
The Mjølner BETA System
Distribution

Reference Manual

Mjølner Informatics Report

MIA 93-25(1.2)

August 1996

Copyright © 1990-96 Mjølner Informatics ApS.
All rights reserved.

No part of this document may be copied or distributed
without the prior written permission of Mjølner Informatics

3

Contents
1. INTRODUCTION ... 5
2. MODEL OVERVIEW .. 5

2.1. The basic building blocks ... 5
2.2. The Remoteable pattern ... 6
2.3. The NameServer pattern... 6
2.4. The Shell ... 7
2.5. The Ensemble... 7

3. EXAMPLE PROGRAMS .. 8
3.1. Calculator ... 8
3.2. TimeServer .. 9
3.3. Xtalk .. 9

4. REFERENCE MANUAL .. 9
4.1. The shellEnv pattern.. 9
4.2. The remoteable pattern ...10
4.3. The shell pattern..11
4.4. The NameServer pattern..11
4.5. The ensemble pattern..12
4.6. The errorHandler pattern ..14
4.7. The globalErrorHandler virtual..16
4.8. The defaultAppsDir virtual ..17
4.9. The defaultScreenName virtual...17
4.10. The withdraw pattern ...18
4.11. Tracing object serializations...18

5. SYSTEM DEPENDENCIES..18
5.1. The ensembleDeamon...19
5.2. CreateShell dependencies..19
5.3. The distributionDir virtual...19
5.4. The ensemblePort virtual...20
5.5. The rshPath virtual ..20
5.6. Shipping distributed BETA programs...20

6. FURTHER IMPLEMENTATION ISSUES...21
6.1. Proxy object types..21
6.2. Parameter semantics ..22
6.3. Non-preemptive scheduling..23
6.4. Communication layer implementation..23

7. DISTRIBUTION AND X LIBRARIES ...24
8. RESTRICTIONS..25
9. INTERFACE DESCRIPTION FOR THE BASICSHELL LIBRARY..25
10. INTERFACE DESCRIPTION FOR THE REMOTEREFASTEXT LIBRARY42
11. PINGENSEMBLE.BET EXAMPLE PROGRAM ...44

REFERENCES . 45

INDEX . 46

5

1. Introduction
This reference manual describes the BETA distribution library, version 1.2. The
distribution library allows easy implementation of distributed BETA programs
exchanging object references across process and machine boundaries.

This manual describes the usage of the library through descriptions of a number of
demo programs. In addition the manual is a reference manual, and provides the
necessary technical details to be able to use the library efficiently. For a description of
the general distribution model on which the library is based, see [Brandt 93]. For
implementation details, see [Brandt 94].

2. Model Overview
This section provides an overview of the distribution model used in the BETA
distribution library.

The distribution library provides the shellEnv application framework for developing
distributed BETA programs. Methods in remote objects can be called the same way
as methods in local objects. The programmer need not worry about low level
communication aspects since shellEnv handles these automatically.

As a special case, the BETA distribution library makes it easy to implement
client/server applications. Clients and servers are simply BETA objects residing in
different processes, possibly on different network hosts. However, the client/server
model is asymmetric in the sense that servers are not allowed to call methods in their
clients. In contrast, with the BETA distribution library object relationships are not
constrained to be asymmetric. This means that the server may call methods in the
client as well as the client may call methods in the server.

The following sections provide a non-technical overview of the basic building blocks
in the BETA distribution library. Later sections contain a detailed description of the
library, and how to use it.

Chrysler Ensemble Tatra EnsembleDaimi Ensemble

Shell 1 Shell 4Shell 3Shell 2

R1 R2

Communication line

Daimi hostChrysler host Tatra host

Figure 1: Ensembles, Shells and Remoteables

2.1. The basic building blocks

The main patterns of the distribution library are:

Client/Server

6 Distribution

• Remoteable: The abstract super pattern of patterns whose instances are remotely
accessible.

• Ensemble: An instance of the ensemble pattern represents the operating system of
some network host. That is, logically there is exactly one ensemble instance for
each network host1.

• Shell: Each instance of the Shell pattern represents a single physical address
space. A Shell thus corresponds to an operating system process.

• NameServer: Nameservers provide a way for distributed BETA programs to make
their services available to other BETA programs. A server can provide a service
by giving an object reference to some name server, i.e. registering the service in
the name server. Clients may then contact the name server to lookup services
required.

• ErrorHandler: The errorHandler provides a scope in which exceptions raised
by communication errors may be caught and handled gracefully.

Figure 1 shows an example of a distributed system with three ensembles. The arrows
symbolize object references. For example, a shell instance knows the ensemble on
which it is running by having a reference to the ensemble object.

2.2. The Remoteable pattern

Objects whose methods can be called from objects residing in other processes must
be instances of remoteable subpatterns. Remoteable provides a nested pattern, the
entry, to be used as a prefix for remotely called methods. For example, a remotely
accessible calculator could be defined as follows:

calculator: remoteable
 (# plus: entry
 (# a,b,c: @Integer;
 enter (a,b)
 do a+b -> c
 exit c
 #);
 ...
 #);

In order for a distributed BETA program to provide a calculator service, or some
other network service, the program must create an instance of the calculator the
usual way. Afterwards the calculator reference can be registered in some
nameserver or sent directly to a client shell.

2.3. The NameServer pattern

All object-oriented systems supporting multiple processes need a way to handle the
exchange of object references. In distributed BETA, the approach is the provision of
an abstract superpattern, the NameServer. In short, a name server simply provides a
mapping between textual names and object references. The exact semantics of this
mapping depends on the actual subpattern of the abstract NameServer superpattern2.

The put operation takes a textual name and an object reference as parameters, and
saves the association for later retrieval (i.e. registering the object reference).

The get operation in turn retrieves an object reference given its associated name and
a pattern reference used for type checking.

Finally, remove deletes an object registration.

1 However, the distribution library allows several ensembles to coexist. See section 5.4.
2 An abstract superpattern is a pattern supposed to be used only as a superpattern, and not

instantiated itself.

entry

References 7

Example BETA code exporting a calculator reference to a name server (ns) is
shown below.

c: ^calculator;
ns: ^NameServer;
...
(c[],"Simple Calculator")->ns.put;

2.4. The Shell

The Shell pattern is the superpattern of all objects that may be instantiated directly
by an ensemble, and may in most respects be thought of as modeling an executable.
An instance of the Shell pattern corresponds to an operating system process with an
address space of its own. Non-shell objects reside in the address space provided by
some shell. The Shell is also a remoteable3, and may therefore provide services to
remote objects. As seen from other, possibly remote, objects, a Shell instance is just
another kind of object with a well defined interface.

A Shell instance knows the ensemble on which it is running through the myEnsemble
reference.

2.5. The Ensemble

Since the Ensemble is an abstraction modeling the operating system of a network
host, there is a one-to-one correspondence between ensemble instances and network
hosts. Below an abstract presentation of the ensemble pattern is shown.

ensemble: shell
 (# ...
 createShell:
 (# ...
 executableName: ^Text;
 type: ##Shell;
 sh: ^Shell;
 enter (executableName[],type##)
 do ...
 exit sh[]
 #);
 ns: @NameServer(# ... #)
 #)

Figure 2: Abstract presentation of ensemble

Part of the ensemble is a name server used as the starting point for distributed BETA
processes to get in contact other processes. In a distributed system, there may be any
number of network hosts, and in addition to mapping of textual object names to
object references, the NameServer part ns has the responsibility of binding ensembles
together. ns handles this responsibility by having default knowledge of other
ensembles in the distributed environment. This means that if the ns.get operation is
given e.g. the internet name of a network host, a reference to the corresponding
ensemble instance is returned.

An important operating system task is the management of processes. Therefore, an
important Ensemble attribute is the ability to create new Shell instances dynamically
on the operating system represented. Ordinary BETA objects are created by
instantiating patterns. However, as shells are operating system processes, they are
created by instantiating an executable. The createShell attribute of ensemble takes
the name of an executable and a pattern variable describing the subpattern of Shell
of which the new shell process is expected to be an instance.

3 Shell is a subpattern of remoteable.

myEnsemble

Ensemble
NameServer

CreateShell

8 Distribution

The following BETA code illustrates how to dynamically obtain a reference to the
remote ensemble named daimi.aau.dk followed by the creation of a shell on this
ensemble.

 daimi: ^ensemble;
 cs: ^calcServer;
do ...
 (ensemble##,"daimi.aau.dk") -> myEnsemble.ns.get
 -> daimi[];
 ('calcServer',calcServer##) -> daimi.createShell
 -> cs[];

3. Example programs
The example programs described in this section are contained in subdirectories of
~beta/demo/r4.0/distribution.

3.1. Calculator

The calcServer shell is a simple server shell containing a number of calculators.
Each calculator is doing work for a single client. The example includes two different
clients; an X based client, XcalcClient, using the Athena widget set, and a non X
client, calcClient. To create the executables of the calculator example, copy the
contents of the calculator directory to a directory of your own and compile:

beta calcClient calcServer XcalcClient.

Before running the calculator example, make sure that an ensembleDeamon is running
on the host(s) involved (See section 5.1).

Now execute a calcServer on some network host, followed by the execution of a
calcClient. The calcClient prompts for the name of the ensemble where it should
lookup the calcServer. Answer with the name of the network host on which the
calcServer is running.

If a calcServer is not started explicitly, as was the case above, or if the calcServer
has terminated4, the calcClient will fail to lookup a calcServer on the host whose
name it was given. In this case the calcClient will try to start a new calcServer.
For this to be possible, the following changes to the calcClient code must be made:

1. Edit the defaultAppsDir virtual in calcClient.bet and XcalcClient.bet. If,
for example, the source files were copied to the directory mydir, edit
calcClient.bet as follows:

shellEnv
(# defaultAppsDir::
 (# do 'mydir/$/' -> dir[] #);
 ...
#)

2. Recompile calcClient and XcalcClient

3. Move the calcServer executable to the machine specific subdirectory of mydir,
e.g. mydir/sun4s on a SPARC running Solaris 2.x.

With the above changes, the calcClient is able to create a new calcServer if one is
not already running.

4 The calcServer terminates itself when no new calculator has been created for 5 minutes.

CalcServer
CalcClient

References 9

3.2. TimeServer

This example consists of a timeServer with a number of clients. At startup a client
registers itself with a timeServer. When this is done, the timeServer will call a
method in the timeClient once each second. Note that this means that in the usual
RPC sense, the timeServer is now a client of its timeClients, since it is the server
that executes methods in the clients.

timeServer.bet has no user interface while timeClient.bet is a simple X/motif
program displaying the wall-clock time. Furthermore, for the benefit of users who do
not have X/motif libraries, simpleTimeClient.bet is equivalent to
timeClient.bet, but instead writes the wall-clock time to the console.

