
Valhalla
The Mjølner BETA Debugger

Tutorial and Reference Manual

Mjølner Informatics Report

MIA 92-12(2.0)

August 1996

Copyright © 1990-96 Mjølner Informatics ApS.
All rights reserved.

No part of this document may be copied or distributed
without prior written permission from Mjølner Informatics

Contents

VALHALLA: THE SOURCE LEVEL DEBUGGER.. 5

1 TUTORIAL . 9

1.1 GETTING STARTED...9
1.2 AN EXAMPLE USAGE..10

1.2.1 Inspecting object state...13
1.2.2 Inspecting the call chain..15
1.2.3 Rerunning the program...15
1.2.4 Setting a Breakpoint...15
1.2.5 Browsing code...16
1.2.6 The End...17

2 R E F E R E N C E M A N U A L . 1 9

2.1 COMMAND LINE ARGUMENTS TO THE DEBUGGED PROCESS AND COMMAND LINE EDITOR20
2.2 ENVIRONMENT EDITOR...21
2.3 INTERACTION WITH VIEWS..22
2.4 CONTROLLING THE EXECUTION..23

2.4.1 Interrupting the debugged process..23
2.4.2 Setting Breakpoints..23

2.5 THE UNIVERSE MENUS ...24
2.5.1 File menu...24
2.5.2 Edit menu...24
2.5.3 Control menu..25
2.5.4 Breakpoints menu..26
2.5.5 Windows menu..27
2.5.6 Preferences menu...27

2.6 BROWSING THROUGH BETA CODE ...28
2.6.1 Inspecting the current code...29
2.6.2 The code view...29
2.6.3 Source Browser..29

2.7 THE OBJECT VIEW ...30
2.8 THE STACK VIEW...32
2.9 VALHALLA COMMAND LINE OPTIONS ...32
2.10 VALHALLA ENVIRONMENT VARIABLES ...34
2.11 OTHER ISSUES ...34

2.11.1 The BETART environment variable...34
2.11.2 Tracing garbage collections..34
2.11.3 Known bugs and inconveniences...34

B I B L I O G R A P H Y . 3 5

A P P E N D I X A . 3 7

INDEX . 4 1

Valhalla: The Source Level
Debugger

Valhalla1 is the source level debugger in the Mjølner BETA System. Valhalla offers an
object oriented environment for the debugging of BETA programs. Using Valhalla,
you are able to control the execution of any BETA program; inspect the state of runtime
objects; and trace the execution of the BETA code implementing the functionality of the
application. The aim of Valhalla is to help the programmer to locate errors in BETA
programs by tracing their execution at the BETA source level.

The user interface is divided in two integrated parts: the source browser (Ymer), and the
Valhalla Universe. The source browser enables browsing in the source code of the
application being debugged (as well as other source files), and the Valhalla Universe
enables the display of runtime objects, execution stacks and source code of the actual
execution during the execution of the application.

The program execution may be controlled e.g. by setting breakpoints and single
stepping at the BETA source level. Runtime errors are caught by Valhalla that will
display the offending object and code. From there, program state can be browsed to

1 Valhalla is the name of the Hall of the Nordic God Odin. Valhalla is the place whereto all the dead warriors are brought

when they have fallen as heroes on the battlefield. Odin is the highest ranking God in Asgård.

6 Valhalla Debugger

locate the cause of error. The debugged program executes in a process of its own, being
watched by Valhalla, but otherwise unaffected.

Using the Mjølner BETA Debugger you may:

• Control and trace the execution of a BETA program by setting breakpoints and
stepping at the level of single BETA source lines, stepping over procedure-calls
and even single step at the level of machine code instructions.

• Simultaneously examine the state of any number of objects.

• Examine the execution stack and view code and objects on the stack.

• Examine the program heaps and view objects on the heaps.

• Simultaneously view any number of windows containing source code.

The source browser used by Valhalla is Ymer, and is therefore identical to the source
browser used by the other programming tools in the Mjølner BETA System (such as Sif
[MIA 90-11], Freja [MIA 93-31] and Frigg [MIA 96-33]), making browsing in the
source code of the application of the program being debugged, identical to the browsing
facilities during editing, etc. The source browser have been augmented with pull-down
and pop-up menus for setting breakpoints and trace points, and for controlling the
execution of the application.

Trace points

In order to make it easy to trace the execution of the application, Valhalla offers trace
points. A trace point is a point in the source code, with an associated text string. Each
time the execution passes a trace point, the text string is printed on the standard output.
The text string is specified as part of the specification of the trace point.

Break points

In order to inspect the state of objects during the execution of the application, Valhalla
offers break points. A break point is a point in the source code. Each time the
execution passes a break point, control is passed back to Valhalla, enabling you to
inspect the state of the execution, the state of runtime objects, etc.

Execution Control

Using Valhalla, you can control the execution of any BETA application. You can start
and stop the execution, set break points and trace points, single step at the level of
machine code instructions, at the level of BETA imperatives, step over procedure calls,
etc.

Introduction 7

Runtime Inspection

Valhalla offers extensive support for inspection of the runtime structure of the running
application. You can examine the state of objects and runtime stacks. Using the easy-
to-use graphical interface, you can navigate through the entire object structure, and
locate any object in the application, inspecting its state.

This manual consists of two parts: A tutorial and a reference manual. The reader is
assumed to be familiar with the basics of BETA program executions and the fragment
system, see for example [MIA 90-2] for a description of the fragment system.

1 Tutorial

The user interface of Valhalla consists of a main window containing a menu and a
number of different windows (views) displaying different aspects of the debugged
program (called the Valhalla Universe). The Valhalla Universe is a top-level window,
containing different internal windows for displaying different aspects of the execution
state of the debugged process. Below a very short description of the different window
types in the Valhalla Universe is given before we go on to describe how to get started
using Valhalla.

• The code views display program text from the debugged process.

• The object views display the state of BETA objects and components.2

• The stack views display the runtime stack of the debugged process.

Details on the functionality of the window types follows in the tutorial and in the
reference manual following the tutorial.

1.1 Getting Started
In this tutorial, the program record will be used as an example. This program consists
of the files

~beta/debugger/v2.1/demo/record
~beta/debugger/v2.1/demo/recordlib

and uses

~beta/containers/v1.5/hashTable

The files record and recordlib are listed in appendix A. To get hands-on experience
using Valhalla, you should copy record and recordlib to a directory of your own,
compile them, and then read the tutorial while strolling along on your own workstation:

> cd ~beta/debugger/v2.1/demo
> cp record* myDir
> cd myDir
> beta record

In general, Valhalla is started simply by typing:

valhalla

at the UNIX prompt. Valhalla will then open the Valhalla Universe, and you can now
use the New… menu item in the File menu to specify the application, you wish to
debug. You can also specify this application directly when invoking Valhalla by giving
its name as argument to Valhalla by typing:

2 Components are BETA objects that have their own thread of control.

Window types

The example
program

Starting
Valhalla

1 0 Valhalla Debugger

valhalla <application-name>

If the application demands some command line arguments, you can specify these
directly when invoking Valhalla by typing:

valhalla <application-name> <arg1> arg2> …

Irrespectively of how the application is specified, you can specify additional command
line arguments before the application is invoked, since Valhalla will disply a Command
Line Editor before the application is started. From that point, the user controls the
execution of the debugged process.

