
The Mjølner BETA System
The Bifrost Graphics System

Tutorial

Mjølner Informatics Report

MIA 91-19(1.3)

August 1996

Copyright © 1991-96 Mjølner Informatics ApS.
All rights reserved.

No part of this document may be copied or distributed
without the prior written permission of Mjølner Informatics

i

Table of Contents

Introduction .. 1

1 The Program Skeleton .. 3

2 Adding the City Map... 4

3 Making Stations .. 6

4 Moving Stations .. 9

5 Making Rails. 10

6 Moving Rails. 14

7 Adding a Palette .. 16

8 Further Readings .. 20

Appendix A — The Final Program ... 21

Appendix B — A Screen Snapshot .. 29

Bibliography ... 31

Index33

1

Introduction

This manual is a short tutorial in the use of version 2.1 of the Bifrost Graphics Sys-
tem. The imaging model of the Bifrost Graphics System is based on the Stencil &
Paint metaphor known from, e.g., PostScript. That is, drawings are defined by con-
structing a Stencil—in Bifrost termed a Shape—describing the outline of the drawing,
and filling it with a Paint. A composition of a Shape and a Paint is known as a
Graphical Object. Graphical Objects can be combined into composite graphical ob-
jects, in Bifrost termed Pictures. This is the Bifrost abstraction of what is also known
as Graphics Modelling.

A Graphical Object can be drawn on a Canvas. The Canvas is the Bifrost abstraction
of the drawing device, and can be, e.g., a window in a window system. When a
Graphical Object is drawn on a Canvas, the Canvas "remembers" the Graphical Ob-
ject by putting it into a Picture in the Canvas. In a window system this means that the
Graphical Object is automatically redrawn when needed, once it has been drawn in
the Canvas. The position of a Graphical Object in the list of Graphical Objects in the
Canvas Picture determines the "stacking order" of the Graphical Object in the Canvas,
i.e., which objects are below and on top of the Graphical Object. The Canvas also
allows interaction to be performed on the Graphical Objects, e.g. moving and
reshaping as well as highlighting the Graphical Objects in various ways. Graphical
Objects can even be created interactively in Canvasses.

A pure Shape is composed of two different types of Segments: LineSegments and
SplineSegments. LineSegments consist of a begin and an end point. SplineSegments
are used for constructing curves. They also have a begin and an end point, but in ad-
dition more control points may be added. Except for the begin and end point, the
spline curve does not go through the control points. Instead the intermediate control
points act as small "magnets", that "pull" the curve. For instance, the spline in the
margin is composed of three control points in addition to the begin and end points.

To avoid some of the tedious work of defining shapes, Bifrost includes a number of
Predefined Shapes for the most commonly used Graphical Objects. The Graphical
Objects using the Predefined Shapes are termed Predefined Graphical Objects. Besi-
des relieving the user from the tedious shape defining work, the Predefined Shapes
and Predefined Graphical Objects also allows Bifrost to utilize many of the devices
more effectively, since most devices have predefined operations for drawing, e.g., el-
lipses and text. Some of the Predefined Shapes are Strokeable Shapes. Strokeable
Shapes have the property, that when used with a Paint in a Graphical Object, instead
of being filled with the Paint, it can be stroked, i.e. outlined, using the Paint and a gi-
ven stroke width.

The Paint describes the color or raster to be pushed through the shape, when the
graphical object is displayed on a Canvas. The paint concept in Bifrost supports any
kind of pure colors, as well as more sophisticated features such as hatching, tiling,
and sampled raster images. These various features of paint can be described in two
main paint concepts: solid color and raster paint. A solid color fills out the entire
shape with one particular color. This concept may be specialized by allowing a
repeated pattern, a tile, to be applied to the Paint, conceptually by only allowing the
paint to reach the canvas where this pattern allows it to. This is a way of obtaining
various hatching effects. Raster paint uses a Raster to fill the shape. A Raster is a
rectangular grid of pixel values. In order to use a Raster to fill the Shape it must be
specified what to do if the Raster is too small to fill out the entire shape. Bifrost
supports two approaches in this case: repeating the Raster over and over again, thus

A Spline
Segment:

2 Bifrost Tutorial

tiling the interior of the Shape with it, or by using a solid color—called a padding
color—to fill out any parts of the Shape not covered by the Raster, and thus not filled
by the raster image.

For a complete description of the Bifrost Graphics System, including interface
descriptions, see the Bifrost Reference Manual [MIA 91-13].

This tutorial presents the development of the graphical interface for a system for
designing a subway railroad net for a city. The requirements for this system are as
follows:

• A map of the city must be permanently shown in a window.

• Using a mouse, stations can be added by clicking at the place on the map,
where it should be.

• Using the mouse, it must also be possible to connect stations with straight lines,
illustrating the rails.

• By grabbing a station with the mouse, it must be possible to move the station
and the rails connecting it with other stations. During the movement, feedback
must be provided.

The presentation will be performed in small steps, so that only a few new major con-
cepts are used in each step. All the programs described in this tutorial can be found
on-line in the directory ~beta/bifrost/v2.1/tutorial. In Appendix A the final
program resulting from the tutorial is shown. In Appendix B a screen snapshot of the
final application can be found.

3

1 The Program Skeleton

As described in [MIA91-13] every program using Bifrost must have ORIGIN in or
INCLUDE the fragment called Bifrost, and execute an instance of the pattern called
bifrost. The following program skeleton subway1.bet will be the starting point:

ORIGIN '~beta/bifrost/v2.1/Bifrost';
-- PROGRAM: descriptor --
bifrost
(# theWindow: @window
 (# myCanvas: @BifrostCanvas
 (# open::
 (# do (300, 300)->Size->theWindow.size #);
 eventhandler::
 (# onOpen:: (# (* ... *) #);
 onMouseDown:: (# (* ... *) #);
 onKeyDown::
 (# do (if ch//'Q' then Terminate if) #);
 #);
 #);
 open:: (# do myCanvas.open #)
 #) (* theWindow *)
do theWindow.open;
#)

The ORIGIN ~beta/bifrost/v2.1/Bifrost contains the bifrost fragment. As of
version 2.1, Bifrost includes the graphical user interface environment Lidskjalv, see
[MIA 94-27], so we can start by declaring an ordinary Lidskjalv window to contain
the graphics. In the window a static Canvas1 is declared, in which further binding of
various virtuals have been prepared. In init, so far, the Canvas is given an arbitrary
size. The onOpen virtual is called when the open procedure pattern has completed,
e.g., when the window containing the Canvas has become visible in the window
system. From within this virtual pattern, the drawing operations on the Canvas should
be performed. The virtual pattern onMouseDown is called when a button on the
pointing device—if any—has been pressed. So far the actions to perform in this case
are unspecified. The virtual pattern onKeyDown is called when a keyboard key has
been pressed. In this case, it is checked whether the user types ‘Q’ within the Canvas,
and if so the application is stopped.