To run this example, copy the programs to a directory of your own and compile:

beta timeServer timeClient simpleTimeClient

Now execute a timeServer on some network host (remember that the
ensembleDeamon should be running already), and finally execute some number of
timeClients. As command line parameter, the timeClient takes the name of the
ensemble on which the timeServer is expected to run. Default is the local ensemble,
if no parameters are given.

3.3. Xtalk

This is a BETA distribution example, similar to the standard UNIX talk program.
However, xtalk is an X/motif program. Two users each running an xtalk instance
may connect and exchange messages by writing in a simple motif text editor.

4. Reference Manual
The interface to the distribution library is contained in the following files:

1. ~beta/distribution/v1.2/basicshell.bet

2. ~beta/distribution/v1.2/shell.bet

3. ~beta/distribution/v1.2/xshell.bet

4. ~beta/distribution/v1.2/guienvshell.bet

5. ~beta/distribution/v1.2/remoteRefAsText.bet

All distribution specific patterns are contained in the file basicshell.bet and the
discussion below thus describes these patterns.

• shell.bet should be used as ORIGIN in programs not using X window libraries.

• xshell.bet should be used as ORIGIN in programs using the X window libraries.

• guienvshell.bet should be used as ORIGIN in programs using the guienv user
interface library.

• basicshell.bet should be used as ORIGIN in library fragments that must be
usable in all of the above cases. The shellEnv pattern and all its nested patterns
are contained in this file.

• remoteRefAsText.bet contains patterns for converting remote object references
into a textual format and vice versa.

4.1. The shellEnv pattern

The shellEnv pattern from basicshell.bet is a subpattern of systemEnv from
~beta/basiclib/v1.5/basicsystemenv.bet. As a consequence, distributed
programs using shellEnv must have a structure corresponding to that of concurrent

timeServer
timeClient

10 Distribution

programs using systemEnv. This structure is sketched in figure 3, showing a template
for a distributed BETA program not using X window libraries.

ORIGIN '~beta/distribution/v1.2 /shell';
--- program:descriptor ---
shellEnv
(# shellType:: (# ... #)
 ...
#)

Figure 3: Template shellEnv program not using X libraries.

As can be seen from figure 3, the program:descriptor SLOT must contain a
specialization of shellEnv. The usage of the shellType virtual is described in the
section on the shell pattern.

When writing distributed BETA programs, the program:descriptor
SLOT in betaenv must contain a subpattern of shellEnv. This
instance of shellEnv is futhermore the only one allowed.

ORIGIN '~beta/distribution/v1.2 /xshell';
INCLUDE '~beta/Xt/v1.9/xtenv';
--- program:descriptor ---
shellEnv
(# shellType:: (# ... #);
 setWindowEnv:: (# do myxtenv[] -> theWindowEnv[] #);
 myxtenv: xtenv@(# ... #);
#)

Figure 4: Template distributed BETA program using X libraries.

In figure 4, the myxtenv object could as well have been an instance of awenv or
motifenv. What counts is that it is qualified by xtenv.

The singular shellEnv instance in a distributed BETA process is returned by the
getShellEnv pattern declared in basicshell.bet. Library fragments that should be
usable in programs using X as well as programs not using X, must have origin in
basicshell.bet.

The shellEnv pattern calls INNER when it has finished initialization. Initialization of
shellEnv specializations may thus take place in the shellEnv INNER, or in the
shellType INNER, to be described in section 4.3. Note that the distributed BETA
program will not terminate until theShell.kill has been called, even if INNER
shellEnv and INNER theShell terminates!

The following sections describe the different patterns and virtuals embedded in
shellEnv.

4.2. The remoteable pattern

Remoteable is the superpattern of all objects whose methods may be executed
remotely. The attributes of remoteable are:

entry: The entry pattern must be used as prefix for methods to be executed
remotely, i.e. called from objects in other processes. In the current release,
entry subpatterns must be non-virtual.

The template in figure 3 has ORIGIN in the shell fragment since is not using X
window libraries. If the program were to use X libraries, it should have ORIGIN in the
xshell fragment. There is no difference between shell.bet and xshell.bet
concerning the abstractions offered. The only difference is the systemEnv
implementation used. An alternative implementation is necessary to be able to
combine systemEnv with the event driven X window libraries using a central event
loop. To be able to install a number of callback functions used for scheduling
purposes, the X implementation of systemEnv needs a reference to the xtenv instance
used in the current program. This is handled by the setWindowEnv virtual as
illustrated in figure 4.

termination

References 11

ping: Returns true if the object is currently accessible and false otherwise.

If an entry is called in a local object, the overhead is limited to a simple boolean
check and an INNER call. Thus, remoteable entries can be used efficiently also in the
local case.

Subpatterns of remoteable.entry are not allowed to be virtual5.

This restriction may seem critical, but the problem is circumvented through an extra
indirection. To see how, check the example programs.

4.3. The shell pattern

The shell pattern is a subpattern of remoteable describing executables whose
instances are processes. Shells should only be instantiated through
ensemble.createShell or as part of distributed BETA programs started from the
commandline6. The shell pattern adds the following attributes to remoteable:

myEnsemble: A reference to the ensemble on which this shell is running.

kill: Kills the corresponding process.

onKill: Called before the process is killed as a result of a call to kill.

The shellType virtual attribute of shellEnv may be further bound in an application
program. shellType is used as the type of the static theShell partobject of
shellEnv. This instance should be the only shell instance created in a distributed
BETA program. Exporting a reference to theShell to a remote shell gives the remote
shell the ability to kill the local process by calling the kill attribute of theShell.
Furthermore, theShell is the object whose reference is returned from
ensemble.createShell after the creation of a new shell process. A distributed
BETA program is not obliged to further bind the shellType virtual unless it is going
to export a reference to theShell offering more functionality than the standard Shell
pattern7.

The INNER part of a shell has to pause once in a while for shellEnv to be able to
handle incoming requests from distribution partners. This is due to the non-
preemptive multitasking used. Even if INNER terminates, the process will not
terminate before kill has been called.

4.4. The NameServer pattern

NameServer is an abstract super pattern describing objects that perform a mapping
between logical object names and object references. Subpatterns of NameServer may
perform this mapping differently. Currently the only subpattern of NameServer
implemented is the ns attribute of ensemble.

The attributes of the NameServer pattern are:

put: Saves the association between a textual name and an object reference entered
as parameters. The overWrite virtual is called if an object of that name is
already registered. If overWrite returns true, the existing (name,object
reference) pair is overwritten with the new one.

get: Given a textual name and a qualification, get returns the object reference
associated with that name, assuming it qualifies to the type entered If no
associated object is found, notFound is raised and NONE is returned. If an object
with the right name, but wrong type, is found, quaError is raised. The type
entered should be a super pattern to the pattern of the object returned.

5 See section 6.1 describing the reason for restricting entry's to be non-virtual.
6 In practice, these cases boil down to the same thing.
7 Neither xtalk nor any of the calcClients further bind shellType.

shellType
theShell

non-preemptive
multitasking

12 Distribution

remove: Removes the named object from the NameServer. notFound is raised if no
object of that name is registered in the NameServer.

NameServer is a remoteable, but all the public operations described above do some
work locally before doing calls to the (private) entrys of the NameServer.

4.5. The ensemble pattern

Ensemble is a representation of network hosts. It has the following attributes:

hostname: The host name of the network host represented.

createShell: Allows the creation of shells, i.e. processes, on the host represented
by the ensemble. CreateShell is described in the next section.

ns: A NameServer subpattern with added functionality. ns is described in more
details below.

Never create ensemble instances on your own. The only sound way to obtain an
ensemble reference is from shell.myEnsemble, ensemble.ns.get or by transferring
ensemble references between shells.

4.5.1. CreateShell

Parameters to createShell are the expected qualification of the Shell created and
the executable name from which to create it. Before using the execName name
entered, it is appended to the value returned from the appsDir virtual, and $ signs in
the resulting string expanded to the name of the target platform in lower case.

A number of virtuals defined locally to createShell allow the passing of parameters
and environment variables to the newly created process. These virtuals are described
below.

appsDir: The appsDir virtual names the directory where executables are located.
Default value is given by the shellEnv.defaultAppsDir virtual described in
section 4.8. In order to override the default, further bind and assign a pathname
to dir. The interpretation given to dir is described in section 4.8. Notice that
the value of dir should be a full path.

screenName: New shells created using createShell have no associated standard
input or standard output. As a consequence, such shells are not allowed to read
from standard in, and if they write to standard out or standard error, default is
to redirect the output into some "black hole". On UNIX platforms a standard
black hole is /dev/null. This default may be changed by further binding the
screenName virtual, and assign a file name including full path to name. Further
binding screenName overrides the defaultScreenName virtual of the new
shell created. For more information on redirecting standard output, see section
4.9 describing the defaultScreenName virtual.

environment: To set environment variables for the newly created shell, further
bind the environment virtual and call addEnvVar for each environment variable
to be added. For example:

(timeClient##,'timeClient')->myEnsemble.createShell
(# environment::
 (# do ('DISPLAY','blanche:0') -> addEnvVar #)
#) -> newClient[];

parameters should be further bound and addParam called for each command line
parameter to be given to the new shell. For example:

Target platform

References 13

(timeClient##,'timeClient')->myEnsemble.createShell
(# parameters::
 (# do '-serverName' -> addParam;
 'daimi.aau.dk' -> addParam;
 #)
#) -> newClient[];

4.5.2. CreateShell Implementation

Since the distribution library is currently available only on UNIX platforms, the
description in this section is UNIX specific. The implementation of CreateShell on
e.g. a Macintosh target is different. See also section 5 that describes system
dependencies.

Below, "old shell" refers to the shell executing a createShell, whereas "new shell"
refers to the shell being created. Assuming the new shell is created on a remote host,
CreateShell uses UNIX rsh to run the remoteStart script on the remote host. If
the rsh process could not be forked, the processCreationFailed exception is
raised. Thus, processCreationFailed signals lack of resources on the local host.

Otherwise, if forking rsh succeeds, the old shell reads from the standard output of the
rsh process, i.e. what is written by the remoteStart script, to determine whether
things went all right. remoteStart determines the target machine type and then
executes the machine specific startAsDeamon executable. If the startAsDeamon
executable or the shell executable could not be found, the execNotFound exception is
raised. Errors different from processCreationFailed, relating to process start,
raise the unknownError exception.