1.2 An Example Usage
This section assumes the record program has been compiled as described in the
previous section. Running record results in a runtime error:

> cd myDir
> record
BETA execution aborted: Reference is none
Look at 'record.dump'

Now let's use Valhalla to locate the cause of the error. As record does not take
command line parameters, simply start Valhalla by typing:

> valhalla record

Valhalla will initialize and open the Valhalla Universe as shown3 in Figure 1.

Figure 1: The Valhalla Universe

Immediately after the Valhalla Universe have been opened, the Command Line Editor
will be displayed, as seen in Figure 2. Since record does not use any command line
arguments, we just press the Cancel button (otherwise, we could have entered the
command line arguments in the text field, and then pressed the OK button).

3 Screen dumps shown in the tutorial shows the views as they would have been if you had not copied

the example program to a directory of your own, but simply compiled them in the
~beta/debugger/v2.1/demo directory.

Valhalla
Universe

Tutorial 1 1

Figure 2: The Command Line editor

Contents of the Valhalla Universe

The Valhalla Universe defines a number of menus. Most commands in these menus
operate on the state of the debugged process, or enables control over the debugger
process.

The middle pane of the Valhalla Universe contains a view area in which the different
local views will be displayed.

Finally the bottom pane contains three areas: the Process Info Area, the Valhalla Info
Area, and the Buttons Area.

In the Process Info area, you will see different messages related to the debugged
process. In Figure 1, you see the message: No Process, indication that no process is
being debugged at this point.

In the Valhalla Info Area, you will find different messages related to the operation of
Valhalla (status messages, error messages, etc.). In Figure 1, no Valhalla messages are
displayed.

In the Buttons areas, you find a number of buttons, which are short-cuts to often used
commands, also found in the menus of the Valhalla Universe.

After we now have presented the Valhalla Universe, we continue the record example.
After having dealt with the Command Line Editor, we will be presented with the
following contents in the Universe:

Figure 3: Universe with ready process

The Universe at this point contains one inner window with the title: Fragment:
PROGRAM. This view is a code view, displaying the contents of the PROGRAM slot
of the source code of the process, being ready to be debugged. This code view is
identical to the code views, you find in the other Mjølner BETA System tools (e.g. Sif
[MIA 90-11], Freja [MIA 93-31], and Frigg [96-33]), and you can interact with the
code in the window exactly as described in the Sif manual [MIA 90-11], except that
only browsing is possible - editing in the source code is not possible through code

Command Line
Editor

Menus

The views area

The Process
Info Area

The Valhalla
Info Area

The Buttons
Area

Code View

1 2 Valhalla Debugger

views in Valhalla. This implies that semantic browsing are available for browsing in
the source code, shown in code views.

As you can see, abstract presentation is also available in the code view. After having
detailed the … in the code view, you will be able to see some of the source code in the
code view in the Universe:

Figure 4: Detailing the contractions

We are now ready to start execution of the record application. We do this by pressing
the Go button in the Buttons Area. The application will now begin execution, and since
there in this case is a runtime error, the debugged process will not complete. Since the
application is being debugged, the application does not terminate as usual, but will
signal the error to Valhalla, who will then present the following Universe:

Figure 5: code view opened at time of error

Note that a new code view is now visible in the Universe (in this picture, this new code
view is placed entirely on top of the previous code view). This new code view displays
the code being executed at the time of the runtime error, and highlights the exact source
code that gave rise to the runtime error.

The name of the code view opened is Fragment: lib and the pattern in the source code
is newBook, implying that the newBook pattern is defined in a fragment, called lib.
From here, you can now use the semantic browsing facilities described in the Sif
manual [MIA 90-11] to find the definitions of the different names in the displayed
source code. If the semantic links refer to source code, not in the current code view,

Contraction

Start execution

Runtime error
caught by
Valhalla

Tutorial 1 3

new code views are created, displaying the proper source code (similar to Open
Separate in Sif). If, during browsing, you forget what imperative caused the error, or
cannot find the window containing that imperative, just press the Code button, and
Valhalla will raise (and wriggle) the window with the offending imperative selected.

A number of other informations about program state at time of error would be useful in
order to decide what caused the error:

• What is the state of these objects.

• What was the call chain at time of error.

In the following sections we will consider how to obtain these informations.

1.2.1 Inspecting object state

Above we found that Valhalla automatically displayed the source code containing the
offending imperative. Usually, in order to determine the cause of the error, one has to
consider the state of the objects in the executable to understand what caused the error.
To browse the state of the objects, Valhalla implements so-called object views.

The immediately most interesting object, related to the error is the so-called Current
Object, which is the object that executed the offending imperative. We can gain access
to the current object by pressing the Object button in the Buttons Area. This will result
in an object view being displayed in the Universe. This object view will display the
state of the Current Object at the time of the error.

More generally, whenever the debugged process is stopped, pressing the Object
button in the Buttons Area of the Valhalla Universe opens an object view displaying the
current object if already open in the Universe, the object view will be raised (and
wriggled). If we press the Object button, we get the following contents of the
Universe:

Figure 6: Object view opened at time of error

From the object view in Figure 6, we see that the current object at time of error was an
instance of the pattern NewBook. The state of the object is displayed in the window.
The Rec attribute is a reference to an object and is therefore described only by the name
of its pattern, followed by ~ and a number. If we double-click the line Rec:
^Book~3, a new object view is opened, displaying the state fo the object referred to
by Rec (as shown in Figure 7):

Runtime
Information

Information
about program
state

Object view

1 4 Valhalla Debugger

Figure 7: Object view displaying the new attribute of the failing object

As it can be seen, the author attribute of Rec is NONE. This is actually the reason for the
runtime error in record. As you probably remember, the failing imperative was A-
>Rec.Author and because Rec.author is NONE, this results in a runtime error. If you
do not remember, simply press the Code button in the Buttons Area of the Universe.

Since author is a dynamic reference to a Text object, we could correct the error by
changing author to become a static instance of Text (exchanging ^ with @).

Eventhough we have now found the source of error, there is still a number of Valhalla
features that have not yet been demonstrated. As a consequence we just continue this
tutorial to introduce you to more of the Valhalla functionality.

