
Sif
Mjølner BETA Source Browser and Editor

Tutorial and Reference Manual

Mjølner Informatics Report

MIA 90-11(2.1)

August 1996

Copyright © 1990-96 Mjølner Informatics ApS.
All rights reserved.

No part of this document may be copied or distributed
without prior written permission from Mjølner Informatics

Contents
1. Introduction ...1

2. Basic User Interface Principles ...5
2.1. The Mouse...5
2.2. Selection..5

3. Source Browser Tutorial ...7
3.1. How to Get Started..7
3.2. Browsing ...8
3.3. Browsing ...10
3.4. Browsing at Code Level..11

3.4.1. Abstract Presentation...11
3.4.2. Semantic Links ..12
3.4.3. Comments..13
3.4.4. Fragment and SLOT Links..15
3.4.5. Searching ...16

4. Editor Tutorial ...17
4.1. Creating a New Program...18
4.2. Editing at Code Level ...19

4.2.1. Code editor ..19
4.2.2. Structure Editing..19
4.2.3. Text Editing and Parsing ...22
4.2.4. Checking..23

4.3. Modifying a Program ..26
4.4. Editing at Group Level..28

4.4.1. Group Editing ..28
4.4.2. Fragmenting...28

4.5. Work Space ...32

5. Source Browser Reference Manual...35
5.1. How to Get Started..35
5.2. Source Browser Windows...35
5.3. Browser Window ..36

5.3.1. Menus ..37
5.3.2. File Menu ..37
5.3.3. Project Menu ...38
5.3.4. View Menu ..39
5.3.5. History menu ...41
5.3.6. Windows menu..41
5.3.7. Double-click ..42
5.3.8. Shift-double-click..42
5.3.9. Search ..43
5.3.10.Changing the Size ..43
5.3.11.Zooming ...43
5.3.12.Information in the Info Pane ..43

5.4. Workspace Window..44
5.4.1. Menus ..45
5.4.2. File Menu ..45
5.4.3. View Menu ..45
5.4.4. Import Menu..45
5.4.5. Scroll Menu ...45

i

ii Editor Users Guide

5.4.6. Close Menu ..46
5.5. Separate Code Viewer ...46

5.5.1. Menus...46
5.5.2. File Menu ...47
5.5.3. View Menu...47
5.5.4. Buffers Menu ...47

5.6. Subviewer Window ...47
5.6.1. Menus...47
5.6.2. File Menu ...47
5.6.3. View Menu...48

5.7. Parse Editor Window...48
5.7.1. Menus...49
5.7.2. File Menu ...49
5.7.3. Edit Menu...49

5.8. Semantic Errors Viewer...50
5.8.1. Menus...51
5.8.2. File Menu ...51
5.8.3. Warnings Menu..51
5.8.4. Mark Menu...51

5.9. Semantic Errors Editor ..52
5.9.1. Menus...52

5.10. Help Window...53
5.10.1.File Menu..53
5.10.2.Manuals Menu ..53
5.10.3.HTML ...54

5.11. Project ..54
5.11.1.Standard Projects ..54
5.11.2.Fold/unfold Projects..55
5.11.3.Making a Fragment Group into a Project55
5.11.4.Domain ...55

6. Editor Reference Manual ...56
6.1. Code editor...56

6.1.1. Edit Menu...56
6.1.2. Expand Menu ...58
6.1.3. SLOTs Menu..58

6.2. Group Editor ..60
6.2.1. Group Menu ...60
6.2.2. Fragment Menu ..61

6.3. Property Editor...62
6.4. Tools Menu..62
6.5. Backup ...63
6.6. Opening Grammar Files ..64

7. Bibliography...65

Index..67

1. Introduction

Sif1 is a general grammar-based editor, but it is especially useful for browsing and
editing BETA programs. Modularity is in BETA handled by means of the fragment
system [MIA90-2] used for combining fragments into a whole BETA program.
Familarity with the fragment system is expected in this manual.

Source browser
structure editor
and tool
integration

Sif contains a number of basic components: a source browser, a fragment group
editor and a fragment form editor. Sif is integrated with the BETA compiler which
gives a good support for locating and correcting semantic errors.

Sif includes the following functionality: Sif functionality

• Source Browser
The source browser makes it possible to browse in projects. A project can be a
collection of files, a file directory or parts of the dependency graph of a BETA
program. Links in the fragment structure like ORIGIN and INCLUDE can be
followed easily.

• Fragment Group Editor
The fragment group editor is a high-level editor used to manipulate the
dependency graph of BETA programs, e.g. to create and delete whole fragment
forms in fragment groups and to create and modify links like ORIGIN and
INCLUDE between the fragment groups.

• Fragment Form Editor
The fragment form editor is a structure editor that works inside fragment
forms. Structure editing is a powerful technique for editing programs without
introducing syntax errors. At the fragment form level Sif also provides useful
browsing facilities, based on the syntactic and semantic structure of BETA
programs.

• Structure editing
The basic idea of structure editing is that the program is manipulated in terms
of its logical structure rather than the textual elements such as characters,
words and lines. The advantage of this approach is that only logically coherent
parts can be inserted or deleted and thereby preserving the syntactical rules of
the language at any time.
Structure editing is especially useful for application-oriented languages
intended for end-users, casual users and beginners that may have difficulties in
remembering the concrete syntax. Also a program constructed by structure
editing needs not be parsed, thereby saving time in the development phase.

• Text editing
Structure editing has its greatest force at the higher levels of editing, i.e. for
creating the overall structure of the program or for moving around large chunks
of code. At the detailed level the textediting technique is more useful.
Therefore the programmer may alternate freely between structure editing and
textual editing in Sif. Any program part may be textually edited.

1 Sif is the wife of the god Thor. Sif is well-known for her golden hair.

1

2 Source Browser and Editor

• Incremental parsing
Any program part that has been textually edited is immediately parsed. Only
the text-edited part of the program is parsed.