Finally, if the new shell process seems to have been successfully created, the thread in
the old shell thread doing createShell waits for a callback from the new shell. If the
callback8 is not received within the time limit set by the active errorHandler, a
timeOut exception is raised in that errorHandler. In the mean time, other threads in
the old shell are allowed to do some work.

When the callback arrives, a reference to the new shell is included as a parameter. If
the new shell does not qualify to the type entered as parameter to createShell, the
typeError exception is raised.

The above description assumed that the target host was different from the local host.
If the new shell is created on the local host, sh is used to execute the remoteStart
script directly. That is, rsh is not used in the local case, making local createShell
calls more efficient.

4.5.3. The ensemble.ns NameServer

get: The primary responsibility of ns is to bind together all ensembles in the
distributed environment. Thus, if ns.get is asked to look up an ensemble
instance, the name parameter is expected to be an internet name, i.e.
mjolner.dk, and the usual name services are used to determine the internet
address of the corresponding network host. Using the expected port number of
the ensemble process (see section 5.4 describing the ensemblePort virtual),
ns.get is able to synthesize a reference to the ensemble requested. In addition,
ns provides a flat namespace in which objects may be saved and retrieved
using ns.put and ns.get.

put: Saves the association between a textual name and an object reference entered
as parameters. The overWrite virtual is called if an object of that name is
already registered. If overWrite returns true, the existing (name,object
reference) pair is overwritten with the new one.

scanNames: Iterates over the names currently registered in the nameServer.

8 The callback is of course made automatically be the system.

rsh

remoteStart
startAsDeamon

14 Distribution

4.6. The errorHandler pattern

The errorHandler supports flexible handling of network related errors. An
errorHandler effectively defines a dynamic scope in which network errors may be
caught and handled.

A dynamic chain of error handlers is maintained for each systemenv system
coroutine (see [MIA 90-08]). On entry to an errorHandler, default is to push the
handler entered onto the front of the dynamic chain of error handlers related to the
current system, thereby making it the active errorHandler. Likewise, when the
errorHandler is left, it is removed from the dynamic chain of error handlers, and the
previously active errorHandler becomes active again.

When a network related error occurs, a corresponding exception is raised in the active
errorHandler. If the active error handler does not further bind the exception raised,
the exception is automatically propagated to the previous handler in the dynamic
chain. The propagation of an exception continues until either some handler catches
the exception (by further binding the corresponding errorHandler virtual), or until
the end of the dynamic chain is reached. If that happens, the exception is propagated
to the globalHandler. If even the globalHandler does not catch the error, default
action is to kill the current shell. If an error occurs in a coroutine that never entered an
errorHandler, the corresponding exception is raised directly in the globalHandler.

Note that by default each system coroutine has its own dynamic error handler chain.
If the top of this chain is reached, control is passed to the globalHandler, and not,
for example, to the handler chain of the system that forked the failing coroutine.

As described above, default is to push a newly entered errorHandler onto the
currently active chain of error handlers. This means that exceptions not handled by
some errorHandler eh are automatically propagated to the errorHandler that was
active before entry to eh and, if eh was the first errorHandler entered by the current
system coroutine, errors not handled by eh are propagated to the global handler.
However, this default may be changed by supplying an errorHandler
(prevHandler) as enter parameter when entering a new errorHandler eh. This way,
exceptions not handled by eh will be propagated to prevHandler. As an example,
this may be used to transfer errors automatically from a coroutine to the creator of
that coroutine.

The error pattern is an abstract super pattern for all communication exception
virtuals. The virtual subpatterns of error thus correspond to different kinds of
network errors, as described in the next section.

4.6.1. Error types

The network errors handled by the subpatterns of error inside errorHandler are the
following.

connectionFailed is raised when a message send fails.

connectionBroken is raised when message send succeded, but the connection to
the remote shell was broken before an answer could be received.

timeOut is raised if the remote shell failed to answer within the time limit specified
by timeOutValue in the active errorHandler. Default timeOutValue is to
wait for ever, specified by a timeOutValue of -1. Further bind timeOutValue
to limit the allowed waiting time. timeOut is also raised if a createShell
request did not finish within the time limit specified by timeOutValue.

serverOverload is raised if the remote shell was busy and therefore refused to
handle the request. The number of concurrently allowed requests is set by
concurrentRequestLimit in globalHandler of the remote shell.

unknownObject is raised if the remote shell did not know the object requested. This
is a consequence of the remote shell doing a withDraw on the object requested.
Thus unknownObject corresponds to the detection of a distributed dangling
reference.

dynamic chain

active
errorhandler

error propagation

controlling
propagation

error pattern

References 15

unknownPattern is raised if one of the patterns needed to unpack objects was not
present in the local or in the remote shell. If unknownPattern.local is FALSE,
some pattern needed to unpack the request was missing in the remote shell.
This means that the request has not been executed. If unknownPattern.local
is TRUE, some pattern needed to unpack the answer was missing in the local
shell, and thus the request has actually been executed in the server shell.

wrongAnswer is raised if the answer from the remote shell did not have the expected
format. This could mean that the remote shell is not the one we think it is, i.e. it
could be another process at the same port.

4.6.2. Error handling

To handle network errors, further bind the corresponding error virtual as listed
above. Within further bindings, one of the patterns ignore, continue or abort
should be called as the last action. Note that if there are imperatives following the call
to e.g. continue, they will not be executed! ignore, continue and abort are
described below.

abort: is default if the further binding of some error does not call either ignore,
continue or abort. If abort is called and not further specified, the remote
call that failed is aborted, and the shell killed. However, to prevent the calling
shell from being killed, abort can be further specified. In the further
specification, it is allowed to do a leave in the dopart. For example:

do myLabel: errorHandler
 (# connectionFailed::
 (#
 do abort (# do leave myLabel #)
 #);
 do server.op1; ...; server.opn;
 #);

To ensure proper clean up, it is not allowed to leave the dopart of an
error virtual outside the scope of an abort.

That is, the following code is not allowed. In the worst case it may lead to
segmentation faults. In the best case, a number of communication resources
may not be released properly.

do myLabel: errorHandler
 (# connectionFailed::
 (#
 do leave myLabel
 #);
 do server.op1; ...; server.opn;
 #);

ignore: Terminates the failing remote call, but pretends as if the remote call
succeded. Control flow continues after the remote call causing the error. For
example:

do errorHandler
 (# connectionFailed:: (# do ignore #);
 do server1.op1; server2.op2;
 #);

If the server.op1 remote call fails, control flow continues with the
server.op2 call. This may of course result in rather strange program
behaviour, but is the responsibility of the programmer. It makes no sense to
further specify the ignore pattern since it never calls INNER.

continue: Depending on the actual exception, retries or continues the operation that
caused the error. For example. in the case of a timeOut, continue means that
the communication subsystem will wait once again for the number of seconds
specified in the timeOutValue virtual in effect. In the case of a

abort

continue

ignore

16 Distribution

connectionFailed, connection is retried. As with ignore, it makes no sense
the further bind continue.

In order to maintain the errorHandler chain, it is not allowed to leave the dopart of
an errorHandler directly. Leaving an errorHandler must be done from inside the
dopart of a leaveHandler:

do someLabel: errorHandler
 (#
 do ...;
 leaveHandler (# do leave someLabel #)
 #);

However, from inside the error.abort pattern, the errorHandler currently
handling the error may be left directly, as was shown in the abort example above.

NOTICE: It is not allowed to leave the dopart of an errorHandler
outside the scope of a leaveHandler.

If multiple errorHandlers are left simultaneously, the leaveHandler nested inside
the outermost errorHandler in the dynamic call chain must be used. For example:

do e1: errorHandler
 (# leaveFirst: leaveHandler (# do INNER #);
 do e2: errorHandler
 (# leaveSecond: leaveHandler (# do INNER #)
 do e3: errorHandler
 (#
 do leaveFirst (# do leave e1 #);
 #)
 #)
 #);

4.7. The globalErrorHandler virtual

The globalErrorHandler is a virtual errorHandler specifying the default handling
of network errors. Further bind globalErrorHandler to specify the global
errorHandler for shellEnv. If communication exceptions are not caught by another
errorHandler they will eventually propagate to globalHandler, which is an
instance of globalErrorHandler. If the exception is not handled there, the process is
terminated by calling theShell.kill.

Additional attributes of globalErrorHandler are as follows:

concurrentRequestLimit: The maximum number of simultaneous incoming
requests to this shell that is allowed. Default (-1) corresponds to no limit. If
handling a request would result in breaking this limit, the request will be
ignored and the client side exception serverOverload raised.

workerPoolSize: Determines the size of the pool of workers to handle incoming
requests. A worker is a collection of resources needed to handle a request.
Because it is cheaper to reuse these resources than to allocate new ones, the
workerPool keeps track of unemployed workers ready for reuse. A reasonable
value for workerPoolSize is the expected mean number of requests handled
simultaneously. If a request is always executed to end without suspending
implicitly of explicitly, a single worker is adequate.

4.8. The defaultAppsDir virtual

When using ensemble.createShell to start processes, defaultAppsDir specifies
the default directory (full path) on the remote host in which the executable is expected
to be found.

The default value returned from defaultAppsDir is

 /usr/local/lib/beta/distribution/v1.2 /aps/$/

References 17

but this value may be changed in two ways:

1. Setting the BETALIB environment variable. If BETALIB is found in the
environment of the shell process, the value returned from defaultAppsDir is
$(BETALIB)/distribution/v1.2 /aps/$/.

2. By further binding defaultAppsDir and setting dir to whatever full path is
convenient:

shellEnv
(# ...
 defaultAppsDir::<
 (#
 do '/myhome/myapps/$/' -> dir[];
 #)
#)

Alternatively the directory may be changed individually on each createShell call by
further binding the ensemble.createShell.appsDir virtual.

Similar to specifying INCLUDE and BODY paths in the BETA fragment system, you
may use $ to specify machine dependent executable paths. That is, assume dir is
assigned the value /mydir/$/, and the remote host on which the new shell is to be
created is of type sun4s. Then, the execName parameter to createShell is appended
to dir, and all occurrences of $ in the resulting string is replaced by sun4s before
using the resulting text string as the full path of an executable.

4.9. The defaultScreenName virtual

Instances of shellEnv created by ensemble.createShell cannot use the standard
inputs and outputs of the process. By default standard output is redirected to
/dev/null on UNIX.

To redirect output to a file, specify a filename by further binding
defaultScreenName. Alternatively screenName may be set individually for created
shells by using the ensemble.createShell.screenName virtual. This allows the
creator to override the defaultScreenName of the shell created.

stdout as well as stderr are redirected to the file named in defaultScreenName or
in ensemble.createShell.screenName. Since output on stdout and stderr from
remotely started shells should normally be restricted to debugging output, stdout and
stderr are unbuffered in order to ensure that all output is actually written to the file
specified, and in the order the output was written to stdout respectively stderr. If a
shell is started from the commandline, defaultScreenname has no effect, since
stdout and stderr are then used without modification.