Some attributes are shown contracted (shown by the …). These … indicate that these
objects are complex objects, with inner structure. You can see the inner structure (and
state) by double clicking on the attribute. If we do this on e.g. the A attribute, we get
the following screen:

Figure 8: Detailing static objects

Note, that in contrast to when we followed the Rec attribute in Figure 7, no new object
view is opened, but the state of the A attribute is shown inline. This is due to the fact,
that A is a static object, whereas Rec is a dynamic object reference.

Object views are updated every time the program stops by hitting a breakpoint,
receiving a signal or in case of runtime error.

Detailing static
objects

Stat ic vs.
Dynamic
Object
References

View updates
automatically

Tutorial 1 5

1.2.2 Inspecting the call chain

Now we know where and why the error happened. But how did we get there? To
answer this question we use the stack view: We can get a stack view by pressing the
Stack button in the Button Area.

The stack view shows the process stack at time of error. Each line in the stack view
refers to a stack frame, with the most recent as the top-most line:

Figure 9: The stack view

By double-clicking on the lines in the stack view, code views are opened, displaying
the code related with this stack frame (with the active imperative selected). By holding
the right mouse button down on a line, you get a small menu from where you can create
object views, displaying the state of the corresponding stack frame.

1.2.3 Rerunning the program

If it during a debugging session becomes necessary to restart the debugged process
(e.g. to try to trace the location of the error after having inserted some breakpoints), we
can rerun the debugged process by pressing the Rerun button in the Buttons Area. The
debugged process will then be reinitialized and prepared to start from the beginning
again. All existing program state is cleared by the rerun, but existing breakpoints are
maintained.

1.2.4 Setting a Breakpoint

Until now, Valhalla has decided when to interrupt the debugged process, doing so
because of a “Reference is NONE” error. We have not yet seen an example of controlling
the program execution in greater detail. To do this we are now going to restart the
debugged process and trace the program flow until time of error

We press the Rerun button, and Valhalla now restarts the process and makes it ready to
be restarted.4

We now examine the code view, locating the invocation of the erronious NewBook
pattern. We now want to make the process continue execution until it is about to execute
NewBook. We can do this by setting a breakpoint immediately before the invocation.

We click at the BETA imperative containing the generation and execution of a NewBook
object. Then select Set Breakpoint from the Breakpoints menu in the Universe. An

4 All breakpoints set before rerunning the program will continue being set.

Stack view

Rerun

Setting a
breakpoint

1 6 Valhalla Debugger

breakpoint marker (>>1>>) appears in front of the imperative to mark the presence of a
breakpoint (the 1 indicates that this is the first breakpoint). The process will thus be
interrupted just before this imperative is about to be executed. Figure 10 displays the
look of the code view at this point.

Figure 10: Your first breakpoint

Having set the breakpoint we make the debugged process begin execution by pressing
the Go button. The process now runs until the breakpoint is hit. Then Valhalla updates
all open code and object views to display the current state of the debugged process.

Alternatively, we could have selected the Step Over button a number of times. Step
Over executes the imperatives one by one, returning control to Valhalla after each
imperative. This would bring the debugged process to exactly the same imperative, but
by executing an imperative at the time in the PROGRAM fragment.5

Now we would like to continue until the first imperative executed by NewBook.

From here we might want to trace the execution more closely. We can do this by using
the Step button. Step is a single step facility, which executes one single BETA
imperative at a time. This implies, that Step Over executed entire patterns in a single
step, since Step Over is intuitively single stepping at the imperative level of the visible
code in the code view, whereas Step will stop execution e.g. immediately after a
pattern invocation have been initiated, setting a breakpoint before the first imperative in
the invoked pattern.

If we now press the Step button repeatedly, we can now follow the execution closely,
until we reach the point immediately before the offending imperative.

1.2.5 Browsing code

We have above described the source code browsing, based on the semantic linking
facilities. However, this is often not sufficient, and Valhalla is therefore integrated with
the source browser (Ymer), just as other tools in the Mjølner BETA System.

You can gain access to this source browser by selectiong the Source Browser menu
enty in the File menu of the Universe. This will bring up a standard source browser,
with the dependency graph of the debugged program as a socalled root project. We will
refer to the Sif manual [MIA 90-11] for more information on the browsing facilities of
the Source Browser.

5 Step Over sets a breakpoint at the imperative following the current imperative in the current

pattern and thus skips procedure calls that might be embedded in the current imperative.

Go

Step Over

Step

Source browser

Tutorial 1 7

1.2.6 The End

You have now concluded a tour of the most important Valhalla facilities. To get a more
detailed description of these facilities as well as others not covered in this tutorial,
please consult the reference part of this manual.

2 Reference Manual
When finished initialising, Valhalla opens its Valhalla Universe containing a number of
menus. Figure 11 shows the look of the Valhalla Universe when using Valhalla on the
example program from the tutorial.

Figure 11: The Valhalla Universe

The top pane of the Valhalla Universe contains the menus. The middle pane contains the
different views, and the bottom pane contains two info areas and a number of buttons.

Please note, that this reference manual only describes the Valhalla Universe, not the
source browser. We refer to the Sif Tutorial and Reference Manual [MIA 90-11] for a
reference manual on the Source Browser.
However, it should be noted, that the Source Browser as integrated with Valhalla have
been augmented with one global menu, namely the Breakpoints menu. The same
menu is also available as pop-up menu in all code views, instantiated from the Source
Browser. For details on the Breakpoints menu, see later.

Valhalla
Universe

Source
Browser

2 0 Valhalla Debugger

2.1 Command Line Arguments to the
Debugged Process and Command
Line Editor

Some applications demand command line arguments in order to execute properly, and
others allow command line arguments when being executed. In order to support
debugging of such applications, Valhalla have facilities for handling command line
arguments to the debugged process.

There are essentially two different ways to specify command line arguments to the
debugged process:

• Through the command line arguments to Valhalla

• Through the Command Line Editor

When invoking Valhalla, it is possible to supply a number of command line arguments
to Valhalla itself (see later). Following these Valhalla command line arguments, you
can specify the name of the application to be debugged. If any command line
arguments are given following the name of the application to be debugged, these are
interpreted as command line arguments to the debugged process.

During the initialization process of Valhalla, the user is given yet another chance to
specify the command line arguments to the debugged process:

• either as additional command line arguments to the debugged process (if
command line arguments were given in the Valhalla command line)

• or edit the command line arguments given in the Valhalla command line

• or specify the command line fully (if no command line arguments were given in
the Valhalla command line)

This is done by displaying the Command Line Editor:

Figure 12: The Command Line Editor

Here you can edit and specify the command line arguments to the debugged process
before they are handed to the debugged process.

At any time during the debugging of the application, you can invoke the Command Line
Editor to edit the command line arguments (by selecting Command Line… in the Edit
menu). Editing the command line arguments does, however, not directly affect the
process being debugged. The changes are only reflected to the debugged process when
it is rerun.

