The Mjglner BETA System
X Window System Libraries

Reference Manual

Mjglner Informatics Report
MIA 91-16(1.2 update)
August 1996

Copyright © 1991-96 Mjginer Informatics ApS.
All rights reserved.
No part of this document may be copied or distributed
without the prior written permission of Mjginer Informatics

1 Introduction

This paper constitute an update to [MIA 91-16] version 1.2, August 1994, that
describes the Mjaglner BETA System X Window Libraries version 1.8 based on
the basic libraries version 1.4.

The update relates to version 1.9 of the Mjglner BETA System X Window
Libraries, which are based on version 1.5 of the basic libraries.

Thus an evident change is that al occurrences in the original paper of xt/v1. 8
should read Xt/v1.9, and al occurrences of basiclib/vl. 4 should read
basi clib/vl. 5.

The rest of this paper concentrates on describing significant changes, and a few
obvious changes like the above version numbers are left out for shortness.

2 Clarifications

A few typos and insufficient explanations in version 1.2 of the manua are
clarified below.

2.1 List of Programs

The List of Programs on page iv is very inaccurate: First of all, the entries from
page 58-60 regarding layout semantics should not be in the list.

Secondly all the AWEnv programs are missing from the list. The missing entries
are:

(1S 1 Fo X1 o< R 52
LIS DEL ...ttt ettt ettt e e e e e e e e e e e e e e e e ————— 53
(01011 (0] 8 1 o= 1R TP 54
stripchart.Det........cceeee 54
tOggIEDEL ... 55
(072010 1 o< SRR 56
S0t 101 I o< R 57
FOIMLDEL ..o 61
fancyhello.bet ... 62
MNENULDEL ...ttt ettt ettt et e e e e et e eeeeeeeeeeeeeennnnnnnnnnnnnans 65
(0721 0720 (<1 010151010 1 0 FU 66
EEXEDEL ...ttt ettt ettt e e e e e e e e e e e e e e ———— 69
QELSIIING.DEL ... 71

2.2 Initialization of widgets

Section 2.2.1 in the original v1.2 of this manual briefly explains what happens
when a Core widget, or specialization thereof, is initialized. The explanation is
not very precise, and has caused some confusion. It has been elaborated on in
the BETA FAQ, and here we will sum up.

2.2.1 Thedefault Father of a Widget
Consider the following program:

ORIA N ' ~beta/ Xt/ current/awenv' ;

--- program descriptor ---

AwENnv

(# faculty: | abel
(#init:: (# do 2-> borderwidth #) #);

Uni versity: @ox
(# Physics, Mathematics: @aculty;
init:: (# do Physics.init; Mathematics.init #);

#)

do University.init;

#)

The idea was that a window with two labels named Physi cs and Mat hemat i cs
should appear. But executing it will give the error message

Xt Error: There nmust be only one non-shell w dget which is son
of Topl evel. The w dget causing the conflict is nanmed faculty.

This is because the program uses the i nit pattern of the widgets without
specifying the father and name of the widgets. In the original version 1.2 of
[MIA 91-16], it is briefly explained that the father widget will default to "the
enclosing widget according to BETA's scope rules’ (section 2.2.1).

To be precise, this is what happens. When the i nit pattern of a widget is
invoked, it first checked to see if the father is NONE. This will be the case if no
father is specified in the enter part of i ni t.

If so, a search is started in the static environment of the widget pattern. If a
specialization of a Cor e widget is found, this widget is used as the father. This
search is continued until a pattern with no enclosing pattern is found. In this case
the widget named TopLevel (in xtenv) is used as the father. The widget
TopLevel is an instance of the pattern TopLevel Shel |, which among its
characteristics has the constraint that it wants to have exactly one non-shell
child.

Now consider the example program: The first thing that happensis that thei ni t
attribute of uni ver si ty isinvoked. Since no father is specified, a search for one
Is started from the Uni ver si ty pattern. This search finds the pattern AwEnv (#

. #), which is not a Core, and which has no enclosing pattern. Thus
Uni ver si ty will get the father widget TopLevel .

Thefinal binding of Uni versity.init theninvokesPhysics.init.Physicsis
an instance of the pattern facul ty, which is declared in the same scope as
Uni ver si ty. Thus the search for a father for Physi cs is identical to the search
for the father of Uni ver si ty, and Physi cs also gets TopLevel asitsfather. This
Iswhen the error occurs. The reason why the name reported in the error message
iIsfacul ty isexplained in section 2.2.2 below.