Shells started by createShell have no stdin, and is thus not allowed to read from
standard input.

4.10. The withdraw pattern

Due to the lack of distributed garbage collection, we need a way to explicitly
withdraw the possibility of remote access to objects whose reference has crossed the
shell boundary. That is, whenever a reference to a local object crosses the shell
boundary for the first time, the object reference is saved in an internal table and is
therefore never garbage collected. Calling withdraw with a local remoteable instance
whose reference has been exported deletes the object from the internal table, thereby
making it possible to garbage collect the object unless other local references exist. If a
request to a withdrawn object arrives from a client, the request will fail with the
unknownObject exception raised at the client side. This corresponds to following a
distributed dangling reference, and cannot be avoided without distributed garbage
collection.

$ expansion

stdout, stderr

stdin

distributed
garbage
collection

18 Distribution

4.11. Tracing object serializations

When performing a remote invocation, one or more objects are serialized to be sent
across the network connection. In some cases, large object graphs are serialized this
way. Currently there is no way to specify a limitation on the serialization traversal (as
is possible in the persistent store), and sometimes more objects than expected gets
serialized, leading to unexpected errors. Most often the error message resulting is
'components not handled', that is triggered when trying to pack an active object
(i.e. a component). A number of shellEnv attributes support the debugging of
problems like these. These attributes are described below.

Serialization tracing is initiated by setting the TraceSer boolean to TRUE. When this
has been done, the BeforeSer, AfterSer and AfterUnser virtuals are called as
described below:

BeforeSer is called just before an object is about to be serialized, either as a result
of being sent in a remote request, or as a result of being returned as a result
parameter. The object about to be serialized is given as parameter.

AfterSer is called when the object has been serialized.

AfterUnser is called when some object received, either as part of an incoming call,
or as part of a the result received, has been unserialized.

Remoteable instances are not actually serialized. Instead a network representation
of the corresponding object reference is sent. In case of a non-remoteable, the
object is serialized and all references it contains followed.

By further binding these virtuals, it is possible to trace what objects are serialized in
remote calls. A simple dump of an object may be achieved using the printObject
method found in ~beta/sysutils/v1.4/objinterface.bet.

5. System Dependencies
This section describes the system files and executables needed for distributed BETA
programs to work. Apart from subsection 5.1 that describes how to start the
ensembleDeamon, the rest of this section describes non-standard ways of tailoring the
distribution library. Therefore, most of this section can be skipped on first read of this
manual.

The $ sign is used to denote the actual machinetype. For example, on a Sun SPARC
running Solaris 2.x, $ should be read as sun4s.

5.1. The ensembleDeamon

In order to run any distributed BETA program, a network host must run an instance of
the ensembleDeamon executable. This deamon implements the NameServer
(ensemble.ns) functionality of the ensemble as well as being responsible for
generating world-wide unique object ID's for distributed BETA objects created on the
host on which the deamon is running.

The ensembleDeamon is installed by running the startensemble script, residing in
~beta/bin/startensemble. The ~beta/bin directory should be in the path of all
BETA users. The startensemble script simply executes the correct
ensembleDeamon executable for the current hardware and operating system platform9.

The ensembleDeamon has no network security critical responsibilities and has no
need for super user privileges. Therefore it makes no difference what user starts the

9 These executables, named "MACHINETYPE"ensembleDeamon, are located in the

~beta/distribution/v1.2 directory, and may also be executed directly.

debugging

References 19

deamon. However, like other deamons ensembleDeamon might as well be installed by
init when the operating system is bootet.

Section 11 contains a complete distributed BETA program that may be used to check
whether an ensemble is already running on some network host.

5.2. CreateShell dependencies

For the Ensemble operation createShell to work, the owner of the executing
process must have execution rights to the script

~beta/distribution/v1.2/private/external/remoteStart

and the

~beta/distribution/v1.2/private/external/$/startAsDeamon

executable on the target host. By default these executables are installed with
execution rights for everyone.

remoteStart is a simple shell script determining the current machine type before
invoking the machine specific startAsDeamon executable, which in turn executes the
shell executable as a deamon. remoteStart is executed using rsh (remsh on HP UX
platforms) on remote network hosts, or executed directly by the distributed BETA
process, in case the new shell is started on the local host. If rsh is not found in the
standard directory for the platform, the rshPath virtual described in section 5.5 can
be used to tell shellEnv about the location of the rsh executable.

5.3. The distributionDir virtual

When using ensemble.createShell to start shell processes, createShell needs to
know the location of the remoteStart script and the startAsDeamon executable on
the target host. Default location of these scripts is in a subdirectory of the directory
containing BETA distribution source files.

In the current MBS installation, remoteStart is by default placed in the
~beta/distribution/v1.2/private/external directory, which is also the
default value returned from distributionDir10.

However, when shipping applications, as described in section 5.6, it is convenient to
be able to put these system executables into another directory chosen by the
application developer.

As for defaultAppsDir, distributionDir is changed by either setting the BETALIB
environment variable, or by further binding distributionDir and assign a full path
to dir within the further binding.

5.4. The ensemblePort virtual

This release of the BETA distribution library uses TCP/IP for communication
between distributed BETA processes. However, the only system port number
"hardcoded" into the distribution library is the port number assigned to the ensemble
shell, i.e. the ensembleDeamon process started using the ~beta/bin/startensemble.

By default, the ensemble uses the port number 5188. However, in order to allow
several ensemble instances to run on the same host without conflicting, e.g. in order
to allow different groups to run BETA distribution without sharing the ensemble, this
may be changed in one of the following ways:

• Set the BETA_ENSEMBLE_PORT environment variable before starting the
distributed program that should use an alternative ensemble port number. For
example:

10 In future releases, all system executables will be placed in the

~beta/distribution/v?.?/bin directory.

remoteStart

startAsDeammon

rsh

communication
port

BETA_ENSEM-
BLE_PORT

20 Distribution

setenv BETA_ENSEMBLE_PORT 5211

Notice that this should also be done before starting the ensembleDeamon to use
the alternative port number.

Remember that the ensemble.createShell.environment virtual may be
used to set the environment of shells started using createShell.

• Alternatively, further bind the ensemblePort virtual. For example:

shellEnv
(# ensemblePort:: (# do 5211->value #);
...
#)

5.5. The rshPath virtual

Currently, ensemble.createShell depends on rsh in order to start new shells on
remote hosts. To support systems with rsh installed in a non-standard directory, the
rshPath virtual allows for the specification of the location of the rsh system
command. rshPath should be specified to the full path of rsh (remsh on HP-UX). If
rshPath is not further specified, the system default is used. Usually there should be
no need for changing the rshPath.

5.6. Shipping distributed BETA programs

As described in previous sections, distributed BETA applications rely on the presence
of the ensembleDeamon process. In addition, if using the ensemble.createShell
method, the remoteStart script and the machine specific startAsDeamon executable
must be present.

When shipping distributed BETA applications, these system scripts and executables
must therefore be shipped along. To allow remoteStart and startAsDeamon to be
located in a directory chosen by the application developer, shellEnv includes the
distributionDir virtual, making it possible to specify an alternative path.
distributionDir is described in section 5.3.

6. Further Implementation Issues
This section briefly describes the implementation of the distribution library. Only the
implementation details necessary to understand how the library should be used, are
explained.

The implementation of the BETA distribution library builds on the notion of proxy
objects. This means that references to remote objects are really references to local
objects representing the remote object, as illustrated in figure 5.

Shell 1 Shell 2

o1 o2p2

Figure 5: The proxy concept.

proxy

References 21

Proxies are automatically instantiated by the distribution library when a reference to a
remote object enters a shell for the first time. Likewise, unused proxies are
automatically garbage collected. In figure 5, the object o1 has a reference to the
remote object o2. In practice this means that o1 has a reference to a local proxy p2
representing o2. Method calls to p2 are automatically redirected to o2 by sending the
request across the network.

6.1. Proxy object types

In principle the type of a proxy object is exactly the same as the type of the object it
represents. It would be pretty impractical, however, if the current implementation
demanded this, for at least the following reasons11:

• The proxy would have the same size as the real object had before initialization.

• As dynamic linking is not currently supported12 the full code corresponding to the
implementation of a pattern would have to be linked in with every client using the
service provided by that pattern. Even with dynamic linking it would not be a
feasible solution to link in server code in the client process.

The solution used in the current release of BETA distribution is to instantiate proxy
objects as instances of the most specific pattern known to the client and that is
declared in the shellEnvLib:attributes SLOT of shellEnv. This means that all
operations to be used remotely must be declared in this SLOT, but the actual object
may be an instance of any subpattern declared where it might be appropriate.

One unfortunate side effect of the implementation described above is that virtual
entry's are not supported. This has to do with the implementation of virtual dispatch
in BETA, and is outside the scope of this manual. However, keep in mind that

Subpatterns of remoteable.entry are not allowed to be virtual.

6.2. Parameter semantics

The current release is restricted in the sense that only instances of remoteable may
be accessed remotely. This has implications for the parameter semantics of reference
parameters if the referred objects are not remoteables. The parameter semantics when
executing entry's of remote objects are described below.

Before an entry in a remoteable is executed, it is first checked whether the enclosing
remoteable is a proxy or not. If it is not, the do part of the entry is executed as in any
ordinary object invocation:

entry:
 (#
 do (if isProxy then
 <<SLOT remoteableCallremote:descriptor>>
 else INNER
 if);
 #)

If the remoteable is a proxy, a copy of the transitive closure13 of the entry to be
executed is created on the receiver side before the receiver side copy of the entry is
executed. After execution, the transitive closure of the entry is sent back and
corresponding objects updated. If the transitive closure of the entry object contains
remoteable instances, these are not copied, but instead a proxy is created on the
receiver side.

11 Note that none of these reasons are principal problems, but they are practical problems in the

current release.
12 It will be in a future MBS release.
13 I.e. the set of all objects reachable from the entry object.

22 Distribution

Below a formal description of the parameter semantics concerning non-remoteables
in the transitive closure of the entry is given. Note that the parameter semantics of
remoteables in the transitive closure are exactly as ordinary reference parameter
semantics. The semantics of other types of reference parameters are a consequence of
trying to support all kinds of parameters despite the current restrictions, and are
shown here to give an understanding of why, in most cases, it is possible to use any
kind of parameters as usual, and why it may result in unexpected behaviour in some
cases if not used with caution. The semantics are thus a compromise between on one
side supporting all kinds of parameters and on the other side preserving usual BETA
parameter semantics also in the distributed case.