• Adaptive incremental prettyprinting
The editor includes an adaptive prettyprinting algorithm which prints the pro-
gram such that it always fits within the size of the window or paper.

• Abstract presentation and browsing
The editor is able to present a program at any level of detail. At the top-level of
a program the user may get an overview of classes and procedures. It is then
possible to browse through the classes and procedures to see more and more
details. This mechanism is completely general since the user may decide the
level of granularity. Printing a program at different abstraction levels provides
a good basis for documentation.

• Integration of documentation and comments
The user decides whether or not to display comments. The user also decides
whether to display a comment as part of the program or in separate window. A
pretty-print of a program which includes just the class and procedure headings
(an abstract presentation) and corresponding comments may be produced. This
makes it possible to extract an interface specification from the program
including the explaining comments.
Programmers are motivated for integrating code and documentation since
comments are easy to hide. Large pieces of documentation need not to disturb
the overview of the program. Conversely it is easy to extract a high-level
presentation of the program including the comments.

• Hypertext facilities
The editor includes hypertext facilities. The facility for handling comments is
an example of a hypertext link between a program and a text piece. Another
type of hypertext link is links from the use of a name in a program to the
corresponding name declaration. Such semantic links are very useful especially
when working with large programs. At the fragment group level, other
examples like ORIGIN and INCLUDE links are links from SLOTs to their
corresponding fragment forms and vice versa.

• Metaprogramming system
The editor is built upon a metaprogramming system [MIA91-14], which is
available to the user. The user has the possibility to program his or her own
metaprogramming tools. It is possible to integrate such tools with the editor or
simply to add functionality to the editor. This tailorability is provided by a
flexible communication model and the object-oriented implementation
language of the editor, which is BETA.

• Grammar-basis
The editor is grammar-based, which means that it may support any language
that can be described by means of a context free grammar. All the facilities
mentioned above (except semantic links which require a semantic checker) are
provided for any language that can be described in a context free grammar.
Structure editing can not only be used on programs but any kind of documents
with a formal or semi-formal structure. In the following the main focus will be
on program editing in BETA. Editors have been generated for programming
languages like BETA, SIMULA67, Pascal, Modula-2, for the query language
SQL, for the specification languages SDL-92 and GDMO and finally for
document types described in subsets of ODA and SGML. In addition the
structure editor can be used to create or modify the grammars and prettyprint
specifications for each language.

Introduction 3

• Integration with other tools in the Mjølner BETA System
Sif is integrated with the compiler, i.e. it is possible to perform semantic check-
ing, code generation, assembling (if binary code is not generated directly) and
linking inside Sif.

The purpose of this document is to describe how to use the structure editor Sif. The
description is addressing the user who wants to use the structure editor for developing
programs in one of the already supported programming languages, especially the
BETA language.

In [[MIA91-14] it is described how to generate a structure editor for a new language,
and briefly how to add functionality to the editor or integrate the editor with another
tool.

More information

2. Basic User Interface
Principles

2.1. The Mouse
The Selection Button is used to select arguments, to click on command buttons, to
double-click and to select commands in all menus but one: the pop-up menu.

The Pop-up Menu Button is used to activate the pop-up menu, that is used during
structure editing. The menu pops up when the mouse pointer is located in the
codeviewer/editor window and the Pop-up Menu Button is pressed.

UNIX

On UNIX systems the left mouse button is used as the Selection Button and the right
most mouse button is used as the Pop-up Menu Button. The middle mouse button has
currently no use.

Windows NT/95

On Windows NT/95 systems the left mouse button is used as the Selection Button
and the right most mouse button is used as the Pop-up Menu Button. The middle
mouse button has currently no use.

Macintosh

On the Macintosh the mouse button is used as the Selection Button and Command-
Click is used as the Pop-up Menu Button.

2.2. Selection
Selection is important because most operations in Sif are performed in relation to the
current selection, which will always be marked in reverse video. There are different
ways of selecting parts of a fragment.

When you position the cursor somewhere in the Code editor and click the Selection
Button the nearest surrounding structure will be selected and marked as the current
selection.

Some examples of how to select:

To select a name:
just place the cursor in the name and click the Selection Button.

To select a complete structure containing keywords :
place the cursor at one of the keywords and click the Selection Button:

5

6 Source Browser and Editor

Then the resulting current selection becomes:

To select all elements in a list:
place the cursor at one of the list separators e.g. a ';', and click the Selection
Button.

To select a sublist:

If a sublist of elements is going to be the current selection, dragging selection is a
convenient technique. Dragging selection means clicking with the Selection Button at
the starting point of the sublist and keeping the button down while moving the mouse
to the ending point of the sublist. At this point the button is released and the current
selection will be set to the selected sublist.

In general the smallest complete enclosing structure will be selected.

3. Source Browser Tutorial

3.1. How to Get Started
The source browser that is part of Sif is activated by writing

sif

at the command line (Unix or Windows NT/95) or by double-clicking on the Sif icon
(Macintosh).

Activating Sif the following window appears:

Fig. 1

This window is called a source browser window or just browser window and has 4
important panes. Followed clock-wise from the upper left pane, the panes are
described below.

Pane 1 is called the project list pane, it contains a list of projects.

7

8 Source Browser and Editor

Pane 2 contains a list of fragment groups in the project selected in the project list
pane. It is called the fragment group list pane or just group list pane.

Pane 3 contains a list of properties and fragment forms of the fragment group selected
in the group list pane. It is called a fragment group viewer/editor or just group
viewer/editor.

Pane 4 displays the BETA code of the fragment form selected in the group viewer. It
is called the code viewer/editor2. This code viewer will be seen in many different
windows and its functionalities are described later.

Browsing can be done at basically 3 levels: the project level, the group level or at the
code level.