1 In the current Bifrost version the pattern name BifrostCanvas is used when declaring canvasses.

This is because of an overlap in names in Lidskjalv and Bifrost. The naming conflict will probably
be solved in a later version of Bifrost and Lidskjalv. In the rest of this tutorial we will use the
original Bifrost term "Canvas" as a synonym for "BifrostCanvas", but in the coding the latter has
to be used for the moment.

4

2 Adding the City Map

Having the program skeleton set up, the next issue considered, is the map of the city
that is to be displayed in the Canvas. One way to display this map is to use an in-
stance of the Predefined Graphical Object Rect, which describes a Rectangle, and
then fill it with a TiledSolidColor using the BitMap for tiling. A TiledSolidColor is a
solid color, e.g. black, which also has a Bitmap—a so called tile. When filling with a
TiledSolidColor, only the bits in the tile, which are TRUE, will be painted. The tile
will be replicated as many times as needed to fill out the Shape, hence the name.

Given that the bit map of the city map is in the file ~beta/bifrost/v2.1/bitmaps/
Aarhus.pbm in the PBM format discussed in [MIA 91-13, Chapter 4], the Tiled-
SolidColor may be declared as follows in subway2.bet:

aarhus: @TiledSolidColor
 (# bits: @bitMap
 (#
 do 'Reading in map ... ' -> puttext;
 '~beta/bifrost/v2.1/bitmaps/Aarhus.pbm'
 -> readFromPBMfile;
 'done' -> putline;
 (0,0) -> hotspot;
 #);

 init::
 (#
 do black -> name;
 bits -> thetile;
 #)
 #);

The BitMap is read from the PBM file using ReadFromPBMFile. This may take a
while, and to inform the user of what is going on, some explanatory text is written out
on the screen. The hotspot of the BitMap is set to (0,0). This is to control the place-
ment of the BitMap within the Rect, that it will be used to fill out.

In the TiledSolidColor, init simply evaluates the BitMap, and assigns the result of
the evaluation—which is a reference to the BitMap—to the theTile attribute of the
TiledSolidColor. It also evaluates the pattern black and assigns the result to the name
attribute. This will make the bits of the tile which are set appear black on the screen.
The black pattern is declared in the fragment ~beta/bifrost/v2.1/ColorNames
which must be INCLUDEd in subway2.bet.

With this definition of the TiledSolidColor, the Rect may then be declared as follows:

Adding the City Map 5

map: @Rect
 (#
 init::
 (#
 do (* Make THIS(Rect) the size of the aarhus-bitmap *)
 aarhus.init;
 (0,aarhus.bits.height) -> upperleft;
 aarhus.bits.width -> width;
 aarhus.bits.height -> height;
 aarhus[] -> setpaint;
 #)
 #);

In the Rect, init first initializes the TiledSolidColor called aarhus which in turns
reads the bitmap from the PBM file as described above. Then upperleft, width and
height are set using the dimensions of the BitMap. Finally a reference to the Tiled-
SolidColor is given to the setpaint attribute of the Rect, thus making aarhus be
used as the paint to fill the Rect with. The shape of the Rect has a default hotspot in
the upper left corner. When a graphical object is filled with a TiledSolidColor, the
hotspot of theTile of the TiledSolidColor is placed in the hotspot of the Shape of the
graphical object, and theTile is then replicated as needed to fill out the entire Shape.
Thus having defined the hotspot of aarhus.bits to (0,0) and made the Rect have the
exact dimensions of the BitMap, the BitMap will be shown exactly once within the
Rect.

All that is needed now is to initialize and draw the Rect. It is initialized in myCan-
vas.open:

open::
 (#
 do (* Make THIS(BifrostCanvas) the size of the map *)
 map.init;
 (map.width, map.height)->Size->theWindow.size;
 #);

Instead of the arbitrary size used in subway1.bet, the Canvas is given the same di-
mensions as the Rect containing the BitMap. Now the Rect is ready to be drawn when
the Canvas has become visible on the screen. Thus myCanvas.onOpen becomes:

onOpen:: (# do map[] -> draw; #);

The predefined graphical object Rect is defined in a separate fragment, ~beta/
bifrost/v2.1/PredefinedGO, which must be INCLUDEd in subway2.bet.

6

3 Making Stations

The next step is to create stations on top of the map in the window. First a Station pat-
tern is declared. One way to present the stations is by a filled circle with a letter cen-
tered inside, denoting the station, as shown in the margin. Since the graphical object
representing a station thus contains several other graphical objects, it is declared as a
Picture in subway3.bet:

Station: Picture
 (# name: @text;
 label: @GraphicText;
 position: @point;
 Circle: Ellipse
 (# radius: @
 (# r: @integer
 enter (#
 enter r
 do r->horizontalradius->verticalradius;
 #)
 exit r
 #);
 #);

 filledcircle, circleoutline: @Circle;

 init::
 (# ch: @char;
 r: @rectangle;
 c: @point;
 enter (position, ch)
 do (* Initialize filledcircle *)
 filledcircle.init;
 10->filledcircle.radius;
 position->filledcircle.center;
 fill[]->filledcircle.setPaint;

 (* Initialize circleoutline *)
 circleoutline.init;
 11->circleoutline.radius;
 position->circleoutline.center;
 true->circleoutline.theshape.stroked;
 2->circleoutline.theshape.strokewidth;
 color[]->circleoutline.setPaint;

 (* Center the label within the circles *)
 ch->name.put;
 label.init;
 (position, Times, Bold, 20, false, name[])
 -> label.inittext;
 label.getbounds->r;
 (r.x+(r.width) div 2, r.y-(r.height+1) div 2)->c;
 (circleoutline.center,c)->subpoints->label.move;
 color[]->label.setPaint;

A

Making Stations 7

 (* Add circles and label to THIS(Picture) *)
 filledcircle[]->add;
 circleoutline[]->add;
 label[]->add;
 #);
 #);

In a Station, init enters the position to display the station, and a character to display
as a label in it. The Picture is actually made up of two circles, a stroked one display-
ing the outline of the Station and a filled one for the background. To simplify matters
a Circle pattern is defined; all it does is to extend the Ellipse pattern with a radius at-
tribute for setting horizontalradius and verticalradius to the same value. No-
tice the use of a pattern in the enter part of radius. This is to assure that horizon-
talradius and verticalradius are only changed when a value is entered to ra-
dius, not when it is only used to exit its value. The filled Circle uses a Paint called
fill, and the stroked one uses a Paint called color. These are both SolidColors

color: @SolidColor;
 (* The color used for stations and rails *)
fill: @SolidColor;
 (* The color used to fill station backgrounds *)

and are initialized in open in theWindow, just before the Canvas is opened:

open::
 (#
 do (* Initialize colors for Stations and Rails *)
 color.init; IndianRed->color.name;
 fill.init; PaleGreen->fill.name;
 (* Initialize and open the BifrostCanvas *)
 myCanvas.open
 #)

To display the label inside the circles, a GraphicText is used. This Predefined Graphi-
cal Object has an attribute for the text to display. Thus the first thing to do is to put
the char ch into a text name. Then the GraphicText is initialized, its attributes are set
using inittext, and it is centered within the circles by moving it a certain distance.
This distance is calculated using the bounding box of the GraphicText. The sub-
points pattern simply exits the coordinatewise difference between the two points en-
tered. The GraphicText is given the same paint as the outline of the Station.