Specifying
Command Line
Arguments

Edit Command
Line Arguments

Command Line Arguments

2.2 Environment Editor
The debugged process is executed as a separate process, and is executed in an
environment that is a copy of the environment, that Valhalla is executing in. However,
in some cases, the debugged process demands special values in some of the
environment variables, or it may demand some additional environment variables to be
set.

In order to operate on the environment of the debugged process, the Environment
Editor is available (by selecting Environment… in the Edit menu):

Figure 13: The Environment Editor

The upper pane is a scrolling list containing a name-value pair for each environment
variable in the environment of the debugged process. By selecting one such pair, it is
also visible in the lower pane, in the two edit fields. To the left is the name, and to the
right the value. By editing the value, you can specify a new value to the environment
variables. By pressing the Set button, the new value is defined.

If you wish to define a new environment variable, you can just specify its name in the
left text field, and its value in the right text field, and it will then become defined when
the Set button is pressed.

If you wish to remove the definition of an environment variable, you can select the
variable from the list and press the Delete button.

Pressing the Clear button will remove any contents in the two edit fields.

Changes to the environment are not directly reflected in the debugged process, but will
be reflected when you rerun the debugged process.

Editing
Environment
Variables

Defining
Environment
Variables

2 2 Valhalla Debugger

2.3 Interaction with Views
Views are nested inside the Valhalla Universe. Each view has a header consisting of an
iconify button and a name field.

The different views share many interaction properties,
that are described in this section.

Clicking in the name field puts the view on top of all
other views. Clicking and dragging the name field
moves the view around.

The view may be resized by placing the mouse cursor
on the borders of the view (the cursor changes to a
cross), and then click-and-drag to resize.

Each view has an associated menu, that is popped up by
clicking the right mouse-button in the name field of the
view. The contents of that menu depends on whether the type of the view. However,
the menu contains in all cases Close and Iconify. Close closes the view, and Iconify
iconifies the view. By selecting Deiconify in the menu popped up by clicking the right
mouse-button on the icon, the view is displayed in full again.

Closing Multiple Views

By dragging a rectangle in the middle part of Universe, multiple views are selected (all
views contained in the selected rectangle). If you then choosing Close in the Edit
menu of the Universe (Shortcut: Ctrl-W), the selected views are all closed in a single
operation.

View Short-cuts

• leftmouse-click on the iconify button in the upper left corner, iconifies the view.
This corresponds to selecting Iconify in the name field popup menu.

• leftmouse-double-click on the icon, displays the view in full again.

• shift-control-leftmouse-click in the name field or on the icon closes the view.

• rightmouse-press on the name field or on the icon results in the view menu being
popped up.

• leftmouse-drag on the name field or on the icon makes it possible to move the
view or icon.

• leftmouse-click in the view name field or icon selects the view.

• Rightmouse-press on the individual lines inside the view pops up the item menu
(different in the different view types).

View Outline

If Outline On Open is enabled, an outline is shown initially before a new view is
opened in the Universe.

While outlining a view, the following actions are possible:

• leftmouse-drag inside the outline makes it possible to move the outline around.

View

View Menu

Closing Views

View Short-
cuts

Outlining a
View

Interaction with Views

• leftmouse-press outside the outline moves the closest corner of the outline to the
position of the mouse (resizing the outline). Further dragging will continue the
resize. When the mouse is released, the size and position of the outline is
defined, and the new view will be opened in that size, and positioned
accordingly.

2.4 Controlling the Execution
When an application is being debugged by Valhalla, it is executed as a separate process,
under the control of Valhalla. This gives the user of Valhalla extensive control over the
debugged process.

2.4.1 Interrupting the debugged process

If the debugged process executes, and you wish to interrupt the execution, you can
always hit the Stop button in the Buttons Area of the Universe (or select the Stop item
in the Control menu of the Universe). This will immediately interrupt the debugged
process, making it possible to inspect it (the state of objects, the current stack, etc.).

2.4.2 Setting Breakpoints

Breakpoints are naturally associated with the imperatives of the BETA program, and
acts as points in the debugged process, where Valhalla is given some control over the
execution of the debugged process. Valhalla supports three types of break points:

Break: If a Break point is reached during the execution of the debugged process, the
process will be interrupted, and Valhalla is now able to inspect the current state
of the application.

Oneshot: which is a Break point, that is only effective once (will automatically be
removed, when it have been reached the first time). Otherwise it functions
exactly as a Break point.

Trace: is used to trace the execution without actually interrupting. A trace point have
associated a text string. Each time a trace point is reached during the execution of
the debugged process, the associated text will be printed on standard output, and
the execution will be continued immediately.

Valhalla supports that break points are positioned in two positions, relative to an
imperative:

Before: when a break point is positioned before an imperative, it will be activated
immediately before the imperative will be executed.
A Before break is shown visually in the code views by >>n>> , where n is a
sequence number of the break point.

After: when a break point is positioned after an imperative, it will be activated
immediately after the imperative have been executed. The only places, where
using After position is the only possible solution, is when one wish to interrupt
the application immediately before it reaches the terminating #) of a descriptor.
In all other cases, we could just as well have placed the break point before the
imperative following the one selected.
An After break is shown visually in the code views by <<n<< , where n is a
sequence number of the break point.

An important aspect of Oneshot and Break break points is, that the object- and stack
views that are visible in the Valhalla Universe, are automatically updated to reflect the
current state of the objects and the stack at the time of the break. Should the object

Stop

Break

Oneshot

Trace

Before

After

Automatic
Update of
Views

2 4 Valhalla Debugger

shown in an object view have become inaccessible (and therefore reclaimed by the
garbage collector), this fact is reflected in the object view by clearing the object view,
and changing the label of the view.

Unsetting Breakpoints

Breakpoints may be unset essentially in the same way as they have been set.

2.5 The Universe Menus
The Valhalla Universe defines a number of menus, which will be described in this
section. The buttons in the Buttons Area are merely short-cuts for some of these menu
items, and will therefore not be described separately.

2.5.1 File menu

New…

This menu item will open a file dialog in which it is
possible to select the application to be debugged. You
may select both the executable, the source file or the AST
file. In all cases, the executable will be loaded by Valhalla
that will prepare to debug the application. The application will be forked by Valhalla as
a separate process, but execution will not be initiated (before the user asks Valhalla to
do so). This is because the user in this way is able to specify breakpoints before
initiating the execution. Execution is started by selecting Go (see later).

Source Browser…

This menu item will result in a source browser being displayed (or, if a source browser
is already opened, it will be raised (and wriggled).

Quit Ctrl-q

Selection this menu item will terminate the debugged process, and Valhalla will
thereafter be terminated too.

2.5.2 Edit menu

Command Line…

Selecting this menu item will open the Command Line Editor.
Using this Editor, you can edit the command line arguments,
that will be handed to the debugged process when it is forked
as a separate process by Valhalla. Note, that changes to the
command line arguments will not have any effect on the
debugged process, if it have been forked. However, by rerunning the debugged
process, changes to the command line arguments will be reflected to the debugged
process.