3.2. Browsing at Project Level
Double-clicking on the Std. Libraries project in the project list pane will give the
following result:

Fig. 2

Std. Libraries is the standard project that contains the basic libraries of the
Mjølner BETA System. The contents of the Std. Libraries project is a list of file

2 The contents of the group viewer/editor can of course also be considered as part of the BETA
code, but this is actually "code" written in the fragment language.

Source Browser Tutorial 9

directories. By selecting the container directory its files (fragment groups) will be
shown in the group list pane:

Fig. 3

Now by selecting the classification fragment group its properties and fragment
forms will be presented in the group viewer. Since classification only contains 1
fragment form it is automatically presented in the code viewer:

10 Source Browser and Editor

Fig 4.

3.3. Browsing at Group Level
Browsing at the group level is provided in the following way:

1) If an ORIGIN, BODY, MDBODY or INCLUDE entry is selected in a group
viewer, the link to the specified group can be followed by double-clicking on
it. The contents of the group viewer is replaced with the specified fragment
group (if it exists). Shift-double-click gives a separate source browser.

2) If a fragment group presented in the group viewer only contains one fragment
form it is automatically presented in the code viewer. When a fragment form is
selected in the group viewer (by just clicking at it) it will be presented in the
code viewer. Shift-double click gives a separate code viewer/editor.

3) The way links between SLOTs and fragment forms can be followed (is de-
scribed separately under Fragment and SLOT Links)

The screen dump below is the result of double-clicking on the ORIGIN property in
the group viewer of Fig. 4.

Source Browser Tutorial 11

Fig. 5

3.4. Browsing at Code Level

3.4.1. Abstract Presentation

When a fragment is shown in the code viewer, abstract presentation is used. Instead
of showing the program in full detail, 3 dots (...) are shown for certain syntactic
categories. In the presentation of BETA programs these syntactic categories are
Descriptor, Attributes and Imperatives.

These 3 dots are called a contraction. By double-clicking on a contraction the next
level of detail is shown. E.g. when double-clicking on the 3 dots belonging to
insertSubset in Fig. 4, the result will be:

Contraction

12 Source Browser and Editor

Fig. 6

Abstract
presentation

Abstract presentation can be used to browse around in the program or to produce
documentation. By means of the commands in the View menu or by double-clicking
an appropriate abstraction level can be chosen. This presentation can then be written
on a text file by means of the Save Abstract... command in the Group menu.

3.4.2. Semantic Links

This facility is only relevant for BETA programs. If the program has been checked it
is possible to browse around in the semantic structure of the program. If, for example,
a name application is selected in the code viewer, the corresponding name definition
can be found using the Follow Semantic Links command of the View menu or by
simple double-clicking on the name application.

If the definition is in another fragment, a code viewer is opened on that fragment. Fig.
7 is the result of double-clicking on set in the first line of the code viewer in Fig. 6.

Source Browser Tutorial 13

Fig. 7

If the program has not been checked, no semantic links are available. Or if the
program has been modified, the semantic links may become inconsistent and the
program then has to be re-checked. If this command is used and the program needs to
be re-checked and a dialog box, that offers re-checking, is popped up.

3.4.3. Comments

In order to compress information in the windows, comments are not shown in the
code viewer window, but instead a so-called comment mark (*) is shown. By double-
clicking on such a comment mark, the comment mark is expanded and the whole
comment is shown. Fig. 8 is the result of double-clicking on the comment mark after
multiSet in Fig. 7:

14 Source Browser and Editor

Comment mark (*)

Fig. 8

Likewise the expanded comment can be collapsed to a comment mark again by
double-clicking on it.

By shift-double-clicking on the comment mark the comment will be shown in a sepa-
rate text editor window. The following window shows the comment associated with
the multiSet pattern:

Fig. 9

The Show Node command in the Edit Menu of the comment window makes it
possible to “find back”, i.e. navigate to the node this comment is associated with.

Source Browser Tutorial 15

3.4.4. Fragment and SLOT Links

Follow link to fragment form

Given a SLOT definition, the link to the binding of the definition (i.e. a fragment
form with the same name and type) can be followed.

Fig. 10

This is done either by selecting the SLOT definition in a code viewer and the Follow
Fragment Link command in the View menu or simply by double-clicking on the
SLOT definition. The editor will now search for a fragment form with the same name
in the BODY and MDBODY hierarchy of the group that the current fragment is part
of. Doing this in the example above will result in the fragment shown in Fig. 11. If
Shift-double-click is used a separate code viewer window is shown.

16 Source Browser and Editor

Fig. 11

Notice that during an editing session the fragment form may not be found since the
program may be incomplete. Another restriction is that binding of Attributes
SLOTs only can be found in this way if they are bound in the BODY and MDBODY
hierarchy. If not, there is no automatic way of finding the bindings.

Follow link to SLOT definition

Given a fragment form, the link (possibly dangling) to the SLOT definition with the
same name can be followed. This is done by selecting a fragment form and using the
Follow Link to SLOT command in the View menu. The editor searches after a SLOT
definition along the ORIGIN chain until it finds it or reaches the top, i.e. betaenv.

3.4.5. Searching

By means of the Search in the View Menu it is possible to search for a substring of
a lexem, i.e. a name definition, a name application or a string.

4. Editor Tutorial

The editor consists of basically two types of editors: a group editor and a code editor.

Fig. 12

The Group editor Group editor

The group editor is only relevant if the language in question is BETA. It is
used for browsing or editing BETA programs. It is used to present and modify
the structure of a group, i.e. the properties (ORIGIN, BODY, MDBODY, IN-
CLUDE etc.) and fragments (Descriptor forms, DoPart forms or Attributes
forms).

The Code editor Code Editor

The code editor provides structure editing on each fragment form.