Finally, the three graphical objects just defined and initialized are added to the
Picture, and the Station is ready to be displayed.

To create a Station and display it when the mouse is pressed in the window, the
onMouseDown virtual is extended:

onMouseDown::
 (#
 do (* Transform mousepos to BifrostCanvas coordinates *)
 mousepos->devicetocanvas->mousepos;
 mousepos->makeStation;
 #);

Local to onMouseDown is a Point called mousepos, which is the position of the mouse
in the window at the time of the button press. This position is reported in device
coordinates, i.e., screen coordinates, so in this case, the first thing to do is to
transform mousepos to Canvas coordinates using the devicetocanvas attribute of the
Canvas pattern. Once this is done, an item called makeStation is invoked to create
the Station.

8 Bifrost Tutorial

makeStation: @
 (# pos: @point;
 aStation: ^station;
 ch: @char;
 enter pos
 do &station[] -> aStation[];
 (pos, ch) -> aStation.init;
 ch+1 -> ch;
 aStation[] -> draw;
 #);

makeStation is a static item because it must remember the ch attribute, which is used
as the label of the station being created. All it does is to instantiate a Station, in-
crement ch by one (such that the next Station created will be labelled with the next
letter in the alphabet), and finally draw the Station just created in myCanvas. As men-
tioned in the introduction, this means that the Station will now be the front most
graphical object in the Picture used by the Canvas to "remember" its Graphical Ob-
jects. To make the first Station appear with the right label, makeStation.ch must be
initialized. An appropriate place to do this is in open of myCanvas, which then be-
comes

open::
 (#
 do (* Make THIS(BifrostCanvas) the size of the map *)
 map.init;
 (map.width, map.height)->Size->theWindow.size;
 (* The first Station will have label "A" *)
 'A'->makeStation.ch;
 #);

Exercise: The above solution for makeStation limits the number of Stations to the
number of characters in the alphabeth. Describe a solution without this limitation.

9

4 Moving Stations

Having created the Stations, the next task is to make it possible to move them around.
The moving of a Station is simple to do, since a Station is a Picture which in turn is a
specialization of AbstractGraphicalObject. A reference to an AbstractGraphicalObject
can be entered to the interactivemove attribute of myCanvas, that does exactly what
is needed in this case. Thus the only thing to do is to change onMouseDown of
myCanvas to handle the situation right. If the mouse is pressed outside any existing
Stations, a new one must be created as above. If the mouse is pressed inside an
existing Station, then an interaction for moving this station should be started. One
way to find out if anything was hit is by scanning through all graphical objects in the
Picture of myCanvas, and for each graphical object check whether the mouse position
is contained within this graphical object. An exception has to be made for the city
map, which must never be moved around. In subway4.bet, onMouseDown becomes

onMouseDown::
 (#
 do (* Transform mousepos to BifrostCanvas coordinates *)
 mousepos->devicetocanvas->mousepos;

 scan:
 (# (* Find out what was hit - if any *)
 do thePicture.ScanGOsReverse
 (#
 do (if (myCanvas[], mousepos)->go.containspoint then
 (if go[]
 // map[] then (* ignore *)
 else
 (* We hit a Station: Move it *)
 (go[], mousepos, NoModifier)
 -> interactivemove;
 leave scan
 if);
 if);
 #);
 (* Nothing was hit *)
 mousepos->makeStation;
 #);
 #);

The Picture used to hold the graphical objects of myCanvas is called thePicture. The
graphical objects in thePicture are scanned using the control pattern ScanGOs-
Reverse. This control pattern scans through the objects in the Picture downwards
from the top (frontmost) graphical object. Using go.containspoint it is checked if
the mouse was inside the graphical object, and if so, the scanning is stopped, except if
the graphical object was the map. If a Station was "hit", a reference to it is passed to
interactivemove. The Modifier parameter to interactivemove is used to specify
what keyboard modifiers should be used to constrain the interaction. In this case No-
Modifier is specified, meaning that the interaction cannot be constrained. If no
Station was hit, makeStation is invoked as before.

10

5 Making Rails

As mentioned earlier, a Rail should appear as a straight line between the two Stations
it connects. Thus, in subway5.bet, the pattern Rail is as follows

Rail: Line
 (# init:: (# do color[] -> setpaint; 2 -> width; #) #);

It is simply a Line using the same Paint as is used for the outline of Stations, and
which has a width of 2 pixels.

Then comes the question of creating the rails. Again onMouseDown has to be changed.

onMouseDown::
 (#
 do mousepos->devicetocanvas->mousepos;

 scan:
 (# (* Find out what was hit - if any *)
 do thePicture.ScanGOsReverse
 (#
 do (if (myCanvas[], mousepos)->go.containspoint then
 (if go[]
 //map[] then (* ignore *)
 else
 (if go##=Station## then
 (* We hit a station *)
 (if shiftmodified then
 go[]->interactiveCreateRail;
 else
 (go[],mousepos,NoModifier)
 -> interactivemove;
 if);
 leave scan
 if);
 if);
 if);
 #);
 (* No Station was hit *)
 mousepos->makeStation;
 #);
 #);

Firstly, in the scanning of graphical objects, now three possibilities exist for what can
be hit: Either the map, a Station, or a Rail. Once again hitting the map is taken as if
nothing was hit, but if something else was hit, it must be determined what kind of
graphical object it was. This is done by comparing the structure reference of go with
the pattern reference Station##. If a Station has been hit, it must be determined
whether it should be moved as before, or interaction for connecting it with another
Station should be started. Here it is chosen to start connecting it with another Station,
if the mouse button press was modified by holding down the SHIFT key, or otherwise
to move the Station as before.

