##)
-> nyEnsenbl e. ns. get
-> ensenbl e[];
(if ensenmble[] = NONE then
"Network host ' -> putText;
ensenbl eName[] -> put Text;
not found.' -> putlLine;
kill;
if);
(if ensenble.ping then
' K. ensenbl eDeanpon found on ' -> put Text;
ensenbl eName[] -> putLine;
el se
'No ensenbl eDeanbn on -> put Text;
ensenbl eName[] -> putLine;
if);
kill;
#);

#)

References

[Brandt 93]

[Madsen 93]

[MIA 90-8]

[MIA 91-20]

[Brandt 94]

Sgren Brandt, Ole Lehrmann Madsen: Object-Oriented
Distributed Programming in BETA. In Lecture Notes In
Computer Science, LNCS 791, Springer-Verlag 1994.

O. L. Madsen, B. Mgdller-Pedersen, K. Nygaard: Object-
Oriented Programming in the BETA Programming Lan-
guage, Addison-Wesley, 1993, ISBN 0-201-62430-3

Mjglner Informatics. The Mjglner BETA System: Basic Li-
braries, Reference Manual, Mjglner Informatics Report
MIA 90-8

Mjelner Informatics. The Mjglner BETA System — Persis-
tent Sore, Mjalnerinformatics Report MIA 91-20.

Sgren Brandt: Implementing Shared and Persistent
Objects in BETA. Progress Report. Technical Report.
Computer Science Department, Aarhus University.

43

Index

The entries in the index with italic pagenumbers are the identifiers defined in

the public interface of the libraries:

The minor level entries refer to identifiers defined local to the identifier of the
major level entry. For those index entries referring to patterns with super- or
subpatterns within the library, these patterns are specified in special sections of

the minor level index for that identifier.

Entries with plain pagenumbers refer to the text of this manual.

I11Externally defined
. IntegerValue
.. Isubpatterns
...ensemblePort............oceeeunnnen. 37
. ObjectTableElement
.. Isubpatterns

L..remotelnfo......ieiiii 40
. remoteAble
.. Isubpatterns
NameServer.......ccocevvvvininnnnn. 27
ShEll e, 27
A
abort
AR SE 39
ARErSEr i, 18
AFETUNSEr e, 39
AFETUNSEr e, 18
APPSDIN. et 12
B
BEfOr€SEr 39
BEfOr€SEr... .. 18
C
CaCUIAOr .u.vvenieieeeee e 8
ClIEN/SBIVET .. 5
ComMMmUNICAEION.eeeviieeieeieee e, 23
concurrentRequestLimit................coceeeeeee. 16
CONNECtiONBIroKEN.........covvviiiviiiiiieeeene, 14
connectionFailedccooveviiiiiiiiiiiennee, 14
CONLINUE.ueniiniee e e e e e 15
Creat@SheEll.....covvviieiee e 12
CreateShell dependencies.............cc.cceee..... 19
D
dangling referenceccooveveiiiiineennnn. 17
debuggingcceveviiiieiie e 18
defaultAPPSDIr.....ccvvvveeeeieeeie e 35
defaultAPPSDIr.....ccvvieeeeie e 16
defaultScreenName.........ccccoevevieiiieninnnen. 35
defaultScreenName........cc.oeevevieeiiiivennnen. 17
distributionDIir........cevvviiiiiiiieeeeeeea 36

distributionDir........c.ocvvviiiiiiiieee, 19

E
Ensemble......ccoooiiiiiiiiii 6, 28
ENSEMDIE. ... 12
eNSEMDBIE.INS ..o 13
ensembleDeamonc.veveiiniiiieeeene 18
ensemblePortoceveiicea 37
ensEMBIEPOIT ... 19
ENENY e 6
ENVIFONMENT +.eeeieieieeiee e aeeaas 12
(< 0 S 14
€ITor Propagation..........ceevvveeveiierineeninnns 14
ErrorHandler........ooooveviiiiiiiiicieens 6, 32
errorHandlerooveeieiei e 14
example Programs............oeeeeveeevevninneeennnn 8
G
garbage collection............cccceviiiiiiiinnnen, 17
O e 13
getShEllENV ... 25
LtheShellENV ..., 25
globalErrorHandleroooevviiiiiiiinnees 34
globalErrorHandlerccoooveiiiiiiiiennnens 16
globalHandler ... 34
H
hOStNAME., 12
|
[1o =X 15
initBeforeSchedulercooovvviiiiininnnen. 40
(1410 1 01 ST 7
iISEnsemble.......cooviviiiiiii 40
K
Kill . e 11
L
leaveHandl€er.........coovviiniiia 16
M
myEnsemble..........ccooveiiiiii, 11
N
NAMESEIVES ..., 6, 11, 27