17

18 Source Browser and Editor

4.1. Creating a New Program
By selecting the New BETA Program... of the Group menu the following standard
dialog pops up:

Fig. 13

After specifying the path and the name of the fragment group to be created, a minimal
BETA program is presented in the browser window:

Editor Tutorial 19

Fig. 14

4.2. Editing at Code Level

4.2.1. Code editor

The code editor provides structure editing on each fragment form. In the following a
separate code editor is chosen by shift-double-clicking on the program fragment
form in the group editor of Fig. 14.

4.2.2. Structure Editing

The basic idea of structure editing is that the program is manipulated in terms of its
logical structure rather than the textual elements such as characters, words and lines.
The advantage of this approach is that only logically coherent parts can be inserted or
deleted and thereby preserving the syntactical rules of the language at any time.

20 Source Browser and Editor

Expanding
nonterminal

Fig. 15

The window above shows an example where a template for a BETA pattern has been
derived. The template includes placeholders (nonterminals) and keywords
(terminals). If a nonterminal is selected the mouse pointer is changed to an icon that
indicates that the rightmost button of the mouse must be pushed to pop-up a menu
(only Unix version, in general the Pop-up Menu Button. is used, see Basic User
interface principles). In the example, the <<AttributeDeclOpt>> placeholder has
been selected and the legal declarations (according to the BETA grammar) is shown
in the pop-up menu.

Editor Tutorial 21

Fig 16

The PatternDecl entry is selected and the result is:

Fig. 17.

22 Source Browser and Editor

4.2.3. Text Editing and Parsing

Structure editing has its greatest force at the higher levels of editing, i.e. for creating
the overall structure of the program or for moving around large chunks of code. At
the detailed level the textediting technique is more useful.

Text editing can at any time be used as an alternative to structure editing. Text editing
is activated either by just starting to type or by selecting the Textedit command in
the Edit menu. If you start typing at the keyboard, the typed characters will replace
the current selection in the code editor window. Text editing mode may alternatively
be entered without deleting the current selection, by means of the Textedit
command or by pressing the <space> key. In that case the text cursor will be
positioned in the start of the current selection.

Text editing mode can be terminated by selecting the Parse Text command in the
Edit menu, or simply by selecting outside the text editing area. The possibly modified
text will immediately be parsed and any parse errors will be reported (but only one at
a time). Note that semantic checking is not done by the editor. In this example a parse
error is detected

In Fig. 17 the placeholder <<NameDecl>> is selected and the name hello is typed
(See Fig. 18). After that the <<DoPartOpt>> is selected and the text

'hello world -> putlin

is typed. When textediting is exited for example by clicking outside the textediting
area, the syntax error is immediately reported:

Fig. 18.

Editor Tutorial 23

4.2.4. Checking

After correcting the syntax error the program looks like below:

Fig 19

Now we want to call the checker. This is done by means of the Check Current
command in the Tools menu. But the compiler does not accept unexpanded
nonterminals. Therefore the following dialog is popped up:

24 Source Browser and Editor

Fig. 20

Notice that in this example all nonterminals are optionals (is indicated by the Opt
suffix). An easy way to remove unexpanded optionals is to select the whole program
and use the Remove Optionals in the Edit menu. The result is:

Fig. 21

Now the checker is called again and the semantic error is detected and shown by
means of the semantic error viewer:

Editor Tutorial 25

Fig. 22

In this case there is only one semantic error, but in general the Fragment Forms pane
will contain a list of fragment forms with semantic errors and the Semantic Errors
pane will for each fragment form in the upper pane show a list of semantic errors. By
selecting in the two panes the different semantic errors can be inspected. By clicking
in the Semantic Errors pane the code editor will select the corresponding structure.
The first semantic error will always be selected automatically. In the example the
following selection is made:

Fig. 23

26 Source Browser and Editor

4.3. Modifying a Program
Consider the program of Fig. 23. We now want to add an enter part that should enter
a text to be printed after the 'Hello world' string. To add an enter part you can
either select for example the descriptor of the hello pattern and type the enter part
using text editing or you can select the for example the whole pattern declaration and
use the Show optionals command in the Edit menu. The latter has been done below:

Fig. 24

Using textediting we select the EnterPartOpt nonterminal and type: enter t and
then we select somewhere inside the AttributeDeclOpt nonterminal and type: t:
@text. Now we want to add an imperative after the putline. To insert a new list
element in a list element is selected and the Insert After or Insert Before
command of the Edit menu is used. An alternative to Insert After is to press the
<cr> key.

In Fig. 24 the imperative 'hello world'->putline is selected e.g. by clicking on
the arrow (->). Then the <cr> key is pressed and the result is:

Editor Tutorial 27

Fig. 25

The final result is:

Fig. 26

28 Source Browser and Editor

4.4. Editing at Group Level

4.4.1. Group Editing

Manipulation of the fragment group structure is done in the group editor. It is possi-
ble to insert or delete fragment forms, modify the names of the fragment forms, or
edit the properties of the fragment group e.g. the ORIGIN, INCLUDE and BODY
properties. Editing of properties is done using a property editor that is a structure
editor on the properties.

4.4.2. Fragmenting

The fragment system provides facilities for splitting a BETA program into several
parts in order to support separation of interface and implementation, variant configu-
ration or separate compilation. The code editor supports this kind of fragmenting.

If, for example, a fragment form is going to be divided into an interface part and an
implementation part the, SLOTs menu is very useful. The DoPart of a procedure pat-
tern can, for example, be replaced by a SLOT definition and the removed part can be
inserted into another fragment group (the implementation part). Consider the
following example, where the DoPart of the procedure pattern hello is selected.