Making Rails 11

Exercise: The structure comparison can be a fairly expensive operation in BETA, and
some would say, that using such tests for types, is not a truly object-oriented
programming style. Write a variant of onMouseDown, that does not use structure
comparisons.
Hint: Declare a pattern HitPicture with a virtual onHit, and let both Station and
Rail be specializations of HitPicture.

The creation of a Rail, connecting the Station with another one, is accomplished using
an item called interactiveCreateRail:

interactiveCreateRail: @
 (# r: ^rail;
 hitstation, otherstation: ^Station;

 enter hitstation[]
 do &rail[] -> r[];
 r.init;
 (r[], hitstation.position, NoModifier)
 -> interactiveCreateShape;

 (* Check if r ends in another station *)
 scan: thePicture.ScanGOsReverse
 (#
 do (if (myCanvas[], r.end) -> go.containspoint then
 (if go[]
 // map[]
 // hitstation[] then (* ignore *)
 else
 (if go##=Station## then
 (* r ends in another station;
 * connect with hitstation
 *)
 go[] -> otherStation[];

 r -> draw;
 (* It looks better if the stations
 * cover the ends of the rail.
 * Instead of lowering the rail in the
 * BifrostCanvas (which would put the rail
 * behind the map) we raise the two
 * stations
 *)
 hitstation[] -> bringForward;
 otherstation[] -> bringforward;
 leave scan
 if);
 if);
 if);
 #);
 #);

The first thing to do is to instantiate and initialize a Rail. Then a reference to this Rail
is passed to interactiveCreateShape, with the position of hitStation as starting
point, i.e. the feedback, which in this case is a "rubber line", will begin in hit-
Station.position. The feedback is ended when the user releases the mouse button.

12 Bifrost Tutorial

Then it must be determined if the mouse was released on top of another Station. This
is done in the same fashion as the way it was determined if a Station was hit in
onMouseDown. If the mouse was released on top of another Station, a reference to this
Station is kept in otherStation. In this case, first the two Stations must be connec-
ted; this issue is considered below. Then the Rail must be drawn, and finally a few re-
arrangements are done to improve the appearance of the connection.

Instead of leaving the Rail on top of the two Stations after it is drawn, it looks nicer if
the Rail is moved behind the Stations, see the illustration in the margin. One way of
doing this is to use SendBehind for the Rail. However, this will put the Rail to the
very back of the Picture of myCanvas, and would thus put the Rail behind the map
too. Instead the two Stations can be brought to the top of the Picture of myCanvas
using BringForward.

What is left is the question of how to make the two Stations know that they are con-
nected with a Rail. At least they need to know this in order to change the Rails when
the Stations are moved; this issue is considered in the next section. Since the rails are
to be considered bi-directional, both Stations connected by a Rail have to know about
the Rail, and where the other Station is. To accomplish this, each Station will have a
list of references to Rails that connects it with other Stations. Furthermore references
to the two end points of each Rail is kept in the list. These references are qualified
with Rail.theShape.invalidatePoint, which is an ordinary Point, with the exception
that changing it will cause some recalculations of the Shape of the Rail (the Shape is
"invalidated"). This is used internally by Bifrost, e.g. to control how often the bound-
ing box needs to be recalculated. Using the standard List from the BETA library
(automatically INCLUDEd by Bifrost), this can be expressed as follows:

Station: Picture
 (#
 rails: @list
 (# element::
 (# r: ^rail;
 mypoint,
 otherpoint: ^r.theshape.invalidatepoint;
 #);
 #);

 #);

Using this data structure, the issue of connecting the two Stations in interactive-
CreateRail can be solved as follows:

interactiveCreateRail: @
 (# r: ^rail;
 hitstation, otherstation: ^Station;
 e: ^hitstation.rails.element;
 enter hitstation[]
 do ... instantiate, init and interactively create r,
 as above ...
 (* Check if r ends in another station *)
 scan: thePicture.ScanGOsReverse
 (#
 do (if (myCanvas[], r.end) -> go.containspoint then
 (if go[]
 // map[]
 // hitstation[] then (* ignore *)
 else
 (if go##=Station## then
 (* r ends in another station;
 * connect with hitstation
 *)
 go[] -> otherstation[];
 otherstation.position
 -> r.end; (* Small adjustment *)

A

B

A

B

Making Rails 13

 (* Add r to hitstation and
 * otherstation.
 *)
 &hitstation.rails.element[] -> e[];
 r[] -> e.r[];
 r.theshape.begin[] -> e.mypoint[];
 r.theshape.end[] -> e.otherpoint[];
 e[] -> hitstation.rails.append;
 &otherstation.rails.element[] -> e[];
 r[] -> e.r[];
 r.theshape.end[] -> e.mypoint[];
 r.theshape.begin[] -> e.otherpoint[];
 e[] -> otherstation.rails.append;

 ... draw r and rearrange as above ...
 leave scan
 if);
 if);
 if);
 #);
 #);

First a small adjustment is done: The mouse may have been released anywhere within
otherStation. It looks better if the Rail goes through the center of otherStation,
so the end point of r is changed to otherStation.position, which was initialized to
the center of otherStation when otherStation was initialized. However, both
hitStation and otherStation may have been moved since they were initialized, so
the use of hitStation.position and otherStation.position as above is not cor-
rect if something else isn't done. What needs to be done is to update the position at-
tribute each time a Station is moved. This can be done in the move virtual, which is
called by interactiveMove. The easiest way to update position is to use the center
of one of the two circles constituting the Station and applying the transformation ma-
trix TM2 of the Station. Notice that all moving, scaling and rotating of a graphical ob-
ject is remembered by changing TM, not by changing the coordinates of the defining
points of the shape of the graphical object.

Station: Picture
 (#

 move::
 (#
 do (* Move is called by interactiveMove *)

 (* TM describes the current transformation.
 * Make position be the *transformed* position
 *)
 circleoutline.center
 -> TM.transformpoint
 -> position;
 #);

 #);

Now the Stations can be connected with Rails, but one problem remains: If a Station
is moved after some Rails have been added to it, the Rails will not move with the
Station. In the next section this problem will be addressed.

2 The use of 3×3 matrices for describing geometrical transformations is described in detail in

[MIA 91-13], Chapter 2.

14

6 Moving Rails

When moving the Stations, there are two things to do to make the Rails "stick" to the
Station being moved: During the move, feedback of the Rails connecting the Station
with other Stations, must be shown, and after the Station has been moved, the Rails
must be physically moved too.