Now, denote by trans(e,s,t) the set of objects reachable through object references
from the entry e in the shell s at time t. The set trans(e,s,t) is built by doing a traversal
of the object graph rooted in e, and following all references that do not reference a
remoteable instance, the BETAENV object or the singular ShellEnv object.

Let state(o,t) denote the state of the object o at time t. Furthermore, define the relation
∝ (read is the cause of) by

a ∝ b ⇔ b was created as a copy of a

The parameter semantics operates with four sets of objects. Below e denotes the entry
object about to be executed at the sender side. Note that object state as denoted by
state only changes during execution of the entry e´.

A: The transitive closure of e immediately after assignment of the enter parameters:

A = trans(e,sender,before)

B: The receiver side copy of the set A before the receiver side copy of the entry e, e´,
is executed.

B = trans(e′ ,receiver ,before) ∧ e ∝ e′
C: The transitive closure of e´ at the receiver side after it has been executed:

C = trans(e′ , receiver,after) ∧ e ∝ e′
D: The transitive closure of e at the sender side after execution:

D = trans(e,sender, after)

Now, the parameter semantics are described by the following FOPL formulas:

1. The set B contains copies of all objects in the set A:

(∀o ∈A.∃ ′ o ∈ B.(o ∝ o' ∧state(o,before) = state(′ o , before))) ∧ A = B

2. The set D contains copies of all objects in C. Objects in D are either members of
A (as is the entry e), or they are copies of objects in C that are not in B. (⊕ is
exclusive or.)

∀o ∈C.∃ ′ o ∈ D.state(′ o ,after) = state(o,after) ∧ ((′ o ∈ A ∧ ′ o ∝ o) ⊕ (o ∉ B ∧ o ∝ ′ o))

∧
C = D

The semantics described above have at least the following implications:

• Reference parameters referring to non-remoteables have approximately Ada-like
in/out semantics. The object referred is copied before execution of the entry, and,
assuming that it is still in the transitive closure of the entry, updated from the copy
after execution.

• If wanted, the parameter mechanism may be used to transfer deep copies of any
kind of object between different shells. The notion of deep object copying may be
useful, but is orthogonal to distribution. In future versions of BETA distribution,

In/Out semantics

Deep Copying

References 23

the parameter semantics described above will hopefully be obsolete by removing
the restriction that only remoteable instances may be accessed remotely. Instead
direct support for object copying may be provided, but not as part of the
distribution library. Instead future versions of distribution will support the notion
of object movement between different shells.

• The serialization traversal stops when a remoteable, the BETAENV object or the
shellEnv object is met.

6.3. Non-preemptive scheduling

The scheduler implemented by systemEnv is non-preemptive, and as a consequence
control is only transferred between coroutines when an explicit or implicit suspend is
executed. Implicit suspend may be done when executing semaphore P operations,
when calling submethods of systemenv.monitor.entry, on execution of
systemEnv.pause and on communication with remote shells through submethods of
remoteable.entry. When this happens, another coroutine may be attached to
execute until it suspends implicitly or explicitly.

If any coroutine makes blocking system calls, this will block all coroutines, as the
BETA process is seen as a single process from the operating system.

6.4. Communication layer implementation

The current implementation of the distribution library uses TCP/IP for
communication between shells. On first communication between two shells, a socket
connection is established, and this connection is reused for future communications.

The socket connections opened may be closed in response to one of the following
conditions:

• An error occurs on the connection, leading to the conclusion that the connection is
not sound anymore. In most situations this occurs when trying to communicate
with a dead shell process.

• No more file descriptors are available in the current process. In that case the least
recently used connection is closed down to make it possible to open a new
connection to some other shell. The closed connection may be reopened if it is
later needed.

• The connection is to an ensemble. Since any distributed BETA program that
exports object references need to communicate with the ensemble, it is expected
that the ensemble will communicate with a large number of processes during its
lifetime. Thus, the ensemble automatically closes down connections that have not
been used for some time.

7. Distribution and X libraries
Since shellEnv is based on systemEnv, and systemEnv is capable of cooperating
with the X user interface libraries, this of course goes for shellEnv too. However,
notice that e.g. xshell.bet must be used as origin for programs combining X and
distribution (see section 4.1).

One minor catch should be noted when combining X and shellEnv. Consider the
skeleton program below combining motifenv with shellEnv.

Serialization
limits

24 Distribution

ORIGIN '~beta/distribution/v1.2/xshell';
INCLUDE '~beta/Xt/v1.9/motifenv';
--- program:descriptor ---
shellEnv
(# setWindowEnv::
 (# do myWindowEnv[]->theWindowEnv[] #);
 myWindowEnv: @motifEnv
 (# ...
 do <<Initialize myWindowEnv>>
 #);
 shellType:: (# ... #)
 ...
#)

The setWindowEnv virtual and theWindowEnv reference are declared in
basicsystemenv. myWindowEnv does not have to be a motifenv instance as long as it
is at least an xtenv instance. (one of awenv, motifenv or xtenv).

And now for the catch: The do-part of myWindowEnv is executed by systemEnv as
soon as it has finished initialisation. Unfortunately this means that shellEnv has not
yet been properly initialized. To avoid problems, the do-part of myWindowEnv should
be empty, and initialisation should be done by an explicit init method called when
shellEnv has been properly initialised:

ORIGIN '~beta/distribution/v1.2/xshell';
INCLUDE '~beta/Xt/v1.9/motifenv';
--- program:descriptor ---
shellEnv
(# setWindowEnv::
 (# do myWindowEnv[]->theWindowEnv[] #);
 myWindowEnv: @motifEnv
 (# ...
 init:
 (#
 do <<Initialize myWindowEnv>>
 #);
 do (* Nothing *)
 #);
 shellType:: (# ... #)
do myWindowEnv.init;...
#)

This problem will be solved in future releases of systemEnv.

8. Restrictions
The following restrictions should be kept in mind when writing distributed BETA
programs based on version 1.2 of the distribution library. They have all been
described in details in previous sections.

• Only remoteables can be accessed remotely.

• The public (remotely accessible) part of remoteable patterns must be declared in
shellEnvLib:attributes SLOT of shellEnv.

• Parameters to remoteable entry's must be attributes of the entry object and not
attributes of e.g. the remoteable that is the static father of the entry.

• Remoteable entries should not be virtual. If they are, the patterns of the real
object must be linked with the client and should be declared in the
shellEnvLib:attributes SLOT of shellEnv.

• As there is no support for dynamic linking, objects transferred between shells (see
section 6.2) must be instances of patterns known to both shells, i.e. the patterns

References 25

must be linked into both shells. If they are not, an unknownPattern exception
will result.

9. Interface Description for the
basicshell library

ORIGIN '~beta/basiclib/v1.5/basicsystemenv';
(*
 * $RCSfile: basicshell.bet,v $
 * $Revision: 1.5 $
 * $Date: 1996/06/21 10:49:48 $
 *
 * COPYRIGHT
 * Copyright Mjolner Informatics, 1992-96
 * All rights reserved.
 *
 * Use xshell or shell as origin for distributed BETA programs.
 *)
BODY 'private/shellBody';

INCLUDE '~beta/objectserver/v2.4/ObjectSerializer';
INCLUDE '~beta/sysutils/v1.5/envstring';
INCLUDE '~beta/process/v1.5/commAddress';
INCLUDE 'private/rpc_interface';

--- lib:attributes ---

(* GETSHELLENV
 * ===========
 *
 * Returns the unique shellEnv instance running. *)

getShellEnv:
 (# theShellEnv: ^shellEnv;
 do shellEnv## -> objectPool.strucGet
 (# init::<
 (#
 do ...
 #)#) -> theShellEnv[];
 exit theShellEnv[]
 #);

(* SHELLENV
 * ========
 *
 * When making distributed BETA programs,
 * the "program:descriptor" SLOT
 * in betaenv must be filled with a subpattern of shellEnv.
 * This is also
 * the only instance of shellEnv allowed. *)

shellEnv: systemenv
 (#

 (* SHELLTYPE
 * =========
 *
 * Furtherbind to specify the kind of Shell. *)

 shellType:< Shell;
 theShell: @shellType;

26 Distribution

 (* SHELLENVLIB
 * ===========
 *
 * Pattern definitions used as interfaces to remote
 * objects must be declared in the shellEnvLib SLOT.
 *
 * References to objects being instances of subpatterns
 * of these patterns may be exported for remote access
 * without being declared in this attribute slot, but at
 * least the superpattern containing the entrys to be called
 * remotely should be declared in ShellEnvLib, to make them
 * visible in the client. *)

 <<SLOT shellEnvLib:attributes>>;

 (* REMOTEABLE
 * ==========
 *
 * Superpattern of all objects that may be accessed remotely.
 *
 * Methods to be called remotely must be non-virtual and be
 * subpatterns of entry.
 *
 * ping returns true if the object is currently accessible and
 * false otherwise. *)

 remoteable:
 (# entry:
 (#
 do (if isProxy //true then
 ...
 else INNER
 if);
 #);

 ping: booleanValue (# do ... #);

 (* private:
 * ======== *)

 ri: ^remoteInfo;
 isProxy: @Boolean;

 <<SLOT remoteablePrivateEntries:attributes>>;

 do INNER
 #);

 (* SHELL
 * =====
 *
 * Pattern describing executables whose instances are processes.
 * Shells should only be instantiated through
 * ensemble.createShell
 * or started from the commandline.
 *
 * myEnsemble is a reference to the ensemble on which this shell
 * is running.
 *
 * kill kills the corresponding process. The onKill virtual is
 * called before killing the process.
 *
 * The INNER part of a shell has to pause once in a while for
 * shellEnv to be able to handle incoming requests.
 * This is due to the non-preemptive multitasking used.