Editor Tutorial 29

Fig. 27

By means of the Make Dopart SLOT in the SLOTs menu, the DoPart can be replaced
by a SLOT definition. The name of the SLOT is prompted for. The default name is
the name of the enclosing pattern. The removed doPart is inserted in a new fragment
form that is stored on a so-called fragment clipboard. As mentioned in the dialog the
created DoPart fragment form must be pasted into a fragment group (this can be done
automatically see later). The result is (for simplicity we have pasted the fragment
form into the same fragment group, this is not the usual case):

30 Source Browser and Editor

Fig. 28

This was the most simple way of moving a moving a DoPart into a implementation
file and inserting a SLOT in the interface file. The implementation file can also be
specified using the Set Current as Implementation File command in the
Fragment menu. In this case the created fragment form is automatically pasted into
the implementation fragment group. The Hide Implementation... command in the
SLOTS menu is a powerful command that traverses the current selection in a code
editor and for each DoPart you are asked whether it should be put into a DoPart
fragment form. In the example below the whole program has been selected and the
Hide Implementation... command is called.

Editor Tutorial 31

Fig. 29

32 Source Browser and Editor

4.5. Work Space
Consider the following interface file:

Fig. 30

Each fragment form in the implementation file can be shown one at a time in the
browser either by double-clicking on the SLOTs or by double-clicking on the BODY
property in the group editor window to get the implementation file and then selecting
them one at a time:

Editor Tutorial 33

Fig. 31

but an easier way is to get all or a subset of the fragment forms in a so-called work
space window by using the Workspace command of the Windows menu. The
Import menu is used to open a code editor on all or a subset of the fragment forms in
the workspace window:

34 Source Browser and Editor

Fig. 32

5. Source Browser
Reference Manual

5.1. How to Get Started
The source browser that is part of Sif, is activated by writing one of the following
(UNIX):

1) sif Activating Sif

2) sif myFragmentGroup

3) sif myFragmentGroup.bet

4) sif myFragmentGroup.ast

In each case a source browser window appears on the screen.

1) If there are no arguments to Sif the project list pane will show the users home
directory and possible projects defined in ~/.ymer.pjt (See Project definitions in this
manual)

2)-4) If the fragment group only has one fragment form, it will a will automatically be
opened in the code viewer pane see below.

The structural representation of programs is abstract syntax trees (ASTs), that are
stored on .ast files (or .astL files on the PC). The relations between the textual form
and the structural form are handled in the following way: if the text file (e.g. the .bet
file) is newer than the .ast file, theuser is asked whether the text file should be parsed
automatically. If there are parse errors these can be corrected in a parse error editor.

5.2. Source Browser Windows
This short description describes the browser which is part of the Mjølner BETA
System. This browser is used in a number of tools of the system (Sif, Freja, Frigg,
Valhalla). This description only describes the browser functionalities, and not the
application specific functionalities (such as the Sif structure editing functionalities).

We will here present the most important user interface components of the source
browser. Tools integrated with the source browser will share these user interface
components. These components are therefore described here, such that the other
tools need not describe them.

We will describe the windows, menus and other interaction possibilities in the
following sections.

The source browser interface consists of a number of different window types:

35

36 Source Browser and Editor

• browser window

• workspace window

• separate code viewer window

• subviewer window

• parse error editor window

• two types of semantic errors windows

• help window

where the browser window is the main window, giving access to the main browsing
facilities and to the other windows. These windows will be described in the
following.

5.3. Browser Window
The browser window appears like:

The source browser window or has 4 important panes. Followed clock-wise from the
upper left pane, the panes are described below.

Pane 1 is called the project list pane, it contains a list of projects.

Source Browser Reference Manual 37

Pane 2 contains a list of fragment groups in the project selected in the project list
pane. It is called the fgment group list pane or just group list pane.

Pane 3 contains a list of properties and fragment forms of the fragment group
selected in the group list pane. It is called a fragment group viewer/editor or
just group viewer/editor.

Pane 4 displays the BETA code of the fragment form selected in the group viewer.
It is called the code viewer/editor3. This code viewer will be seen in many
different windows and the functionalities of the viewer is described later.

Below the code viewer/editor pane there are two info panes. Location displays path of
the selected fragment group in the group list pane - or in the project list pane, if
nothing is selected in the group list pane.

Info displays information, such as "no fragments in the selected project'" or what the
source browser currently is doing.

Browsing can be done at basically 3 levels: the project level, the group level or at the
code level.

5.3.1. Menus

The following sections describe the browser window menus offered by the source
browser. The different tools that are integrated with the source browser might supply
additional menus. Please refer to the individual tool manuals for information on
which menus they supply for the browser window.

5.3.2. File Menu

Help
Displays a window, containing a series of manuals. The different manuals can
be selected in the Manualsmenu of this window.

Save settings
Enables you to save the current contents of the project list pane on a project-file
$USER/.ymer.pjt. This project is then automatically loaded next time you
invoke a source browser application - in this way you can save your
configuration. It also saves/creates another file, $USER/.ymer.rc containing
information on the locations of the BETA compiler, and other tools in the Tools
menu (only in the stand-alone source browser application Ymer).

Reset settings
Enables you to clear the project list pane and reset it to the last settings (or the
default settings, if no $USER/.ymer.[pjt|rc] files are found.

3 The contents of the group viewer/editor can of course also be considered as part of the BETA
code, but this is actually "code" written in the fragment lanuage.

38 Source Browser and Editor

Close
Closes the window (and terminates the application if this is the last browser
window).

Quit
Closes all browser windows, and terminates the application or . In both Close
and Quit source browser applications will examine if any files have been
changed, and prompt for whether these files should be saved before
closing/quitting.

5.3.3. Project Menu

New...
Is an unimplemented menu-item (that is, it is always disabled - will be
implemented in a later version)

Open...
Opens a standard file dialog, and you can now select (a) a project-file (must
have extension .pjt), (b) a directory, and (c) a .bet/.ast/.astL file. You will then
in the project list pane find a project of the corresponding type A, B, or C (see
Project Definitions). All other selections will be ignored.

Reload
Is used to reload the contents of this project (e.g. if this project represents a
directory, and the contents of this directory has changed).