When a Station is moved by InteractiveMove, Bifrost automatically supplies feed-
back during the move. This is done by repeatedly executing an instance of the
HiliteOutline virtual of the shape of the Station. When calling HiliteOutline, the
drawing is done in XOR mode, meaning that drawings may be erased simply by
drawing again. A Station is a Picture, and thus feedback for all graphical objects that
have been added to this Picture is automatically provided. The Rails belonging to a
Station, however, is not added to the Picture, and thus feedback for the rails is not
supplied automatically. In subway6.bet, by further binding the HiliteOutline vir-
tual of the Station pattern, the extra feedback is easily supplied:

Station:
 (#

 shapedesc::
 (#
 hiliteoutline::
 (#
 do rails.scan
 (#
 do (if TM[]//NONE then
 (* No transformation *)
 (current.otherpoint -> CanvasToDevice,
 position -> CanvasToDevice)
 -> immediateline;
 else
 (current.otherpoint
 -> CanvasToDevice,
 position -> TM.transformpoint
 -> CanvasToDevice)
 -> immediateline;
 if);
 #);
 #);
 #);
 #)

HiliteOutline enters a reference to a Matrix called TM. If this reference is not
NONE, it describes the transformation to apply to the feedback. E.g., if the Station
has been moved a distance, TM will describe this translation. If the reference is
NONE, no transformation is to be applied.

The feedback for a Rail will be a simple line from the Position of the Station in ques-
tion to the other end point of the Rail. To draw the actual feedback the "immediate"
drawing operations of Canvas are used. These operations draw directly into the Can-
vas, without adding the drawing to the "memory" of the Canvas. The operations
expect device coordinates. This is the reason why the coordinates are transformed by
CanvasToDevice before being entered to immediateline. Instead of using position

Moving Rails 15

as the first end point of the immediate line, of course current.mypoint could have
been used. Since the Station at the other end of the Rail considered is not moved, TM
is only applied to the position of the Station being moved. Thus the feedback will be a
"rubber line" stuck to the two Stations it connects.

When the interaction is finished in InteractiveMove, as mentioned in section 5, it
calls the move virtual to actually move the graphical object considered. Again, since
the Rails are not added to the Picture, move will not change the Rails, when the
Picture is moved by InteractiveMove. Instead, this may be accomplished by further
binding move:

Station:
 (#

 move::
 (#
 do (* Move is called by interactiveMove.
 * Furtherbind to move the rails too
 *)

 ...

 rails.scan
 (#
 do current.r.getbounds -> damaged;
 position -> current.mypoint;
 (* Changes either current.r.begin or
 * current.r.end
 *)
 current.r.getbounds -> damaged;
 #);
 #);

 #)

In rails.scan, current.r is a reference to one of the rails connecting the Station
with other Stations. First the bounding box of the rail is reported to myCanvas as
being damaged. Then the newly transformed position is entered as the new end
point of the Rail, belonging to the Station considered. Of course the other end point of
the Rail should not be changed – this is also the reason why the Rails are not added to
the Picture (the Station), since all members of a Picture are moved rigidly when the
Picture is moved.

After the Rail has been changed, the new bounding box of it is also reported as being
damaged. After InteractiveMove has called move, it also calls myCanvas.repair.
This will make all damaged areas of myCanvas be redrawn, and since the areas the
Rails have covered are now marked as damaged, this will complete the moving of the
rails too.

16

7 Adding a Palette

To illustrate the use of multiple Canvasses, the application can be elaborated a bit:
Some users may find it annoying to remember to hold down the Shift modifier to be
able to create rails. Except for the Shift-modification, the application as described
above is "mode-less", i.e., a given user action always results in the same action in the
application. As an alternative, the application can be changed, so that it may be put
into different modes. To control what is the current mode, a Palette can be put into a
separate window. This Palette could look like the one shown in the margin. The item
with the arrow, indicates "Move-mode", where all that can be done is moving the
Stations around. The second item contains a Station, and denotes "Station-mode",
where all that can be done is creation of Stations. The third item contains a Rail, and
denotes "Rail-Mode", where all that can be done is creation of Rails. Finally the last
item is used to quit the application, using the mouse. In the Bifrost library, a pattern
exists, which is intended to make such palettes out of graphical objects. The pattern is
in ~beta/bifrost/v2.1/Palette, which the application thus needs to INCLUDE.
Then, in subway7.bet, the Palette may be specified in the following way:

(* Constants corresponding to palette selections *)
MoveMode: (# exit 1 #);
StationMode: (# exit 2 #);
RailMode: (# exit 3 #);
Quit: (# exit 4 #);

PaletteWindow: @window
 (# Mode: @Palette
 (# changed::
 (#
 do (if selection//Quit then Terminate if);
 #);
 open::
 (# G: @GraphicalObject;
 T: @GraphicText;
 L: @myCanvas.Rail;
 S: @myCanvas.Station;
 do G.init;
 (0, 32)->G.theShape.open;
 (0, 10)->G.theShape.lineto;
 (5, 15)->G.theShape.lineto;
 (11, 0)->G.theShape.lineto;
 (15, 2)->G.theShape.lineto;
 (9, 16)->G.theShape.lineto;
 (16, 16)->G.theShape.lineto;
 G.theShape.close;
 blackpaint[]->G.setpaint;
 G[]->append;

 ((0,0), 'S')->S.init;
 S[]->append;

 L.init;
 ((0,0), (50,30))->L.coordinates;
 L[]->append;

Quit

S

Adding a Palette 17

 T.init;
 ((100,20),Helvetica,Italic,20,false,'Quit')
 ->T.inittext;
 blackpaint[]->T.setpaint;
 T[]->append;

 StationMode->selection;
 (size, (4,4)) -> AddPoints -> palettewindow.size;
 #);
 #) (* Mode *);
 open:: (* PaletteWindow *)
 (# s: @point;
 do hide (* initially invisible *);
 false->paletteOpen;
 (NONE, 80, 50, true)->Mode.open;
 'Mode'->title;
 myCanvas.size->s;
 (myCanvas.position, (s.x, 0)) ->AddPoints -> position;
 #);
 #);

First a standard Lidskjalv window called PaletteWindow is created to contain the
Palette. In the Palette, which is called Mode, open sets up the contents of the Palette.
Mode.open is called from PaletteWindow.open. It enters a position – (10, 10) –, the
size of each field in the Palette – 80 times 50 – and finally a boolean specifying if the
sequence of graphical objects should be placed next to each other (a horizontal
Palette), or below each other (a vertical Palette), which is chosen here. The window is
given a title "Mode", and is placed next to the window containing the subway system.

In Mode.open the four graphical objects are specified and appended: First the arrow
is made as an instance of GraphicalObject. In a GraphicalObject, the Shape may be
directly manipulated. Here the shape definition language is used to add the line Seg-
ments, that define the outline of the arrow. Then blackpaint, which is a local
attribute of Palette, is specified as the Paint, and finally the GraphicalObject is
appended to the Palette. Likewise instances of Station, Rail, and GraphicText are
initialized and appended. Finally the initial selection of the Palette is set. The
selection attribute of a Palette is an integer holding the number of the currently se-
lected item of the Palette. The number of an item is set to the current number of items
after the item has been appended to the Palette. To improve the readability of the
program four constant patterns have been defined, exiting the integers corresponding
to the selection of the Palette.