Environment…

Selecting this menu item will open a Environment Editor. This editor makes it possible
to edit the values of the environment variables (and define new environment variables)
for the debugged process. As for command line arguments, these changes will only
affect the debugged process after rerunning it.

Unset
Breakpoints

File Menu

Edit Menu

File Menu

Refresh

If the Universe for some reason seems corrupted, it might help to refresh the Universe.
This will totally redraw the Universe, including the views, and the contents of these
views.

Close Ctrl-w

This will close the currently selected view(s).

2.5.3 Control menu

Below the items of the Control menu of the Valhalla
Universe are described. These are concerned with
controlling the execution of the debugged process.

Go Ctrl-g

The debugged process resumes execution until it hits a
breakpoint, receives a signal, terminates or a runtime error
is detected by the BETA runtime system.

Also available as Go button in the Buttons Area.

Step Ctrl-i

The Step command makes the debugged process resume execution until it have either
executed one single BETA imperative, or it have stepped into some routine. This is the
basic step of the debugger (single stepping).

Also available as Step button in the Buttons Area.

Step Over Ctrl-j

The Step Over command makes the debugged process continue execution after setting
a temporary breakpoint at the next BETA imperative in the code currently being
executing. Step Over is only available if the debugged process is currently stopped in
some BETA code (as opposed to being stopped during the execution of code written in
C or some other language), as 'next BETA imperative' has no local meaning
otherwise..

Also available as Step Over button in the Buttons Area.

Stop

Kills the debugged process.

Also available as Stop button in the Buttons Area.

Rerun Ctrl-r

Kills the debugged process and restarts the program in a new process. Breakpoints
already set continues to be set. Otherwise the state of the debugged process will be as if
it just started execution. The command line arguments and the environment variables
will be identical to the previous execution, unless they have been edited since last
(re)run.

Also available as Rerun button in the Buttons Area.

Kill Ctrl-y

Kills the debugged process.

2.5.4 Breakpoints menu

This menu is the ‘bread and butter’ in controlling the debugged process. It is by means
of the entries in this menu, that you can make the debugged process stop at specific
places in the code (or output trace information at these points). You can also gain

Control Menu

Breakpoints
Menu

2 6 Valhalla Debugger

access to all defined breakpoints through this menu, and you can save the breakpoints,
to be able to load them into the debugger in a later debugging session. There are three
types of breakpoints: Break, Oneshot, and Trace, and breakpoints may be places either
before or after an imperative.

Go Until Mark Ctrl-m

If you have selected an imperative in a code
view, and select this menu item, then Valhalla
will instruct the debugged process to resume
execution until the execution reaches the
selected imperative.

Set Break Ctrl-k

This will set a break point before the selected
imperative in the code view. Each time
execution reaches this point, the debugged
process will be suspended, and all views open
in the Universe will be updated. This implies
that the stack view and all open object views
will display the current state of the stack
(respectively objects) at the points of the break.

Set OneShot Ctrl-h

This will also set a breakpoint before the selected imperative in the code view, but a
Oneshot break point will be removed automatically when it is reached the first time (i.e.
the debugged process will only be suspended at this point one single time).

Set Trace…

Selecting this menu item will display a small dialog, in which you can specify a text
string to be associated with the trace point. Valhalla will then insert a trace point before
the selected imperative in the code view. When execution reaches a trace point, the
associated text string will be printed, and execution immediately resumed.

Set Break After

Similar to Set Break, but will set the break point after the selected imperative in the
code view.

Set OneShot After

Similar to Set OneShot , but will set the Oneshot point after the selected imperative in
the code view.

Set Trace After…

Similar to Set Trace…, but will set the Trace point after the selected imperative in the
code view.

Erase Break Ctrl-e

If a break point is placed before the selected imperative in the code view, it will be
remove.

Erase Break After

If a break point is placed after the selected imperative in the code view, it will be
remove.

Breakpoint List

Through this menu item, you can gain access to all break points, that are currently set in
the debugged process. These breakpoints are all accessible through the submenu,
attached to this menu item. By selecting a given break point from the submenu, the
source code with the selected break point will be displayed in a code view.

Breakpoints Menu

Breakpoints: Save

This menu item enables you to save the current set of break points onto a file (specified
through a file dialog).

Breakpoints: Load

This menu item enables you to load a previously save set of breakpoints into the
debugged process from onto a file (specified through a file dialog). This is only a safe
operation, if first of all, it is the same application, and secondly no changes have been
made to any of the source files in which any saved breakpoints appear. If one of these
two conditions are not satisfied, this operation is not guaranteed to give any sensible
results. Currently no check are implemented in Valhalla to test the legality of this load
operation, and it should therefore be used with care (obeying the above conditions).

2.5.5 Windows menu

Through this menu, you can open views into the current state of the debugged process,
i.e. inspecting state and source code of the currently executing object and component,
and inspect the runtime stack of the debugged process.

Current Code

This will open a code view, displaying the source code,
that was executed at the point of the break.

Also available as Code button in the Buttons Area.

Current Object

This will open an object view, displaying the state of the object that was executing at the
point of the break.

Also available as Object button in the Buttons Area.

Current Component

This will open a component view into the component, that was executing at the point of
the break.

Active Stack

This will display the contents of the execution stack at the point of the break.

Also available as Stack button in the Buttons Area.

2.5.6 Preferences menu

This menu gives a number of possibilities for setting preferences, defining the
behaviour of the different parts of Valhalla. All menu items are toggle items, such that
the preference is enabled if a check mark is visible to the left of the corresponding menu
item.

One Line Char Repetitions

If enabled, char repetitions will be displayed as
a text string. Otherwise, char repetitions will be
displayed as other repetitions (i.e. on multiple
lines with one index and the corresponding
value on each line).

Invisible Origins

If enabled, Origin fields of objects will not be
displayed.

Fast Browse Mode

Windows Menu

Preferences
Menu

2 8 Valhalla Debugger

If enabled, following dynamic object references will display the state of the referenced
object in the same object view (replacing the existing contents). If disabled, following
dynamic object references will create new object views for the referenced object.

Number Objects

If enabled, object references in object views will be specified with both the name of the
pattern from which the object is instantiated and a sequence number. The sequence
number helps in identifying easily that two object references refer to the same object. If
disabled, the sequence numbers are not displayed.

Short Object Names

If enabled, object names in object views will be given in short form, leaving out
information on the location of the pattern, from which they are instantiated. If disabled,
the object names will contain this information.

Outline on Open

If enabled, opening a view in the Universe will be done interactively by the user by
dragging an outline, defining the size and position of the new view. If disabled,
Valhalla will define the size and position of the new view.

Show Current Code on Stop

If enabled, Valhalla will automatically display the source code, that was being executed
at the time of the break.

Short Code Names

Similar to Short Object Names, just for code views.