Save
Is yet another unimplemented menu-item (that is, it is always disabled - will be
implemented in a later version). Is intended to enable the saving of changes to
a project-file project.

Save As...
Is yet another unimplemented menu-item (that is, it is always disabled - will be
implemented in a later version). Is intended to enable saving an existing project
under a new name (and location).

Rename...
Displays a dialog in which you can type a new name for the selected project.

Close
 Closes the selected project, and removes it from the project list pane.

Source Browser Reference Manual 39

5.3.4. View Menu

One important quality of Sif is the possibility to present documents at different ab-
straction levels. Abstract presentation gives a good overview over a document by
suppressing irrelevant details. Abstract presentation is provided by means of contrac-
tions. A contraction is a special presentation of an sub-AST, where only the root is
presented. See also Abstract Presentation in Source Browser Tutorial. If the construct
has an associated comment, the comment marker is included in the contraction.
Browsing in the document can be done by detailing, i.e. opening the contractions
selectively. This is done either by the command Detail or by double-clicking.
Abstract presentation can be used to produce documentation such as a interface
specifications by saving the document on textual form at different abstraction levels,
using the Save Abstract... command.

Abstract
Contracts the current selection, i.e. presents the current selection as a
contraction instead of the full "text". This can also be done by double-clicking.

Abstract Recursively
Traverses the current selection recursively and contracts those constructs that
have a certain syntactic category. This command has only effect if abstraction
levels have been specified in the grammar for the particular language. The
grammar may specify a list of syntactic categories that automatically shall be
contracted. For BETA the syntactic categories are Descriptor, Attributes,
and Imperatives, when opening the files in the viewer/editor. For
more information on specifying abstraction levels see [MIA91-14].

Overview
Like Abstract Recursively but the current selection is reestablished after the
Abstract Recursively command, i.e. the path from the root to the current
selection is detailed. This command is useful if you want to see the context of
the current selection.

Detail
If the current selection is a contraction, this operation opens the contraction,
i.e. presents the next level of text. A contraction can also be opened by double-

40 Source Browser and Editor

clicking on it. If the current selection is not a contraction any visible
contraction in the current selection will be opened.

Detail Recursively
Recursively details the contractions in the current selection.

Search...
Makes it possible to search for a substring of a lexem, i.e. a name definition, a
name application or a string in the current fragment form. A dialog pops up.

Replace...
Extends the search dialog with a replace text field.

Follow Semantic Link
During the checking phase a number of semantic links are inserted in the AST.
These links are available to the user. Using this command on a name
application the semantic link will be followed and the current selection is
changed to the appropriate node in the current or another fragment form.

Follow Link to Fragment
Given a SLOT definition, a binding of the definition (i.e. a fragment form with
the same name and type) can be searched for. This is done by selecting the
SLOT definition and using this command. The editor will now search for a
fragment form with the same name in the BODY and MDBODY hierarchy of
the group that this fragment is part of. Notice that the binding of Attributes
SLOTs may only be found in this way if they are bound in the BODY and
MDBODY hierarchy.

Follow Link to SLOT
The editor searches after a SLOT definition with the same name as the current
fragment form along the ORIGIN chain until it finds it or reaches the top, i.e.
betaenv.

Zoom In
Changes the contents of the code viewer to the current selection, i.e. the root of
the AST shown in the editor (the editor root) is changed to the sub-AST, that
corresponds to the current selection.

Zoom Out
Extends the contents of the code viewer to show one level more of the structure,
i.e. the editor root is changed to its father.

Zoom To Full Editor
Extends the contents of the code viewer to show the whole fragment form, i.e.
the editor root is set to the whole AST of the fragment form.

Reprettyprint
Rebuilds the textual presentation of the AST and reestablishes the current
selection. This command can be used if the contents of the code viewer need to
be refreshed.

Show AST Dump
This command is useful for users of the metaprogramming system. It prints in
the console window a dump of the sub-AST that corresponds to the current
selection

Editing and contractions

Structure editing on parts of the document that contain contractions is done exactly as
described earlier. You can for example cut, copy and paste constructs that contain
contractions. When text editing constructs that contain contractions, some parser

Source Browser Reference Manual 41

technical information is included in the contractions before the text editor is activated.
This information is necessary to avoid loosing contractions during text editing. Do
not modify the contents of contractions during text editing. A contraction in text edit-
ing mode looks like:

<<@4711: Descriptor>> Contraction in
text editing mode

where @4711 is an internal address of the sub-AST that is contracted, i.e. not pre-
sented, and Descriptor is the syntactic category of the contracted sub-AST.

Following links to other fragment forms

If the destination fragment form is different from the source fragment form the
destination fragment form is shown in the same code viewer or in a separate code
viewer, depending on the code viewer of the source fragment form. If the code viewer
of the source fragment form is

• part of the browser window, the contents of the code viewer window is
changed

• a separate code viewer, the contents of the code viewer window is changed

• a subviewer, a new subviewer is opened

• part of a work space window, a new code viewer is inserted in the work space
window.

5.3.5. History menu

Back and Forward moves you along the path you have previously examined.

Furthermore, this menu contains one entry for each fragment form, you have
displayed in the code viewer. This is used for speedy access to previously visited
fragment forms.

5.3.6. Windows menu

Open Workspace
Opens a workspace window (see later more on this).

Open Separate Browser

42 Source Browser and Editor

Opens a new browser window, identical to this one. This window is controlled
by the same source browser application instance. Makes it possible to browse
two different "places" at once.

Open Separate Code Viewer
Opens a separate window just like the code viewer, displaying the currently
selected fragment form in the group viewer.

Open Semantic Errors Viewer
Will open a semantic errors viewer on the selected group, if there are any
semantic errors in that group. See later for more information on the semantic
errors editor.