Notice that it did not matter that the instantiation of the Physi cs object is done
within Uni versi ty: the default father is searched for starting from the pattern
declaration of the object.

In general there are three possible solutions to the problem in the example:
1. Supply the father and name when initializing the faculty widgets:

do ("Physics", University)->Physics.init;
("Mat hematics", University)->Mathematics.init;

In this case, no search for a default father is needed for the faculty
widgets.

2. Make (possibly empty) speciaizations of faculty inside University:

Physi cs: @acul ty(##);
Mat hemati cs: @acul ty(##);

Now the search for a default father of Physics will start at the pattern
facul ty(##) inside Uni versity, SO the Uni versity pattern will be
the first found in this search, and hence the uni ver si ty widget will
become the father of the Physi cs widget. Likewise for Mat hemat i cs.

3. Move the declaration of the faculty pattern inside the Uni versity
pattern. This will give the same search path as in solution 2.
(Conceptually, this might also be the best place to declare f acul ty In
thefirst place.)

The above example was a simple one. In more complicated cases, the reason for
an error of this kind can be trickier to spot. If your program uses the fragment
system to move declarations of useful widgetsinto alibrary, thiskind of error is
likely to occur.

Remember that if an instance of an unspecialized widget is used, the widget
pattern being declared in, say, the Xt EnvLi b attributes slot of xt env, then the
search for a default father is started at the Xt Env pattern, and therefore no father
widget is found. In this case the widget will get TopLevel as father. Solutions 1
or 2 above will be appropriate in these cases.

2.2.1 The Default Name of Widgets

Thefollowing BETA program creates a window containing "Label "

ORIG@ N ' ~bet a/ Xt/ current/awenv'
--- program descriptor ---
AwENnv

(# Hell o: @abel;

do Hello.init;

#)

whereas the following program creates a window containing "Hel | 0"

CRIA N ' ~betal/ Xt/ current/awenv'
--- program descriptor ---
AwENnv

(# Hello: @abel (##);

do Hello.init;

#)

Here isthe reason why.

The connection between the names used for widgets in BETA and the external
names used in the external widgets interfaced to from BETA is that the pattern
name of the BETA widget is used for the external widget name by default.

In the first example, the Hel | o widget is an instance of the pattern Label , andin
the second example the widget is the only possible instance of the singular
pattern Label (##), which isnamed Hel | o.

The appearance of the windows in this case comes from the fact that the Athena
Label widget uses the external name of the widget as default label-string, if it is
not specified otherwise.

A variant of this problem is the case where you specify a list of widgets using
the same pattern:

hel 1 01, hell o02: @abel (##);

In this case the default name will always be the first namein thelist, hel 1 01. To
avoid this behavior, use the scheme

hel | 01: @abel (##);
hel | 02: @abel (##);

or specify the name explicitly instead.

This problem (and the solution) was mentioned without very much explanation
in footnote 2 on page 54 in the original version 1.2 of [MIA 91-16]. Hopefully
the above explanation clarifies the problem somewhat.

3 Changesin Xt version 1.9

As of version 1.9 the following changes have been introduced at interface level:

1.

The pattern Fi | eToBi t map in Cor e has been renamed to Bi t mapFi | e
ToBi t map. Likewise, the pattern Fil eToPi xmap in Core has been
renamed to Bi t mapFi | eToPi xmap.

Thisisfor the sake of clarification only.
In the at hena/ Pr onpt s hierarchy aval i dat e virtual has been added.

In deno/ anenv/ get i nt eger it is shown how to use this virtual to
implement a dialog that only accepts integers as inpu.

Read-only resources have been introduced, e.g. Rol nt eger Resour ce.
The writeable resources are specializations of the read-only resources.

Introduced two new resource patterns. Char Resource and Short
Resour ce.

Except for a few left-outs, all resource-patterns that model char and
short X resources, have been changed to use these new patterns as
prefixes instead of the IntegerResource. There was a
Bool eanResour ce in Xt/ v1. 8, but it was simply implemented as an
| nt eger Resour ce. This has been fixed as part of the resource-
cleanup.

Two directories have been added: nmisc and deno/nmisc. At the
moment these only contain a small interface to xt er mwindows: Y ou
can set the title and icon name of the xt er myou are executing in, and
you can start another UNIX process in a separate xt er mwindow. The
demo in deno/ i sc/ xt er ndeno shows examples of both.

Refer ences

[MIA 91-16] Mjglner Informatics. The Mjeglner BETA System—X
Window System Libraries, Reference Manual,
Mjglnerlnformatics Report MIA 91-16.