References 27

 *
 * Even if INNER terminates, the process will not terminate
 * before kill has been called.
 * (Of course nasty signals may do the job.) *)

 shell: remoteAble
 (#
 myEnsemble: ^ensemble;
 onKill:< Object;

 kill: (# do ... #);

 ShellPrivate: @...;

 <<SLOT shellPrivateEntries:attributes>>;

 do INNER;
 #);

 (* NAMESERVER
 * ==========
 *
 * Performs mapping between logical object names and object
 * references. Subpatterns may perform this mapping differently.
 *
 * put saves an object reference under the name given.
 * The overWrite virtual is called if an object of that name is
 * already registered.
 * If overWrite returns true, the existing (name,objectref) pair
 * is overwritten with the new one.
 *
 * get looks for an object with the given name and type. If no
 * matching object is found, notFound is called.
 * If an object with
 * the right name, but wrong type is found, quaError is raised.
 *
 * remove undoes put.
 *
 * NameServer is a remoteAble, but all public operations does
 * some work locally before calling remote. *)

 NameServer: remoteAble
 (#
 elementType:< RemoteAble;

 put:<
 (# overWrite:< BooleanValue;
 name: ^Text; obj: ^elementType;
 enter (obj[], name[])
 do INNER
 #);

 get:<
 (# notFound:< Notification;
 quaError:< Exception;
 name: ^Text; type: ##object;
 obj: ^elementType;
 enter (type##, name[])
 do INNER
 exit obj[]
 #);

 remove:<
 (# notFound:< Notification;
 name: ^Text;
 enter name[]

28 Distribution

 do INNER
 #);

 <<SLOT NameServerAttributes:attributes>>;

 do INNER
 #);

 (* ENSEMBLE
 * ========
 *
 * A representation of network hosts.
 *
 * hostname is the hostname of the host represented.
 * (surprise surprise)
 *
 * createShell allows creation of shells on the host represented.
 *
 * The executable name without path is given by the "execName"
 * parameter, and the expected type of the shell created by
 * "instances"
 * of this executable is given by the "shellType" parameter.
 *
 * appsDir is the directory where executables are expected to
 * be found.
 * You should also check the description of the
 * "shellEnv.defaultAppsDir" virtual.
 *
 * screenName names the redirection file for screen output from
 * the new
 * shell. If screenName is not furtherbound, screen output is
 * redirected
 * to the file specified in the shellEnv of the shell created.
 *
 * The execNotFound exception is raised if the executable could
 * not
 * be found.
 *
 * processCreationFailed is raised if the process could not be
 * created.
 *
 * typeError is raised if the shell created does not have the
 * expected type.
 *
 * Other kinds of errors raises the unknownError exception.
 *
 * Furtherbind environment and call addEnvVar for each
 * environment
 * variable to be added to the environment of the new shell.
 *
 * Furtherbind parameters and call addParam for each command
 * line parameter to be given to the new shell.
 *
 * ns is a NameServer with default knowledge of the ensembles in
 * the distributed environment. It is therefore possible to
 * lookup
 * other ensembles using ns. Apart from this, ns provides a flat
 * namespace in which objects may be saved and retrieved using
 * ns.put
 * and ns.get. ns.scanNames may be used to iterate over the names
 * explicitly registered in the ensemble using ns.get.
 *
 * do NOT CREATE INSTANCES OF ENSEMBLE ON YOUR OWN!!. *)

 Ensemble: shell
 (# hostName: ^Text;

References 29

 createShell:
 (# appsDir:<
 (# dir: ^Text
 do defaultAppsDir -> dir[];
 INNER;
 exit dir[]
 #);

 screenName:<
 (# name: ^Text;
 do INNER
 exit name[]
 #);

 environment:<
 (# addEnvVar:
 (# name, value: ^Text;
 enter (name[],value[])
 do ...
 #);
 (* private: *) env: ^Text; envCount: @Integer;
 do INNER
 exit (env[],envCount)
 #);

 parameters:<
 (# addParam:
 (# value: ^Text;
 enter value[]
 do ...
 #);
 (* private: *)
 params: ^Text; paramCount: @Integer;
 do INNER;
 exit (params[],paramCount)
 #);

 execNotFound:< Exception
 (#
 do INNER; ...
 #);

 processCreationFailed:< Exception
 (#
 do INNER; ...
 if);
 #);

 typeError:< Exception
 (#
 do INNER ...
 if);
 #);

 unknownError:< Exception
 (#
 do INNER; ...
 #);

 shellType: ##Shell;
 execName: ^Text;
 sh: ^Shell;
 enter (shellType##,execName[])
 do ...
 exit sh[]

30 Distribution

 #);

 ns: @NameServer
 (# put:: (# do ... #);
 get:: (# do ... #);
 remove:: (# do ... #);
 scanNames:
 (# current: ^Text;
 do ...
 #);
 #);

 (* private:
 * ======== *)

 <<SLOT ensembleAttributes:attributes>>;

 ensemblePrivate: @...;
 #);

 (* ERRORHANDLER
 * ============
 *
 * The "error" pattern is an abstract super pattern for all
 * communication
 * exception virtuals. The virtual subpatterns of error thus
 * corresponds
 * to different kinds of network errors.
 *
 * When an errorHandler exception is raised that is not
 * further specified, the exception is automatically propagated
 * to the
 * previous handler in the dynamic call chain. This chain of
 * errorHandlers
 * is built by pushing an errorHandler onto the front of the
 * chain when
 * the errorHandler is entered. The propagation of an exception
 * continues
 * until either some handler catches the exception (by further
 * binding the corresponding errorHandler virtual), or until
 * the globalHandler is reached. If even the globalHandler does
 * not
 * catch the error, default action is to kill the current shell
 * process.
 * By default each coroutine has its own dynamic errorhandler
 * chain.
 * If the top of this chain is reached, control is passed to the
 * global
 * handler, and not, for example, to the handler chain of the
 * coroutine
 * that forked the active coroutine.
 * If the entered errorHandler (prevHandler) is not NONE, it will
 * be
 * used as the previous handler instead of the currently active
 * errorHandler. This may be used to transfer errors between
 * different
 * coroutines.
 *
 * To gracefully handle network errors, further bind the
 * corresponding
 * error virtual. Within further bindings, one of the nested
 * patterns
 * "ignore", "continue" or "abort" should be called as the last
 * action of
 * the errorHandler. Note that if there are imperatives following
 * the

References 31

 * call to e.g. "continue", these imperatives will not be
 * executed!
 *
 * abort: DEFAULT!! If abort is called and not further
 * specified,
 * the remote call that failed is aborted, and the
 * shell killed. However, to prevent the shell from
 * being killed, it is allowed to further specify
 * the abort, and do a "leave someLabel" inside the
 * further specification.
 * For example:
 *
 * do myLabel: errorHandler
 * (# connectionFailed::
 * (# do abort (# do leave myLabel #)#);
 * do server.op1;
 * ...
 * server.opn;
 * #);
 *
 * IT IS NOT ALLOWED TO LEAVE AN ERROR VIRTUAL
 * OUTSIDE
 * THE SCOPE OF AN ABORT INSTANCE!!!
 *
 *
 * ignore: Abort the failing remote call, but pretend as if
 * the
 * remote call succeded. Control flow continues
 * after the
 * remote call causing the error.
 * For example:
 *
 * do errorHandler
 * (# connectionFailed:: (# do ignore #);
 * do server1.op1;
 * ign: server2.op2;
 * ...
 * #);
 *
 * If the "server.op1" remote call fails, control
 * flow
 * continues at the "ign:" label. This may of course
 * result
 * in rather strange program behaviour. It makes no
 * sense to
 * further specify the ignore pattern since it never
 * calls
 * INNER.
 *
 * continue: Retry or continue the operation that caused the
 * error.
 * Fx. in the case of a timeout, continue means
 * that the
 * communication subsystem will wait once again
 * for the
 * number of seconds specified in the timeOutValue
 * virtual in effect.
 *
 * The network errors handled by the errorHandler virtuals are
 * described below.
 *
 * connectionFailed is raised when we fail to send a message to a
 * remote shell.
 *
 * connectionBroken is raised when message send succeded, but the
 * connection to the remote shell was broken before an answer

32 Distribution

 * could be received.
 *
 * timeOut is raised if the remote shell failed to answer within
 * the time limit specified by timeOutValue. Default timeOutValue
 * is to wait for ever for answer when doing remote calls.
 * Furtherbind to limit the allowed waitingtime.
 *
 * serverOverload is raised if the remote shell was busy and
 * therefore
 * refused to handle the request. The number of concurrently
 * allowed
 * requests is set by globalErrorHandler.concurrentRequestLimit.
 *
 * unknownObject is raised if the remote shell did not know the
 * object
 * requested. This is a consequence of the remote shell doing a
 * withDraw on the object requested. Thus unknownObject
 * corresponds
 * to detection of a distributed dangling reference.
 *
 * unknownPattern is raised if one of the objects sent to the
 * remote
 * host was an instance of a pattern unknown there (local=FALSE),
 * or if
 * the pattern of a returned object was not known locally
 * (local=TRUE).
 * In the case of unknown pattern it makes no sense to retry the
 * request.
 *
 * wrongAnswer is raised if the answer from the remote shell does
 * not have the expected format. This could mean that the remote
 * shell is not the one we think it is, i.e. it could be another
 * process at the same port.
 *
 * NOTICE!! It is not allowed to do a "leave" from within the
 * dopart of an
 * errorHandler. If it is necessary to leave the scope of an
 * errorHandler,
 * use the "leaveHandler" pattern as follows:
 *
 * do someLabel: errorHandler
 * (#
 * do ...;
 * leaveHandler (# do leave someLabel #)
 * #);
 *
 * If multiple errorHandlers are left this way, use the
 * leaveHandler
 * nested inside the outermost errorHandler in the dynamic call
 * chain. *)

 errorHandler:
 (#
 <<SLOT errorHandlerLib:attributes>>;

 (* ERROR
 * =====
 *
 * is the abstract super pattern of all network related
exceptions.
 *)

 error:
 (# <<SLOT errorHandlerErrorLib:attributes>>;

 abort: failureAction

References 33

 (# ... #);
 continue: failureAction
 (# ... #);
 ignore: failureAction
 (# ... #);

 theObj: ^remoteAble;
 theEntry: ^theObj.entry;
 cleanup: ^EH_cleanup;

 enter (theObj[], theEntry[], cleanup[])
 do INNER
 #);

 (* NETWORK EXCEPTIONS
 * ================== *)

 connectionFailed:< E_failed;
 connectionBroken:< E_broken;
 unknownObject:< E_unknownObj;
 unknownPattern:< E_unknownPat;
 timeOut:< E_timeOut;
 serverOverLoad:< E_overload;
 wrongAnswer:< E_answer;

 (* TIMEOUTVALUE
 * ============
 *
 * Further bind and set "sec" in order to change the default
 * "wait for ever" policy. *)

 timeOutValue:< V_timeOut;

 V_timeOut: (# sec: @Integer
 do ...
 exit sec
 #);

 E_failed: error (# do ... #);
 E_broken: error (# do ... #);
 E_timeOut: error (# do ... #);
 E_overload: error (# do ... #);
 E_answer: error (# do ... #);
 E_unknownObj: error (# do ... #);
 E_unknownPat: error
 (# local: @Boolean
 enter local
 do ...
 #);

 (* PRIVATE!!
 * ========= *)

 failureAction:
 (# callInner: @Boolean
 do INNER
 #);