Open Semantic Errors Editor
Will open a semantic errors editor on the selected group, if there are any
semantic errors in that group. See later for more information on the semantic
errors editor.

The rest of the menu contains one entry for each window opened by the source
browser. Selecting one of these items will bring the window to the front (and wriggle
it)

5.3.7. Double-click

As already mentioned, you can display a fragment form in the code viewer by
selecting it in the group viewer. But that's not all you can do in the group viewer.

Double-click can is used heavily in the sourcebrowser for browsing.

If you double-click on an ORIGIN, INCLUDE, BODY or MDBODY property, in the
group viewer, the fragment group referred to in the property will be included in the
group list pane and selected there.

If you double-click on a MAKE property, a new window appear with a Lidskjalv text
editor for editing the MAKE file.

In the code viewer, double-click is also used for browsing. Double-clicking on the
current selection will perform different actions. If the current selection is

• a name application, the semantic link will be followed (if available). If the
definition is located in another fragment form the contents of the code viewer
will be changed to show that fragment form.

• a SLOT definition, the fragment link will be followed (if available) and the
destination fragment form will be shown in the same code viewer

• a comment mark (*), the full comment will be shown instead

• a expanded comment (* ... *), the comment mark will be shown instead

• a contraction (...), the contraction is opened, i.e. the next detail level is shown

• anything else the current selection will be contracted (...)

5.3.8. Shift-double-click

Shift-double-click is used for browsing like double-click, except that separate
windows are opened.

In the project list pane, the group list pane and the group viewer, you can open a
separate window by pressing <shift> down while double-clicking on an element in
one of the lists.

In the project list pane, you will get a new separate browser window, with the
subprojects of this project as top-level projects.

Source Browser Reference Manual 43

In the group list pane, you will get a new separate browser window with the [domain]
and [extent] projects as top-level projects (See Project Definitions).

In the group viewer, you will get a separate code viewer on the selected fragment
form. If the currently selected element in the group viewer is not a fragment form
(i.e. it is a property), the effect is different. If the selected is an ORIGIN, INCLUDE;
BODY or MDBODY property, a new separate browser window with the specified
fragment group as top-level project. If the selected is a MAKE property, a text editor
is opened, enabling textual editing of the Make file specified. All other properties are
ignored. In the code viewer, shift double-click will do the same as double-click
(except that the "result" will be presented in a separate window. Shift double-click
will open different kind of separate windows depending on the current selection. If
the current selection is:

• a name application, the semantic link will be followed (if available) and the
destination fragment form will be shown in a separate code viewer

• a SLOT definition, the fragment link will be followed (if available) and the
destination fragment form will be shown in a separate code viewer

• a comment, the comment will be shown in a separate window

• anything else a subviewer window with the current selection as its contents
will be opened.

5.3.9. Search Facilities

There is a search facility in the 3 upper panes If you are having keyboard focus in
one of these panes - usually by just clicking inside them, you can start search by
pressing <Ctrl>i (^i for short - "i" is for "interactive search"). You can now type a
string, and the source browser will immediately select the first item in the list with the
typed string somewhere in the name.

You can get the next fragment form, matching the string, by again pressing ^i.
Repeated ^i will repeatedly find the next match, starting from the top of the list again,
if no more matches are found.

You can stop the search by pressing <cr>.

If you start the string by a "^" (caret), the string must be a prefix string, i.e. the name
must start with the string.

5.3.10. Changing the Size of the inner Panes

If you position the cursor between any of the panes, a cross-cursor appears. By
pressing one of the mouse button you can move the separation between the panes,
making more space for the one (and naturally consequently less for the other).

5.3.11. Zooming in the different inner Panes

If you position the cursor at the visible borders of the panes, and double-click, you
can make the particular pane zoom to take over major parts of the entire browser
window.

If you zoom the info pane, you will be able to see all messages that have been written
in the Info area.

5.3.12. Information in the Info Pane

Besides the already mentioned information in the Info area, you will occasionally see
status information to the right of the pane. This status information is shown as small

44 Source Browser and Editor

boxes containing state information. There are three types of state information
presently:

'%' indicating that the current fragment group is locked (cannot be edited)

'*' indicating that the current fragment group has been changed

c' indicating that the current fragment group has been checked but a semantic
checker (usually the BETA compiler), and that semantic information therefore
is available for semantic browsing.

5.4. Workspace Window
A workspace window (you can create as many as you want) is a window in which
you can view (and possibly edit) fragment forms from different fragment groups (or
the same fragment group) together. The workspace window looks like:

When a fragment form has been imported to the workspace through the Import menu,
it will be made visible in a view identical to the code viewer in browser window. The
workspace may contain as many such views as you wish. The outer scroller enables

Source Browser Reference Manual 45

you to scroll among the fragment forms in the workspace (try it - it is difficult to
describe short).

As in the browser window, you can place the cursor between two views in the outer
scroller, and thereby make the one smaller and the other bigger (and zoom the panes,
as described in section 5.3.11). But in the workspace you can even more. If you
press down <shift> while pressing the mouse button, you will only resize the view
above the cursor - this is handy for making one view bigger without affecting the
other views.

5.4.1. Menus

The above menus are those supplied by the source browser by default in a workspace
window. Integrated tools may define additional workspace window menus - please
refer to those manuals for details.

5.4.2. File Menu

The File menu just contains a Close Ctrl-w entry to enable closing the workspace.

5.4.3. View Menu

The View menu is identical to the View menu in the browser window.

5.4.4. Import Menu

The Import menu will always contain at least one entry. This entry is the name of
the name of the currently selected fragment group in the group list pane in the
browser window. If selected, all fragment forms in that fragment group will be
displayed in the workspace. Following this permanent entry, a variable number of
entries are shown. Each entry corresponds to one fragment form in the currently
selected fragment group in the group list pane in the browser window. If you select
one of these entries, the corresponding fragment form will be displayed in the
workspace. In the example above all but isEmptyBody and newBody is shown
because the others are already imported.