Read Labels on Fork

If enabled, Valhalla will read the labels in the executable at the time of the fork.
Otherwise, reading the labels will be postponed.

Debug Valhalla

Internal debugging facility for Valhalla.

2.6 Browsing through BETA Code

2.6.1 Inspecting the current code

When the debugged process is stopped in some BETA code, and no code view is
opened on that code, selecting Current Code from the Windows Menu of the Valhalla
Universe opens a code view with the current BETA imperative selected. If a code view
on that code is already opened, it is raised (and wriggled), and the current imperative
selected.

2.6.2 The code view

A code view displays an abstract textual description of a BETA object descriptor.
Abstract means that nested object descriptors are displayed as three dots. Using the
facilities of a code view it is possible to set breakpoints, perform expression searches,
or simply inspect the textual description of the pattern.

Current Code

Code View

Preferences Menu

Figure 14: The Code View

A code view is a standard code viewer as in Sif, Freja, and Frigg, and we will refer to
the Sif Reference Manual [MIA 90-11] for more information on the different
presentation and browsing facilities of the code view.

Anywhere inside the code view, you can get access to the Breakpoints menu, simply
by holding the right mouse button down. This will pop-up the Breakpoints menu.

2.6.3 Source Browser

Using the Source Browser… menu item in the File menu of the Valhalla Universe,
you can invoke the standard Ymer source browser.

When invoked from Valhalla, the source browser will automatically have a root project
defined, containing the entire dependency graph of the debugged program. Using this
project, you can browse in all source code, contributing to the debugged process. The
source browser is enhanced with facilities for setting breakpoints. This is done by a
global Breakpoints menu, and by all code views having a Breakpoints pop-up
menu. These Breakpoints menus are identical to the Breakpoints menu presented
later. These breakpoint menus makes it possible to use the source browser to specify
breakpoints anywhere in the source code that is contributing to the debugged process.

We refer to the Source Browser Reference Manual in the Sif manual [MIA 90-11] for
further details of the source browser facilities.

Breakpoints
Menu in Code
Views

Source
Browser

3 0 Valhalla Debugger

2.7 The Object View

Figure 15: The Object View

The state of complex objects is displayed in object views as the result of selecting
Current Object from the Windows menu, double-clicking an object reference in a
stack view or double-clicking a line in another object view.

The name of the pattern of which the object is an instance is displayed as the name of
the object view window. The pattern name is prefixed by the origin chain from the
pattern to the fragment in which the pattern is declared (if Long Object Names is
enabled). For example, an object view having the name Object: lib.x.y displays an
instance of the pattern y, declared nested in the pattern x contained in the fragment lib.

Each line in an object view corresponds to either a static or dynamic reference contained
in the object. Chars, Booleans, Integers and Reals are displayed directly by value
whereas attributes of more complex type are described by their pattern name.

Browsing objects:

The object browser uses abstract presentation of the objects presented. This means that
nested part objects are initially shown contracted, i.e. as three dots. By double-clicking
a line of the object view ending in '...', the hidden details will be shown. By double-
clicking the same line again, the details are hidden.

Each line in the object view corresponds to some attribute of the object. Simple
attributes (@Char, @Integer, ...) cannot be further detailed, whereas other kinds of
attributes can. Default when double-clicking some attribute is as follows:

1. Dynamic references: A new object view is opened on the referred object. If some
object view on that object is already open, visual feedback (wriggling and
highlighting) will signal this fact. The same behaviour goes for origin references
as well.

2. Static references: If the attribute is contracted, double-clicking shows an extra
level of detail in the same window. Otherwise the attribute is contracted.

Object View

Browsing
Objects

Dynamic
References

Static
References

The Object View

3. Repetition references: If the repetition is contracted, double-clicking unfolds the
repetition by showing a line for each index in the repetition. Otherwise the
repetition is contracted.

4. Pattern references: Currently a more detailed view on pattern references is not
implemented.

Object View menus:

In addition to the default menu items for all views (described above), an object view has
a number of additional items in the name field popup menu, i.e. the menu popped up by
clicking the right mouse-button in the name field of an object view. These are described
in turn below:

1. Fit to contents: Tries to resize the object view to a reasonable size.

2. Show attribute: This nested menu is a list of object attributes that are not
currently visible. By default this list includes the origin attributes. By selecting an
entry in this menu, the corresponding attribute is made visible. It may later be re-
hidden as explained below.

3. Fast Browse Mode: Default when double-clicking dynamic references is to
open a new object view showing the object referred. By selecting "Fast Browse
Mode", the default is changed into showing the object referred in the same
window, replacing the previous contents. This allows for fast browsing without
opening unnecessary object views. Default may be reset by choosing "Fast
Browse Mode" again.

4. Go Back: The browser maintains a stack of objects visited during Fast Browse
Mode. By selecting "Go Back", the previous object on that stack in reshown in
the current window.

When clicking the right mouse-button inside an object view, a sligthly different menu
than the name field menu pops up. The entries of this menu, the "attribute menu" are as
follows:

1. Open Separate: Default when double-clicking static references is to detail the
corresponding attribute in the current window. Alternatively one may single-click
the static attribute and then select "Open Separate". This opens a new object
view on the part object.

2. Open inline: If a static reference attribute is double-clicked in order to detail the
view, and another object view on that part object is already open, the existing
object view is highlighted, and the attribute not detailed. If one wants to detail in
the current window anyway, one may either close the existing object view, or
single-click to select the attribute and then choose "Open inline" from the object
state popup menu.

3. Contract attribute: Has the same effect as double-clicking a complex attribute
that is already detailed. I.e., the attribute is contracted.

4. Hide Attribute: By single-clicking an attribute in the object view and then
selecting "Hide Attribute", the attribute is hidden. Note that "contracted" and
"hidden" is not the same thing. Contraction replaces a complex attribute by a
single line ending with '...'. Hiding an attribute means moving it completely out
of sight.

5. Show Attribute: This entry corresponds to the menu entry with the same name
in the name field popup menu. However, instead of showing a list of hidden
attributes for the main object, a list of attributes hidden in the currently selected
complex attribute is shown. I.e., to show a hidden attribute of a nested part
object, single-click that part-object and then choose "Show Attribute" from the
object state popup menu.

Repetition
References

Pattern
References

Object View
Menu

Attribute Menu

3 2 Valhalla Debugger

2.8 The Stack View

Figure 16: The Stack View

A stack view is opened by choosing Current Stack from the Display menu of the
Valhalla Universe. The stack view shows the current runtime stack of the debugged
process.

• BETA stack frames displayed as frahmentName: PatternName. Double-
clicking on a BETA stack frame opens a code view showing the code referred.

• C stack frames. If an external procedure calls back to BETA, the part of the
runtime stack used between the external call from BETA to C and the callback
from C to BETA is shown abstractly as [C Stack Frame].