 EH_cleanup:
 (# todo : @Integer;
 fa: ^failureAction;
 enter (todo ,fa[])
 do INNER
 #);

 prevHandler: ^errorHandler;

34 Distribution

 enterHandler: @...;
 leaveHandler: (# ... #);

 enter prevHandler[]
 do enterHandler; INNER; leaveHandler;
 #);

 (* GLOBALERRORHANDLER
 * ==================
 *
 * Furtherbind globalErrorHandler to specify a global
 * errorHandler.
 *
 * concurrentRequestLimit is the maximum number of simultaneous
 * requests this shell will allow. -1 means no limit. If handling
 * a request would result in breaking this limit, the request
 * will
 * be ignored and the client-side exception overLoadError will be
 * raised.
 *
 * workerPoolSize determines the size of the pool of workers to
 * handle incoming requests. A worker is a collection of
 * resources
 * needed to handle a request. Because it is cheaper to reuse
 * these
 * resources than to allocate new ones, the workerPool keeps
 * track of unemployed workers ready for reuse. A reasonable
 * value for
 * workerPoolSize is probably the expected mean number of
 * requests
 * handled simultaneously. If a request is always executed to end
 * without suspending implicitly of explicitly, a single worker
 * is adequate. *)

 globalErrorHandler:< errorHandler
 (# concurrentRequestLimit:< IntegerValue
 (# do -1 -> value; INNER #);
 workerPoolSize:< IntegerValue
 (# do 5 -> value; INNER #);
 #);
 globalHandler: @globalErrorHandler;

 (* DEFAULTAPPSDIR
 * ==============
 *
 * When using ensemble.createShell to start processes,
 * this is the default directory on the remote host in
 * which the executable is expected to be found. The default
 * may be overridden using this virtual. Alternatively the
 * directory may be changed individually on each createShell
 * call by furtherbinding the ensemble.createShell.appsDir
 * virtual.
 *
 * As is the case when specifying INCLUDE and BODY paths in the
 * BETA fragment system, you may use '$' to specify machine
 * dependent executable paths. That is, assume "dir" is assigned
 * the
 * value '/mydir/$/', and the remote host on which the new shell
 * is to
 * be created is of type 'sun4s'. Then, the "execName" parameter
 * to
 * createShell is appended to "dir", and all occurrences of '$'
 * in the
 * resulting string then replaced by 'sun4s' before it is used as
 * the full path of an executable.
 *

References 35

 * By default, the defaultAppsDir directory is
 *
 * '/usr/local/lib/beta/distribution/v1.2/aps/$/'
 *
 * but this may be changed either by the environment variable
 * BETALIB, having default value
 *
 * '/usr/local/lib/beta/'
 *
 * or by furtherbinding the defaultAppsDir virtual and assigning
 * to "dir". *)

 defaultAppsDir:<
 (# dir: ^Text
 do '$(BETALIB)' -> expandEnvVar
 (# defaultValue::<
 (# do '/usr/local/lib/beta/' -> envvarvalue[] #);
 #) -> dir[];
 (if dir.length -> dir.inxGet // '/' then else
 '/' -> dir.append;
 if);
 'distribution/v1.2/aps/$/' -> dir.append;
 INNER;
 exit dir[]
 #);

 (* DEFAULTSCREENNAME
 * =================
 *
 * ShellEnv instances created by ensemble.createShell cannot
 * use the standard outputs of the process.
 *
 * To redirect output you may specify the name of a file by
 * furtherbinding defaultScreenName. If you miss to do so,
 * output from remotely started shells is put into /dev/null.
 * Alternatively screenName may be set individually for created
 * shells by using the ensemble.createShell.screenName virtual.
 * This allows the creator to override the defaultScreenName of
 * the shell created.
 *
 * stdout as well as stderr are redirected to the file named in
 * defaultScreenName or in ensemble.createShell.screenName.
 * Since output on stdout and stderr from remotely started shells
 * should normally be restricted to debugging output, stdout
 * and stderr are unbuffered in order to ensure that all output
 * is actually written to the file specified, and in the order
 * the output was written to stdout respectively stderr.
 *
 * If this shell is started from the commandline,
 * defaultScreenname
 * has no effect, since stdout and stderr are then used without
 * modification. *)

 defaultScreenName:<
 (# name: ^Text;
 do INNER
 exit name[]
 #);

 (* DISTRIBUTIONDIR
 * ===============
 *
 * When using ensemble.createShell to start processes,
 * createShell
 * needs to know the location of certain scripts. The default
 * location of these scripts is in a subdirectory of the

36 Distribution

 * directory containing BETA distribution source files.
 *
 * By default the distribution directory is
 *
 * '~beta/distribution/v1.2/private/external'
 *
 * where ~beta is found by inspecting the BETALIB environment
 * variable. (Default value for BETALIB is
 * '/usr/local/lib/beta').
 *
 * On order of increasing priority, the default may be changed in
 * one of the following ways:
 *
 * 1. Further binding the distributionDir virtual and assigning
 * to
 * "dir".
 * 2. Setting the BETA_DISTRIBUTIONDIR environment variable. *)

 distributionDir:<
 (# dir: ^Text;
 do '$(BETA_DISTRIBUTIONDIR)'->expandEnvVar
 (# defaultValue::
 (#
 do (* BETA_DISTRIBUTIONDIR not set.
 * If distributionDir is not
 * further bound, use default. *)
 INNER distributionDir;
 (if dir[]=NONE then
 '$(BETALIB)'->expandEnvVar
 (# defaultValue::
 (# do '/usr/local/lib/beta/'
 -> envvarvalue[] #)
 #)->dir[];
 (if (dir.length->dir.inxGet)<>'/' then
 '/'->dir.append
 if);
 'distribution/v1.2/private/external/'
 -> dir.append;
 if);
 dir[]->envVarValue[];
 #)
 #)->dir[];
 (if (dir.length->dir.inxGet)<>'/' then '/'->dir.append if);
 exit dir[]
 #);

 (* ENSEMBLEPORT
 * ============
 *
 * This release of the BETA distribution library uses TCP/IP for
 * all
 * communication between distributed BETA processes. The only
 * system
 * port number hardcoded into the distribution library is the
 * port number
 * assigned to the ensemble shell (the "ensembleDeamon" program
 * started
 * on the local host using the "~beta/bin/startensemble" script).
 *
 * By default, the ensemble uses the port number 5190. However,
 * in order to allow several ensemble instances to run on the
 * same host without conflicting, e.g. in order to allow
 * different groups to run BETA distribution without sharing the
 * ensemble, this may be changed in one of the following ways:
 *
 * 1. Set the BETA_ENSEMBLE_PORT environment variable before

References 37

 * starting the distributed program supposed to use an
 * alternative port number. For example:
 *
 * setenv BETA_ENSEMBLE_PORT 5211
 *
 * Note that this should be done before starting the
 * ensemble to
 * use the alternative portnumber. Remember that the
 * ensemble.createShell.environment virtual may be used to
 * set the
 * environment of shells started from other shells.
 *
 * 2. Furtherbind the ensemblePort virtual found below.
 * For example:
 *
 * --- program:descriptor ---
 * shellEnv
 * (# ...
 * ensemblePort::< (# do 5211 -> value #);
 * ...
 * #)
 *)

 ensemblePort:< IntegerValue
 (# valueAsText: ^Text;
 do '$(BETA_ENSEMBLE_PORT)' -> expandEnvVar
 (# defaultValue::< (# do '5190' -> envvarvalue[] #)#);
 -> valueAsText[];
 valueAsText.reset;
 valueAsText.getInt -> value;
 INNER;
 #);

 (* RSHPATH
 * =======
 *
 * Currently ensemble.createShell depends on "rsh" in order to
 * start new shells on remote hosts. In order to support systems
 * with rsh
 * installed in a non-standard directory, this virtual allows for
 * the specification of the location of the rsh system command.
 * rshpath should be specified to the full path of the "rsh"
 * ("remsh" on HP UX) system command. If rshpath is not further
 * specified, the system default is used. Usually there should be
 * no need for changing the rshpath. *)

 rshPath:<
 (# path: ^Text;
 do INNER
 exit path[]
 #);

 (* USERNAME
 * ========
 *
 * Returns username of process owner. *)

 userName: @
 (# t: ^Text;
 do (if t[] //NONE then ... if)
 exit t[]
 #);

 (* WITHDRAW
 * ========
 *

38 Distribution

 * Due to the lack of distributed garbage collection, we need a
 * way
 * to explicitly withdraw the possibility of remote access to
 * objects
 * whose reference has crossed the shell boundary. Whenever that
 * happens,
 * the object reference is saved in an internal table and is
 * therefore
 * never garbage collected. Calling withdraw with a local object
 * whose
 * reference has been exported deletes the object from the
 * internal
 * table, thereby making it possible to garbage collect the
 * object unless
 * other local references exists. If a request to a withdrawn
 * object
 * arrives from a client, it will fail with an 'unknownObject'
 * exception.
 * This corresponds to following a distributed dangling
 * reference, and
 * there is no way to avoid this without distributed garbage
 * collection.
 *
 * Proxy objects are garbage collected automatically as is any
 * ordinary
 * object.
 *)

 withDraw:
 (# ra: ^remoteAble
 enter ra[]
 do ...
 #);

 (* TRACING OBJECT SERIALIZATIONS
 * =============================
 *
 * When performing a remote invocation, one or more objects are
 * serialized (marshalled) to be sent across the network
 * connection.
 * In some cases large object graphs are serialized this way.
 * Currently
 * there is no way of specifying a limitation on this
 * serialization
 * traversal (as is possible in the persistent store), and
 * sometimes
 * more objects than expected gets serialized, leading to
 * unexpected
 * errors. Most often the error message resulting is "components
 * not
 * handled", which is triggered when trying to serialize an
 * active
 * object. To debug problems like these, a number of patterns are
 * offered
 * below.
 *
 * Tracing is initiated by setting the "TraceSer" boolean
 * to TRUE. When
 * this has been done, the "BeforeSer", "AfterSer"
 * and "AfterUnser"
 * virtuals are called as described below:
 *
 * BeforeSer is called just before an object is about to be
 * serialized, either as a result of being sent in a remote
 * request, or
 * as a result of being returned as a result parameter.