The Palette must then be opened. An appropriate place to do this is in when opening
the main window:

open::
 (#
 do (* Initialize colors for Stations and Rails *)
 color.init; IndianRed->color.name;
 fill.init; PaleGreen->fill.name;
 (* Open the BifrostCanvas *)
 myCanvas.open;
 (* Open the Palette *)
 palettewindow.open;
 'Type ''P'' to open the Palette'->putline;
 #)

Notice, that because hide is called in PaletteWindow.open, the window is not
immediately shown when opened: It should be possible to open and close the Palette
when the user wants to. The application should behave like before when the Palette is
not shown, i.e., Rails are created by Shift-clicking a Station and there are no other
modes. But when the Palette is shown, it should define the current mode, as described
above. The state of the Palette can be toggled when the user types a 'P':

18 Bifrost Tutorial

paletteOpen: @boolean;

onKeyDown::
 (#
 do (if ch
 //'Q' then Terminate
 //'P' then
 (if not paletteOpen then
 palettewindow.show;
 else
 palettewindow.hide;
 if);
 not paletteopen -> paletteopen;
 if)
 #);

The current state of the Palette, i.e., shown or hidden, is determined by the boolean
paletteOpen. This boolean is then used in onMouseDown to determine what to do.

onMouseDown::
 (#
 (* Actions for Stations *)
 StationAction: (# s: ^Station enter s[] do INNER #);
 MoveIt: StationAction
 (# do (s[],mousepos,NoModifier)->interactivemove #);
 MakeRail: StationAction
 (# do s[]->interactiveCreateRail #);

 (* Control pattern for finding a station and
 * performing an action on it.
 *)
 findStation:
 (# s: ^Station;
 action: ##StationAction;
 enter action##
 do (* Find out what was hit - if any *)
 scan: thePicture.ScanGOsReverse
 (#
 do (if (myCanvas[], mousepos)->go.containspoint then
 (if go[]
 // map[] then (* ignore *)
 else
 (if go##=Station## then
 (* We hit a station *)
 go[]->s[];
 (if action##<>NONE then s[]->action if);
 leave scan
 if);
 if);
 if);
 #);
 exit s[]
 #);

Adding a Palette 19

 hitstation: ^Station;

 do mousepos->devicetocanvas->mousepos;

 (if paletteOpen then (* Palette determines mode *)
 (if palettewindow.mode.selection
 // MoveMode then MoveIt##->findStation;
 // StationMode then mousepos->makeStation;
 // RailMode then MakeRail##->findStation;
 if);
 else (* Mode-less *)
 (if findStation->hitstation[]
 // NONE then
 mousepos->makeStation;
 else
 (* We hit a station *)
 (if shiftmodified then hitstation[]->MakeRail;
 else hitstation[]->MoveIt;
 if);
 if);
 if);
 #);

If the Palette is open, as mentioned, Mode.selection determines the current mode
and otherwise the behavior should be as before. Because of the more complex control
structure, a slightly different approach is taken: There are several places in the code,
where it should be known whether a Station was hit or not. A general control pattern
findStation is defined. This will search for a Station that is hit, in the same way as
before. If a hit Station is found, an action can be performed on it. This action is
specified to findStation by using a pattern reference. Using findStation, the
control structure becomes much shorter:

• In "Move-Mode" all button presses on Stations leads to an invocation of
InteractiveMove, regardless of the state of the Shift-modifier.

• In "Station-Mode" all mouse presses leads to creation of a Station, regardless
of if the button press was on top of another Station. There is no need to know if
a Station was hit or not.

• In "Rail-Mode", all button presses on Stations start the interaction for creating
a Rail, regardless of the state of the Shift-modifier.

If the Palette is not open, the behavior should be as before. As can be seen the old be-
havior can also be specified using findStation and the action patterns.

The use of pattern variables for the action in findStation could just as well be
changed to normal object references (qualified by StationAction). This is mostly a
matter of taste.

20

8 Further Readings

This completes the tutorial of Bifrost. As mentioned in the introduction, all steps of
this tutorial may be found on-line in ~beta/bifrost/v2.1/tutorial/.

Although a lot of the major concepts have been covered, many topics have not been
presented. You might want to look in the files in ~beta/bifrost/v2.1/demo/ for
some other examples of using Bifrost.

Also you might want to consult the Reference Manual [MIA 91-13], which contains a
thorough survey of the Bifrost Graphics System, including a complete description of
the programming interface and a graphical presentation of the modular design of Bi-
frost, i.e., the fragment structure.

The design criteria that lead to the current design of Bifrost, and some implementa-
tion details are presented in a thesis [Andersen 91].

Some of the demos, or one of the programs from the tutorial may be good starting
points to do your own experiments with Bifrost.

21

Appendix A — The Final
Program

This is subway7.bet:

ORIGIN '~beta/bifrost/v2.1/Bifrost';
INCLUDE '~beta/bifrost/v2.1/PredefinedGO';
INCLUDE '~beta/bifrost/v2.1/Palette';
INCLUDE '~beta/bifrost/v2.1/ColorNames';

-- PROGRAM: descriptor --

bifrost
(# theWindow: @window
 (# color: @
 (* The color used for stations and rails *)
 SolidColor;
 fill: @
 (* The color used to fill station backgrounds *)
 SolidColor;

 paletteOpen: @boolean;

 aarhus: @TiledSolidColor
 (# bits: @bitMap
 (#
 do 'Reading in map ... '->puttext;
 '~beta/bifrost/v2.1/bitmaps/Aarhus.pbm'
 ->readFromPBMfile;
 'done'->putline;
 (0,0)->hotspot;
 #);

 init::
 (#
 do black->name;
 bits->thetile;
 #)
 #);

 (* Constants corresponding to palette selections *)
 MoveMode: (# exit 1 #);
 StationMode: (# exit 2 #);
 RailMode: (# exit 3 #);
 Quit: (# exit 4 #);

 PaletteWindow: @window
 (# Mode: @Palette
 (# changed::
 (#
 do (if selection//Quit then Terminate if);
 #);
 open::
 (# G: @GraphicalObject;
 T: @GraphicText;
 L: @myCanvas.Rail;