Index

ns 12, 13
(@]
ONKIll e 11
P
Parameter .i.semanticS..........coovveiviinennnnn. 21
ParAMELENS. ... 12
0 19
PrOXY v 21
PUL. e 6, 13
R
r 41
FEFASTEXL. ...eniieiiiiee e, 41
.r4l
141
refFromText ..o, 41
.r4l
.t 41
Remoteable..........cocovvvviiiiieinn, 6, 10, 26
Remoteable.......coooveviiiiii 18
remoteAbleTYPE......c.vuvviiiiiiieii e, 40
FEMOLEINTO. ...veieiee e 40
remoteStart.......cocovviiiiiiiee 13,19
£ 13
rshPath ... 37
rshPath ... 20
S
SCANNAMES ... 13
SCheduling.......c.vveviiiiii e 23
SCrEENNAME. ... 12
= o 0 1 18
SEMANEICS .. eueieeee e eaes 21
semantics XE "Parameter .i.semantics’ 21
SEMANLICS" v 21
SENVPIIV. .. 39
serveroverload........c.coovvvviiiiiiiii 14
Shell oo 6, 11, 27
ShEIIENV.. o 9,25
. llsuperpattern
LSYSEEMENV ... 25
ARErSEr e 39
AFErUNSEr ..., 39
CBEfOr€Ser ..o 39
. defaultAppsDir......cccovvvveveviieeieeeenn, 35
. defaultScreenName........coveevvvenvnnenen, 35
LdistributionDir........ociviiiie 36
CEnsemble.. 28
.. lsuperpattern

o ShEl 27
.. createShell
... execNotFound

..... Exception41
.. processCresationFailed

..... Exception41
.. unknownError

.ensemblePort.........coooeviiiiniiii e, 37
.. 'superpattern
... IntegerVaue.................... 40, 41
cerrorHandler ... 32
.. Isubpatterns
... globaErrorHandler 34
.. error
... abort
. ... llsuperpattern
..... failureAction.............41
... continue
.. .. lsuperpattern
..... fallureAction.............41
...ignore
. ... llsuperpattern
..... failureAction.............41
. globalErrorHandler.............c.cccieeennin. 34
.. llsuperpattern
c..errorHandler.....o 32

.. concurrentRequestLimit
... Isuperpattern
....IntegerValue................... 41
.. workerPool Size
... l'superpattern

....IntegerVaue................... 41
.globalHandler..........coooeeeiiiieiins 34
.initBeforeScheduler............co.eevveenee. 40

isEnsemble.........cooeiiii 40
NameServer........ccoceevviiiiciiieens 27
.. llsuperpattern
...remoteAble..................... 40, 41
.remoteable.......cocoeviiiii 26
.. ping
... llsuperpattern

....booleanvaue.................. 41
.remoteAbleType......cccccvvveviiiieinneenn, 40
Lremotelnfo......oeeieiiei, 40

.. 'superpattern
... ObjectTableElement............... 40
rShPath. ..., 37
SENVPYIV ..o, 39
ShEll v, 27
.. llsuperpattern
...remoteAble...................... 40, 41
.. Isubpatterns
...Ensemble........cccooiiiiininnn, 28
SNEITYPE e 25
theShell........cooeeiiiii, 25
oS 39
USErNAIME....cvcveeeeeeeeee e, 37
CWIthDIaw .o 38
ShElTYPE e 25
ShIPPING ... 20
startAsDeamon.............ccoeeviiiiiiiiien 13
StartASDEaMON.cvvevieieiecee e, 19
systemenv
. Isubpatterns
LShElBNV 25
T
t 41
TCPIIP v 23
theShelloviii 25
theShellENV......c.cooiiiii e, 25
tMEOUL ... 14

45

unknownObject
unknownPattern

WIthdraw......ooveie e 17

WOrkerPoolSize.oovveeieiiiiiiiiiiieeean 16
WIONGANSWES ...ieviiiiieieiieiei e 15
X

X user interface libraries........coooveieeennn. 23