References 39

 *
 * AfterSer is called when the object has been serialized.
 *
 * AfterUnser is called when some object received, either as
 * part of
 * an incoming call, or as part of a the result received,
 * has been
 * unserialized.
 *
 * Remoteable instances are not actually serialized. Instead
 * a network
 * representation of the corresponding object reference is sent.
 * In case
 * of a non-remoteable, the object is serialized and all
 * references it
 * contains followed. *)

 TraceSer: @Boolean;

 BeforeSer:<
 (# o: ^Object
 enter o[]
 do INNER
 #);
 AfterSer:<
 (# o: ^Object
 enter o[]
 do INNER
 #);
 AfterUnser:<
 (# o: ^Object
 enter o[]
 do INNER
 #);

 (* EVERYTHING BELOW IS PRIVATE!
 * ============================ *)

 senvPriv: @...;

 (* REMOTEABLETYPE
 * ==============
 *
 * The remoteAbleType is a network representation of remoteAble
 * subpatterns. The type represented includes the part of the
 * superpattern chain having origin in shellEnv, excluding
 * remoteAble as this is the basepattern for all patterns
 * represented.
 *
 * groupNames are the names of the groups corresponding to
 * groups.
 * The path of the groupNames are not included. Instead a check
 * is made
 * at startup time, that no two groups in the executable have the
 * same
 * name, as this cannot be allowed. The reason for this is to
 * avoid the
 * usual problems with pathnames, but it means that no two
 * program files
 * can have the same name.
 *
 * groups are the indices in the local execGroupTable
 * corresponding to
 * groupNames. If a groupName does not exist in the local
 * execGroupTable,
 * group will be -1.

40 Distribution

 *
 * protos are the indices of prototypes in the groups.
 *
 * bestKnown is the most specific superpattern of the represented
 * type
 * that is known to the local shell and that has origin in
 * shellEnv.
 *
 * remoteAbleType instances are created by typeAllocator in
 * shellBody. *)

 remoteAbleType:
 (# groupNames: [1]^Text;
 groups: [1]@Integer;
 protos: [1]@Integer;
 last: @Integer;

 bestKnown: ##remoteAble;
 #);

 (* REMOTEINFO
 * ==========
 *
 * A specialization of ObjectTableElement containing address
 * information on the corresponding object ra.
 *
 * shellOID is the OID of the shell containing ra.
 *
 * shellAdr is the network address of the shell containing ra.
 *
 * netType is the network representation of the type of ra.
 *
 * ensembleAdr is the network address of the ensemble where
 * a remoteAble exists. ensembleName is the name of the ensemble.
 *
 * ensembleAdr and ensembleName are NONE unless the remoteInfo
 * corresponds to a shell or an ensemble. *)

 remoteInfo: ObjectTableElement
 (# shellOID: @OIDtype;
 shellAdr: ^portablePortAddress;
 netType: ^remoteAbleType;
 ensembleAdrAsText: ^Text;
 ensembleName: ^Text;
 enter
 (shellOID,shellAdr[],netType[],ensembleAdrAsText[],ensembleName[])
 exit
 (shellOID,shellAdr[],netType[],ensembleAdrAsText[],ensembleName[])
 #);

 initBeforeScheduler::<
 (#
 do ...
 #);

 isEnsemble:< BooleanValue;

 do ...;
 INNER;
 #);

References 41

10. Interface Description for the
RemoteRefAsText library

ORIGIN 'basicshell';
BODY 'private/remoteRefAsTextBody';

--- shellEnvLib:attributes ---

(* REFASTEXT
 * =========
 *
 * Converts a remoteable reference into a text.
 * The text may later be converted into a reference
 * using refFromText.
 *
 * If the remoteble given as parameter does not already
 * have a globally unique OID, one is assigned. *)

refAsText:
 (# r: ^remoteable; t: ^Text;
 enter r[]
 do ...
 exit t[]
 #);

(* REFFROMTEXT
 * ===========
 *
 * Converts a text earlier created by refAsText back into the
 * original object reference. Doing so involves communication
 * with the Shell containing the object in order to obtain type
 * information. *)

refFromText:
 (# t: ^Text; r: ^remoteable;
 enter t[]
 do ...
 exit r[]
 #)

42 Distribution

11. pingEnsemble.bet example
program

(* pingEnsemble.bet
 * ================
 *
 * This program may be used to check whether an ensemble
 * is already running.
 *
 * Execute as:
 * pingEnsemble <ensembleName>
 * where <ensembleName> is the name of the network host
 * on which to check for ensemble presence. *)

ORIGIN '~beta/distribution/v1.2/shell';
--- program:descriptor ---
shellEnv
(# shellType::
 (# ensembleName: ^Text;
 do (if NoOfArguments = 2 then
 'Usage: pingEnsemble <ensembleName>'->putLine;
 kill;
 if);
 1 -> arguments -> ensembleName[];
 (ensembleName[], ensemble##)
 -> myEnsemble.ns.get
 -> ensemble[];
 (if ensemble[] = NONE then
 'Network host ' -> putText;
 ensembleName[] -> putText;
 ' not found.' -> putLine;
 kill;
 if);
 (if ensemble.ping then
 'Ok.ensembleDeamon found on ' -> putText;
 ensembleName[] -> putLine;
 else
 'No ensembleDeamon on ' -> putText;
 ensembleName[] -> putLine;
 if);
 kill;
 #);
#)

43

References

[Brandt 93] Søren Brandt, Ole Lehrmann Madsen: Object-Oriented
Distributed Programming in BETA. In Lecture Notes In
Computer Science, LNCS 791, Springer-Verlag 1994.

[Madsen 93] O. L. Madsen, B. Møller-Pedersen, K. Nygaard: Object-
Oriented Programming in the BETA Programming Lan-
guage, Addison-Wesley, 1993, ISBN 0-201-62430-3

[MIA 90-8] Mjølner Informatics: The Mjølner BETA System: Basic Li-
braries, Reference Manual, Mjølner Informatics Report
MIA 90-8

[MIA 91-20] Mjølner Informatics: The Mjølner BETA System – Persis-
tent Store, MjølnerInformatics Report MIA 91-20.

[Brandt 94] Søren Brandt: Implementing Shared and Persistent
Objects in BETA. Progress Report. Technical Report.
Computer Science Department, Aarhus University.

Index

The entries in the index with italic pagenumbers are the identifiers defined in
the public interface of the libraries:

The minor level entries refer to identifiers defined local to the identifier of the
major level entry. For those index entries referring to patterns with super- or
subpatterns within the library, these patterns are specified in special sections of
the minor level index for that identifier.

Entries with plain pagenumbers refer to the text of this manual.

!

!!!Externally defined
. IntegerValue

. . !subpatterns
. . . ensemblePort37

. ObjectTableElement
. . !subpatterns

. . . remoteInfo............................40
. remoteAble

. . !subpatterns
. . . NameServer..........................27
. . . shell27

A

abort
AfterSer..39
AfterSer..18
AfterUnser ..39
AfterUnser ..18
appsDir...12

B

BeforeSer..39
BeforeSer..18

C

Calculator .. 8
client/server.. 5
Communication......................................23
concurrentRequestLimit...........................16
connectionBroken...................................14
connectionFailed14
continue..15
createShell...12
CreateShell dependencies.........................19

D

dangling reference17
debugging ...18
defaultAppsDir.......................................35
defaultAppsDir.......................................16
defaultScreenName.................................35
defaultScreenName.................................17
distributionDir..36
distributionDir..19

E

Ensemble .. 6, 28
ensemble...12
ensemble..i.ns ..13
ensembleDeamon18
ensemblePort ...37
ensemblePort ...19
entry ... 6
environment ..12
error...14
error propagation14
ErrorHandler...................................... 6, 32
errorHandler ..14
example programs.................................... 8

G

garbage collection...................................17
get ...13
getShellEnv...25

. theShellEnv25
globalErrorHandler34
globalErrorHandler16
globalHandler ..34

H

hostname...12

I

ignore...15
initBeforeScheduler40
internet .. 7
isEnsemble..40

K

kill...11

L

leaveHandler..16

M

myEnsemble..11

N

NameServer.................................. 6, 11, 27

Index 45

ns 12, 13

O

onKill...11

P

Parameter .i.semantics21
parameters...12
port..19
Proxy ...21
put ... 6, 13

R

r 41
refAsText..41

. r 41

. t 41
refFromText ..41

. r 41

. t 41
Remoteable 6, 10, 26
Remoteable ...18
remoteAbleType.....................................40
remoteInfo...40
remoteStart.......................................13, 19
rsh ...13
rshPath ...37
rshPath ...20

S

scanNames ..13
scheduling...23
screenName...12
security...18
semantics ..21
semantics XE "Parameter .i.semantics"21
semantics" ..21
senvPriv..39
serverOverload.......................................14
Shell ... 6, 11, 27
shellEnv.. 9, 25

. !!superpattern
. . systemenv..................................25

. AfterSer ..39

. AfterUnser.......................................39

. BeforeSer ..39

. defaultAppsDir.................................35

. defaultScreenName35

. distributionDir..................................36

. Ensemble...28
. . !!superpattern

. . . shell27
. . createShell

. . . execNotFound
. . . . !!superpattern

. Exception41
. . . processCreationFailed

. . . . !!superpattern
. Exception41

. . . typeError
. . . . !!superpattern

. Exception41
. . . unknownError

. . . . !!superpattern
. Exception41

. ensemblePort....................................37
. . !!superpattern

. . . IntegerValue....................40, 41
. errorHandler32

. . !subpatterns
. . . globalErrorHandler34

. . error
. . . abort

. . . . !!superpattern
. failureAction41

. . . continue
. . . . !!superpattern

. failureAction41
. . . ignore

. . . . !!superpattern
. failureAction41

. globalErrorHandler............................34
. . !!superpattern

. . . errorHandler32
. . concurrentRequestLimit

. . . !!superpattern
. . . . IntegerValue41

. . workerPoolSize
. . . !!superpattern

. . . . IntegerValue41
. globalHandler...................................34
. initBeforeScheduler...........................40
. isEnsemble40
. NameServer27

. . !!superpattern
. . . remoteAble......................40, 41

. remoteable.......................................26
. . ping

. . . !!superpattern
. . . . booleanValue41

. remoteAbleType40

. remoteInfo.......................................40
. . !!superpattern

. . . ObjectTableElement...............40
. rshPath..37
. senvPriv..39
. shell ...27

. . !!superpattern
. . . remoteAble......................40, 41

. . !subpatterns
. . . Ensemble28

. shellType...25

. theShell...25

. TraceSer..39

. userName ..37

. withDraw ..38
shellType ..25
Shipping ...20
startAsDeamon.......................................13
startAsDeamon.......................................19
systemenv

. !subpatterns
. . shellEnv25

T

t 41
TCP/IP ...23
theShell ..25
theShellEnv...25
timeOut ..14

timeServer.. 9
TraceSer ...39

U

unknownObject14
unknownPattern15
userName..37

W

withDraw..38

withdraw...17
workerPoolSize16
wrongAnswer ..15

X

X user interface libraries23
xtalk.. 9