22 Bifrost Tutorial

 S: @myCanvas.Station;
 do G.init;
 (0, 32)->G.theShape.open;
 (0, 10)->G.theShape.lineto;
 (5, 15)->G.theShape.lineto;
 (11, 0)->G.theShape.lineto;
 (15, 2)->G.theShape.lineto;
 (9, 16)->G.theShape.lineto;
 (16, 16)->G.theShape.lineto;
 G.theShape.close;
 blackpaint[]->G.setpaint;
 G[]->append;

 ((0,0), 'S')->S.init;
 S[]->append;

 L.init;
 ((0,0), (50,30))->L.coordinates;
 L[]->append;

 T.init;
 ((100,20),Helvetica,Italic,20,false,'Quit')
 ->T.inittext;
 blackpaint[]->T.setpaint;
 T[]->append;

 StationMode->selection;
 (size, (4,4)) -> AddPoints
 -> palettewindow.size;
 #);
 #) (* Mode *);
 open::
 (# s: @point;
 do hide (* initially invisible *);
 false->paletteOpen;
 (NONE, 80, 50, true)->Mode.open;
 'Mode'->title;
 myCanvas.size->s;
 (myCanvas.position, (s.x, 0)) -> AddPoints
 -> position;
 #);
 #);

 myCanvas: @BifrostCanvas
 (#
 map: @Rect
 (#
 init::
 (#
 do (* Make THIS(Rect) the size of the
 * aarhus-bitmap
 *)
 aarhus.init;
 (0,aarhus.bits.height)->upperleft;
 aarhus.bits.width->width;
 aarhus.bits.height->height;
 aarhus[]->setpaint;
 #)
 #);

 Rail: Line
 (# init:: (# do color[]->setpaint; 2->width; #) #);

 Station: Picture
 (# name: @text;
 label: @GraphicText;

The Final Program 23

 position: @point; (* Transformed position *)
 Circle: Ellipse
 (# radius: @
 (# r: @integer
 enter (#
 enter r
 do r->horizontalradius
 ->verticalradius;
 #)
 exit r
 #);
 #);

 filledcircle, circleoutline: @Circle;

 rails: @list
 (#
 element::
 (# r: ^rail;
 mypoint,
 otherpoint: ^r.theshape.invalidatepoint;
 #);
 #);

 move::
 (#
 do (* Move is called by interactiveMove.
 * Furtherbind to move the rails too
 *)

 (* TM describes the current
 * transformation. Make position be the
 * *transformed* position
 *)
 circleoutline.center
 -> TM.transformpoint
 -> position;

 (* Since the rails are not members of
 * THIS(Picture), they are not updated by
 * interactivemove. We check what areas
 * they "damage", and the call of "repair"
 * that interactivemoveperforms will take
 * care of updating these areas.
 *)
 rails.scan
 (#
 do current.r.getbounds->damaged;
 position->current.mypoint;
 (* Changes either current.r.begin or
 * current.r.end
 *)
 current.r.getbounds->damaged;
 #);
 #);

 shapedesc::
 (#
 (* Picture.InteractiveMove uses
 * hiliteoutline to draw/erase the feedback
 * for all members of the Picture. Here we
 * furtherbind the descriptor for
 * THIS(PictureShape) to erase / draw
 * feedback for the rails too
 *)

24 Bifrost Tutorial

 hiliteoutline::
 (#
 do (* TM is a transformation to apply
 * before the highlighting. In this
 * case it's just a translation, and
 * this translation is only to be
 * used for the endpoint of the rail
 * belonging to THIS(Station).
 * Hiliteoutline is called multiple
 * times by InteractiveMove to draw
 * and erase the feedback. The
 * drawing is automatically performed
 * in XOR-mode, i.e., the immediate
 * line is erased simply by drawing
 * it again. This is the reason why
 * there is no check to see if the
 * line is to be drawn or erased
 *)
 rails.scan
 (#
 do (if TM[]//NONE then
 (* No transformation *)
 (current.otherpoint
 ->CanvasToDevice,
 position->CanvasToDevice)
 -> immediateline;
 else
 (current.otherpoint
 ->CanvasToDevice,
 position
 ->TM.transformpoint
 ->CanvasToDevice)
 -> immediateline;
 if);
 #);
 (* Notice that immediateline expects
 * device coordinates
 *)
 #);
 #);

 init::
 (# ch: @char;
 r: @rectangle;
 c: @point;
 enter (position, ch)
 do (* Initialize filledcircle *)
 filledcircle.init;
 10->filledcircle.radius;
 position->filledcircle.center;
 fill[]->filledcircle.setPaint;

 (* Initialize circleoutline *)
 circleoutline.init;
 11->circleoutline.radius;
 position->circleoutline.center;
 true->circleoutline.theshape.stroked;
 2->circleoutline.theshape.strokewidth;
 color[]->circleoutline.setPaint;

 (* Center the label within the circles *)
 ch->name.put;
 label.init;
 (position, Times, Bold, 20, false, name[])
 -> label.inittext;
 label.getbounds->r;

The Final Program 25

 (r.x+(r.width) div 2,
 r.y-(r.height+1) div 2)->c;
 (circleoutline.center,c)->subpoints
 ->label.move;
 color[]->label.setPaint;

 (* Add circles and label to THIS(Picture) *)
 filledcircle[]->add;
 circleoutline[]->add;
 label[]->add;
 #);
 #);

 makeStation: @
 (# pos: @point;
 aStation: ^station;
 ch: @char;
 enter pos
 do &station[]->aStation[];
 (pos, ch)->aStation.init;
 ch+1->ch;
 aStation[]->draw;
 #);

 interactiveCreateRail: @
 (# r: ^rail;
 hitstation, otherstation: ^Station;
 e: ^hitstation.rails.element;
 enter hitstation[]
 do &rail[]->r[];
 r.init;
 (r[], hitstation.position, NoModifier)
 -> interactiveCreateShape;

 (* Check if r ends in another station *)
 scan: thePicture.ScanGOsReverse
 (#
 do (if (myCanvas[], r.end) -> go.containspoint
 then
 (if go[]
 //map[]
 //hitstation[] then (* ignore *)
 else
 (if go##=Station## then
 (* r ends in another station;
 * connect with hitstation
 *)
 go[]->otherstation[];
 otherstation.position
 -> r.end; (*Small adjustment*)

 (* Add r to hitstation and
 * otherstation
 *)
 &hitstation.rails.element[]->e[];
 r[]->e.r[];
 r.theshape.begin[]->e.mypoint[];
 r.theshape.end[]->e.otherpoint[];
 e[]->hitstation.rails.append;
 &otherstation.rails.element[]
 ->e[];
 r[]->e.r[];
 r.theshape.end[]->e.mypoint[];
 r.theshape.begin[]
 ->e.otherpoint[];
 e[]->otherstation.rails.append;