By double-clicking on the BETA stack frame lines, a code view is opened, displaying
the specific code of this stack frame (with the executed imperative being selected). By
right mouse button hold, you gain access to the stack frame object menu. By selecting
the entry, you gain access to the object executing the stack frame.

2.9 Valhalla Command Line Options
Valhalla accepts the following command line options:

-EXEC executable
-EXECNAME executable

executable is the name of the BETA program executable to be executed and
debugged.

-ENV name value
-ENVIRONMENT name value

Used to set environment variables for the debugged process. Default is to hand
over the environment. However, using the ENVIRONMENT command-line
parameter, the default values may be overridden.

-BOPT name value
-BOOLEANOPTION name value

Used to set the boolean option named name. Value should be TRUE or FALSE.
See Section BOOLEAN OPTIONS later for details on available boolean options.

Stack View

Stack Frame
Object Menu

Command Line Options 3 3

-CL parameter
-COMMLINE parameter

Used to give command line parameters to the process being debugged One
COMMLINE is needed for each command line parameter to be given to the
debugged process.

-PID number
Used to inform valhalla that it is supposed to debug the process with process id
number. Used if valhalla is started after the debugged process.

BOOLEAN OPTIONS

The following boolean options can be set (or unset) in the above mentioned
BOOLEANOPTION option. All boolean option names below are non-case sensible.

ShortCodeNames
Whether to use truncated imperative names for code expressions shown on the
stack.
Default: TRUE.

ReadLabelsOnStartUp
Whether to read labels from executable at startup instead of on demand.
Default: FALSE.

DebugValhalla
Print out Valhalla debugging information.
Default: FALSE.

AlwaysCurCode
Show current code on each process stop, even if no view is currently open on
that code.
Default: TRUE.

CharRepOnALine
Whether char repetitions should be shown on a single line.
Default: FALSE.

InvisibleOrigins
Whether origins should initially be invisible in object views.
Default: TRUE.

NumberObjects
Whether objects should be given a serial number.
Default: TRUE.

ShortObjectTitles
Whether to use truncated pattern names (max 2 pattern names in path) for object
descriptions.
Default: TRUE.

DragOutlineOnOpen
Whether a nested window is dragged on open, or is simply given a default size
and position.
Default: TRUE.

2.10Valhalla Environment Variables
Valhalla recognises the following environment variable:

VALHALLAOPTS
May contain command line options to Valhalla as defined above. Command line

3 4 Valhalla Debugger

options given on the command line are given priority over command line options
specified in the VALHALLAOPTS environment variable.

2.11Other Issues
This section contains a number of issues not yet touched upon.

2.11.1 The BETART environment variable

The BETART environment variable is described in [MIA 90-4]. It may be used to
control the behavior of a BETA program in several ways. To set BETART for a BETA
program being debugged without affecting Valhalla6, set the BETART environment
variable either through the Valhalla command line option ENVIRONMENT , or using
the Environment Editor.

2.11.2 Tracing garbage collections

If you wish to trace the garbage collection in the debugged process, you can do this by
setting the BETART environment variable for the debugged process. The Compiler
Manual [MIA 90-4] defines the possible garbage collection traces.

2.11.3 Known bugs and inconveniences

• In some cases (especially on SUN 4) the stack view does not display the full
runtime stack, forgetting a number of entries. Likewise, the stack view may get
confused if the debugged process is stopped while executing C code. This also
has implications for Valhalla when deciding where a runtime error occurred, and
might result in the wrong place being pointed out.

• When a complex attribute has been detailed, the scrolllist implementing the view
may enter an "auto-scroll" mode. Click some attribute to switch off this mode.

6 Valhalla is a BETA program itself.

Trace Garbage
Collection

Bibliography

[MIA 90-2] Mjølner Informatics: The Mjølner BETA System: BETA
Compiler Reference Manual Mjølner Informatics Report
MIA 90-2.

[MIA 90-4] Mjølner Informatics: The Mjølner BETA System: Using
BETA on UNIX Systems, Mjølner Informatics Report MIA
90-4.

[MIA 90-11] Mjølner Informatics: Sif - Mjølner BETA Source Browser
and Editor - Tutorial and Reference Manual, Mjølner
Informatics Report MIA 90-11

[MIA 93-31] Mjølner Informatics: Freja - An Object-Oriented CASE Tool
- Tutorial and Reference Manual, Mjølner Informatics
Report MIA 93-31.

[MIA 96-33] Mjølner Informatics: Frigg - User Interface Builder -
Tutorial and Reference Manual, Mjølner Informatics Report
MIA 96-33.

Appendix A
This appendix contains the source code for the BETA program used as example in the
tutorial. The source consists of the files record.bet and recordlib.bet.

ORIGIN '~beta/basiclib/v1.5/betaenv';
(* record.bet
 *
 * COPYRIGHT
 * Copyright Mjølner Informatics, 1989 - 1994
 * All rights reserved.
 *)
INCLUDE 'recordlib'
--- PROGRAM:descriptor ----
(# Birger, PeterA, Bible, LarsP, ClausN, ElmerS, KimJ: ^Record;
Greg: @Register;
Ereg: @Register
(# element::< Employee;
 Display::< (#do '/Employee '->putText; INNER #);
#);

do (0 ,'Bimmer Moller-Pedersen','Unknown',- 200,'Piccolo')
-> &NewEmployee->Birger[];

(1,'Peter Andersen','male','missing M.D.')
-> &NewStudent->peterA[];

(2,'Lars Bak','male',1000000,'Garbage collector')
-> &NewEmployee->LarsP[];

(3,'Claus Norgaard','male',1000010,'Senior Coder')
-> &NewEmployee->ClausN[];

(4,'Elmer Sandvad','male',1000050,'Senior Supporter')
-> &NewEmployee->ElmerS[];

(5,'Kim Jensen M|ller','male',999990,'Painter')
-> &NewEmployee->KimJ[];

(9,'Kristensen et al.','Object Oriented Programming in the BETA language')
-> &NewBook->Bible[];

Birger.Display; PeterA.Display; Bible.Display;
'==========================='->putText; newline;
Greg.init; Ereg.init;
Birger[]->Greg.insert; Bible[]->Greg.insert; PeterA[]->Greg.insert;
ClausN[]->Ereg.insert; LarsP[]->Ereg.insert; ElmerS[]->Ereg.insert;
KimJ[]->Ereg.insert;
Greg.display; Ereg.display;
(if LarsP[]->Ereg.has then
 'LarsP in employee register'->puttext
 else

 'LarsP not in employee register'->puttext
if);
newline;
(if LarsP[]->Greg.has then
 'LarsP in general register'->puttext
 else

 'LarsP not in general register'->puttext
if);
newline;

#)