26 Bifrost Tutorial

 r->draw;
 (* It looks better if the
 * stations cover the ends of
 * the rail. Instead of
 * lowering the rail in the
 * BifrostCanvas (which would
 * put the rail behind the map)
 * we raise the two stations
 *)
 hitstation[]->bringForward;
 otherstation[]->bringforward;
 leave scan
 if);
 if);
 if);
 #);
 #);

 open::
 (#
 do (* Make THIS(BifrostCanvas) the size of the map *)
 map.init;
 (map.width, map.height)->Size->theWindow.size;
 (* The first Station will have label "A" *)
 'A'->makeStation.ch;
 #);

 eventhandler::
 (#
 onOpen:: (# do map[]->draw; #);

 onMouseDown::
 (#
 (* Actions for Stations *)
 StationAction:
 (# s: ^Station enter s[] do INNER #);
 MoveIt: StationAction
 (#
 do (s[],mousepos,NoModifier)
 ->interactivemove
 #);
 MakeRail: StationAction
 (# do s[]->interactiveCreateRail #);

 (* Control pattern for finding a station and
 * performing an action on it.
 *)
 findStation:
 (# s: ^Station;
 action: ##StationAction;
 enter action##
 do (* Find out what was hit - if any *)
 scan: thePicture.ScanGOsReverse
 (#
 do (if (myCanvas[], mousepos)
 ->go.containspoint
 then
 (if go[]
 //map[] then (* ignore *)
 else
 (if go##=Station## then
 (* We hit a station *)
 go[]->s[];
 (if action##<>NONE then
 s[]->action;
 if);

The Final Program 27

 leave scan
 if);
 if);
 if);
 #);
 exit s[]
 #);

 hitstation: ^Station;

 do mousepos->devicetocanvas->mousepos;

 (if paletteOpen then
 (* Palette determines mode *)
 (if palettewindow.mode.selection
 // MoveMode then
 MoveIt##->findStation;
 // StationMode then
 mousepos->makeStation;
 // RailMode then
 MakeRail##->findStation;
 if);
 else (* Mode-less *)
 (if findStation->hitstation[]
 // NONE then
 mousepos->makeStation;
 else
 (* We hit a station *)
 (if shiftmodified then
 hitstation[]->MakeRail;
 else
 hitstation[]->MoveIt;
 if);
 if);
 if);
 #);
 onKeyDown::
 (#
 do (if ch
 //'Q' then Terminate
 //'P' then
 (if not paletteOpen then
 palettewindow.show;
 else
 palettewindow.hide;
 if);
 not paletteopen -> paletteopen;
 if)
 #);
 #);
 #);
 open::
 (#
 do (* Initialize colors for Stations and Rails *)
 color.init; IndianRed->color.name;
 fill.init; PaleGreen->fill.name;
 (* Initialize the BifrostCanvas *)
 (* Open the BifrostCanvas *)
 myCanvas.open;
 (* Open the Palette *)
 palettewindow.open;
 'Type ''P'' to open the Palette'->putline;
 #)
 #) (* theWindow *)
do theWindow.open;
#)

28 Bifrost Tutorial

29

Appendix B — A Screen
Snapshot

The screen snapshot on the following page shows an execution of the final program
from Appendix A. It shows a situation where several Stations have been added, and
Rails have been added to connect various of them. The Palette has been made visible
by typing 'P', and in the Palette, the "Move-Mode" has been selected. In the main
window, the Station marked 'B' has been clicked on with the mouse and the Station is
being dragged. Notice how the Rails connecting it with other Stations stick to the
Station B during the dragging.

This screen snapshot is from X Windows running on a Macintosh. On other plat-
forms, the title bars and window borders may look different, if at all present.

30 Bifrost Tutorial

31

Bibliography

[Andersen 91] Peter Andersen, Kim Jensen Møller, and Jørgen Rask: Bi-
frost—An Interactive Object Oriented Device Independent
Graphics System, Master’s thesis, DAIMI Internal Report
IR-100, Aarhus University, January 1991.

[MIA 90-10] Mjølner Informatics: The Mjølner BETA System – The
Macintosh Libraries, MjølnerInformatic s Report MIA 90-
10.

[MIA 91-13] Mjølner Informatics: The Bifrost Graphics System: Refer-
ence Manual, Mjølner Informatics Report MIA 91-13

[MIA 91-16] Mjølner Informatics: The Mjølner BETA System—X Win-
dow System Libraries, MjølnerInformatics Re port MIA
91-16.

[MIA 94-27] Mjølner Informatics: The Mjølner BETA System—
Lidskjalv: User Interface Framework – Reference Manual ,
MjølnerInformatics Re port MIA 94-27.

33

Index
aarhus 5
AbstractGraphicalObject 9
arrow 17
Bifrost 3
BifrostCanvas 3
BitMap 4
bits 5
black 4
blackpaint 17
bounding box 7
BringForward 12
Canvas 1
Circle 7
color 7
control points 1
curves 1
damaged 15
devicetocanvas 7
fill 7
findStation 19
Graphical Object. 1
GraphicalObject 17
Graphics Modelling 1
GraphicText 7, 17
hatching 1
height 5
HiliteOutline 14
hitStation 11
horizontal Palette 17
horizontalradius 7
hotspot 4, 5
imaging model 1
"immediate" drawing 14
immediateline 14
init 4
inittext 7
interactiveCreateShape 11
interactivemove 9, 13, 14, 15
invalidatePoint 12
Line 10
LineSegments 1
List 12
map 5
Modifier 9
mousepos 7
move 15
Move-mode 16
name 4
NoModifier 9
onKeyDown 3
onMouseDown 3, 7

onOpen 3
otherStation 11, 13
padding color 2
Paint 1
Palette 16
paletteOpen 18
pattern reference 10
PBM format 4
Picture 1
position 13
PostScript 1
Predefined Graphical Objects 1
Predefined Shapes 1
PredefinedGO 5
radius 7
Rail 17
Rail-Mode 16
Raster 1
Raster paint 1
ReadFromPBMFile 4
Rect 4
repair 15
rubber line 11, 15
ScanGOsReverse 9
Segments 1
selection 17
SendBehind 12
setpaint 5
Shape 1
shape definition language 17
SHIFT key 10
solid color 1
spline curve 1
SplineSegments 1
stacking order 1
Station 6, 17
Station-mode 16
Stencil & Paint 1
Strokeable Shapes. 1
structure reference 10
subpoints 7
subway1.bet 3
subway2.bet 5
subway3.bet 6
subway4.bet 9
subway5.bet 10
subway6.bet 14
subway7.bet 16
theTile 4
tile 1, 4
TiledSolidColor 4

34 Bifrost Tutorial

TM 13
upperleft 5
vertical Palette 17

verticalradius 7
width 5
XOR 14