3 8 Valhalla Debugger

ORIGIN '~beta/basiclib/v1.5/betaenv';
(* recordlib.bet
 *
 * COPYRIGHT
 * Copyright Mjølner Informatics, 1989 - 1994
 * All rights reserved.
 *)
INCLUDE '~beta/containers/v1.5/hashTable'
--- lib:attributes ---
Record:
 (# key: @Integer;
 Display:< (* declaration of a virtual (procedure) pattern *)
 (#
 do newline;
 '-------------------'->putText; newline;
 'Record: Key = '->putText; Key->putInt; newline;
 INNER
 #);
 #);
Person: Record
 (# name,sex: @Text;
 Display::< (* a further binding of Display from Record *)
 (#
 do 'Person: Name = '->putText; name[]->putText; newline;
 ' Sex = '->putText; sex[]->putText; newline;
 INNER
 #);
 #);
Employee: Person
 (# salary: @Integer; position: @Text;
 Display::<
 (#
 do 'Employee: Salary = '->putText; salary ->putInt; newline;
 ' Position = '->putText; Position[]->putText; newline;
 INNER
 #);
 #);
Student: Person
 (# status: @Text;
 Display::<
 (#
 do 'Student: Status = '->putText; Status[]->putText; newline;
 INNER
 #)
 #);
Book: Record
 (# author, title: ^Text;
 Display ::<
 (#
 do 'Book: Author = '->putText; Author[]->putText; newline;
 ' Title = '->putText; Title[]->putText; newline;
 INNER
 #)
 #);
NewRecord:
 (# resultType:< Record;
 new: ^resultType;
 key: @Integer;
 enter key
 do &resultType[]->new[];
 key->new.key;
 INNER;
 exit new[]
 #);
NewPerson: NewRecord
 (# resultType::< Person;
 N,S: @Text
 enter (N,S)
 do N->new.Name; S->new.Sex;

Appendix A 3 9

 INNER;
 #);
NewEmployee: NewPerson
 (# resultType::< Employee;
 S: @Integer; P: @Text
 enter (S,P)
 do S->new.Salary; P->new.Position;
 INNER;
 #);
NewStudent: NewPerson
 (# resultType::< Student;
 S: @Text
 enter S
 do S->new.Status;
 INNER;
 #);
NewBook: NewRecord
 (# resultType::< Book;
 A,T: @Text
 enter (A,T)
 do A->new.Author; T->new.Title;
 INNER;
 #);

Register: HashTable
 (# element::< Record;
 (* Virtual class specifying the (generic) element
 * type of the hashtable. *)

 hashfunction::< (# do e.key->value #);
 (* Specialization of the hashfunction to use on
 * elements of the hashtable. *)

 Display:<
 (* Display all elements of the table. *)
 (#
 do newline; '############ Register Display '->putText;
 INNER;
 newline;
 scan (# do current.display #);
 '############ End Register Display #######'->putText; newline
 #);

 Has:
 (* Check if an element is present in the table. *)
 (# e: ^element;
 found: @Boolean;
 enter e[]
 do
 e[]->hashfunction->findIndexed
 (# predicate::< (# do current.key = e.key->value #);
 notFound::< (# do false->found #);
 do true->found;
 #);
 exit found
 #);
 #)

Index

<

<<n<<..23

>

>>n>>..23

A

Active Stack..27
After...23

B

Before...23
BETART environment variable..................34
Break..23
Break points..6
breakpoint marker...................................16
Breakpoints..15

Load...27
Save...27

Breakpoints List.....................................26
Breakpoints menu.............................19; 25
Browsing code..16
Browsing objects....................................30
Buttons Area..11

C

called Current Object...............................13
Close..25
Closing Multiple Views...........................22
code view..28
code views..9
Command Line Arguments.......................20
Command Line Editor........................11; 20
Command Line…...................................24
Contract attribute....................................31
Control menu...25
Controlling the Execution........................23
Ctrl-e..26
Ctrl-g...25
Ctrl-h...26
Ctrl-i..25
Ctrl-j..25
Ctrl-k...26
Ctrl-m..26
Ctrl-q..24
Ctrl-r..25
Ctrl-w...25
Ctrl-y...25
Current Code..27
Current Component.................................27

Current Object..27

D

Debug Valhalla.......................................28
Detailing static objects.............................14

E

Edit menu..24
Environment Editor.................................21
environment variables..............................21
Environment….......................................24
Erase Break..26
Erase Break After....................................26
Execution Control....................................6

F

Fast Browse Mode.............................27; 31
File menu...24
Fit to contents..31

G

garbage collections..................................34
Go...25
Go Back..31
Go Until Mark.......................................26

H

Hide Attribute..31

I

iconify..22
Inconveniences.......................................34
Inspecting object state..............................13
Inspecting the call chain...........................15
Inspecting the current code........................28
Interaction with Views.............................22
Interrupting the debugged process...............23
Invisible Origins.....................................27

K

Kill..25

M

Menus..11

N

New…..24
Number Objects......................................28

4 2 Valhalla Debugger

O

object view..30
Object View menus.................................31
object views ..9
One Line Char Repetitions.......................27
Oneshot ..23
Open inline..31
Open Separate..31
Outline on Open.....................................28

P

Preferences menu....................................27
Process Info Area....................................11
program execution....................................5

Q

Quit...24

R

Read Labels on Fork................................28
Refresh...25
Rerun...15; 25
Rerunning the program............................15
Runtime error caught by Valhalla...............12
Runtime Inspection..................................7

S

Set Break...26
Set Break After.......................................26
Set Breakpoint..15
Set OneShot..26
Set OneShot After...................................26
Set Trace After…....................................26
Set Trace…..26
Setting a breakpoint................................15
Setting Breakpoints.................................23
Short Code Names..................................28
Short Object Names................................28
Show attribute..31
Show Current Code on Stop.....................28
Source Browser.......................................19
Source Browser…...................................24
stack view9; 15; 32
Starting Valhalla......................................9
Step...16; 25

Step Over..16; 25
Stop...25

T

Trace ..23
Trace points..6
Tutorial..9

U

Universe Menus......................................24
Unsetting Breakpoints..............................24

V

Valhalla
AlwaysCurCode..................................33
BOOLEAN OPTIONS.........................33
BOOLEANOPTION............................32
BOPT...32
CharRepOnALine33
CL...33
COMMLINE.....................................33
DebugValhalla....................................33
DragOutlineOnOpen33
ENV...32
ENVIRONMENT...............................32
EXEC...32
EXECNAME.....................................32
InvisibleOrigins..................................33
NumberObjects...................................33
PID..33
ReadLabelsOnStartUp33
ShortCodeNames33
ShortObjectTitles................................33
VALHALLAOPTS.............................33

Valhalla
Command Line Options.......................32

Valhalla (the story)...................................5
Valhalla Info Area...................................11
Valhalla Universe...........................9; 10; 19
View Outline...22
View Short-cuts......................................22
Views area...11

W

Window types...9
Windows menu.......................................27