5.4.5. Scroll Menu

The Scroll menu will contain one item for each fragment form in the workspace. If
selected, the scroller will scroll such that the fragment form view is visible. In the
example above these 3 fragment forms have been inserted.

46 Source Browser and Editor

5.4.6. Close Menu

The Close menu will contain one item for each fragment form in the workspace. If
selected, the chosen fragment form view is removed from the workspace. In the
example above these 3 fragment forms have been inserted.

5.5. Separate Code Viewer Window
The separate code viewer window offers facilities for viewing (and possibly editing)
a given fragment form, independently of any browser window. The separate code
editor window looks like:

the code viewer is functionally identical to the code viewer in browser window.

5.5.1. Menus

The above menus are those supplied by the source browser by default in a separate
code editor window. Integrated tools may define additional separate code editor
window menus - please refer to those manuals for details.

Source Browser Reference Manual 47

5.5.2. File Menu

The File menu just contains a Close Ctrl-w entry to enable closing the separate code
editor window.

5.5.3. View Menu

The View menu is identical to the View menu in the browser window.

5.5.4. Buffers Menu

The Buffers menu is similar to the variable part of the History menu in the browser
window. It contains one entry for each fragment form, that has been shown in this
separate code editor window.

5.6. Subviewer Window
The subviewer window offers facilities for viewing (or possibly editing) a given
fragment form, independently of any other code editor window. The subviewer
window looks like:

the code viewer is functionally identical to the code viewer in browser window.

There is no Buffer menu in a subviewer. If double-click in a subviewer implies that
another fragment form must be shown, it is shown in another subviewer.

5.6.1. Menus

The above menus are those supplied by the source browser by default in a subviewer
window. Integrated tools may define additional subviewer window menus - please
refer to those manuals for details.

5.6.2. File Menu

The File menu just contains a Close Ctrl-w entry to enable closing the subviewer
window.

48 Source Browser and Editor

5.6.3. View Menu

The View menu is identical to the View menu in the browser window.

5.7. Parse Editor Window
If you select a fragment group that haven't been parsed (i.e. no .ast[L] file exist, or it's
outdated), a prompt will ask you if this should be done. If you say yes, the source file
will be parsed.

If the source file may contain parse errors, a parse errors editor window is
automatically displayed. It looks the following:

The upper pane will display the list of parse errors, with the first one selected.

The lower pane will contain the source file, with the line with the first parse error
selected.

If you press <cr> in the upper pane, the next parse error is selected and the
corresponding line displayed in the lower pane.

Source Browser Reference Manual 49

As in the browser window, you can place the cursor between the two panes, and
thereby make the one smaller and the other bigger.

5.7.1. Menus

The above menus are those supplied by the source browser by default in a parse
editor window. Integrated tools may define additional parse editor window menus -
please refer to those manuals for details.

5.7.2. File Menu

Save
Saves the edited file.

Revert
Reads in the original file again, thereby removing the changes that might have
been made to the file.

Close Ctrl-w
Closes the parse editor window. If changes have been made to the file, and not
saved, a prompt will be displayed asking whether or not to save the changes.

5.7.3. Edit Menu

Edit contains the Cut Ctrl-x, Copy Ctrl-c and Paste Ctrl-v items with the obvious
meanings (working on the contents of the lower pane).

50 Source Browser and Editor

5.8. Semantic Errors Viewer Window
The semantic errors viewer window is opened through the Windows menu in the
browser window, or in those tools integrated with the BETA compiler, when a file is
compiled and the compiler reports semantic errors. It appears like the following:

The upper pane contains a list of fragment forms containing semantic errors.

If you press <cr> in the fragment form list, the next fragment form is selected. If you
press <cr> in the lower pane: the semantic error list, the next semantic error is
selected.

When a fragment form is selected in the fragment form list, all semantic errors in that
fragment form is listed in the semantic error list.

When a semantic error is selected in the semantic error list, the corresponding place
in the source code is selected in the code viewer in the browser window:

Source Browser Reference Manual 51

As in the browser window, you can place the cursor between the two panes, and
thereby make the one smaller and the other bigger.

5.8.1. Menus

The above menus are those supplied by the source browser by default in a semantic
errors viewer window. Integrated tools may define additional semantic errors viewer
window menus - please refer to those manuals for details.

5.8.2. File Menu

Reload Ctrl-r
Enables reloading the fragment group after a possible rechecking have been
done.

Close Ctrl-w
 Entry enables closing the semantic errors viewer window.

5.8.3. Warnings Menu

Include is a toggle. If toggle on, then warnings will be included in the list in the
semantic error list. Otherwise, warnings are not shown.

5.8.4. Mark Menu

Mark as Corrected
Marks the currently selected element in the semantic error list as corrected
(indicated by an asterisks "*" in front of the element). This is merely a help to
the user during correction of the semantic errors, enabling him to mark those
errors, that he thinks he has corrected.

52 Source Browser and Editor

Unmark
Removes such mark on the currently selected element in the semantic error list.

5.9. Semantic Errors Editor Window
The semantic errors editor window is opened through the Windows menu in the
browser window. It offers the facility to view and edit semantic errors independently
of any browser window. It is a semantic error viewer with a code editor adds.

When a semantic error is selected in the semantic error list, the corresponding place
in the source code is selected in the code viewer in the lower part of the semantic
errors editor window.

As in the browser window, you can place the cursor between the panes, and thereby
make the one smaller and the other bigger.

5.9.1. Menus

The menus of the semantic errors editor window include those one defined for
semantic errors viewer. View and Edit menu may also be available (depending on
the tool integrated with the source browser).

Source Browser Reference Manual 53

5.10. Help Window
The help window offers access to various help documents. The help documents are
those supplied by the various tools integrated with the source browser.

The help window looks like:

The subjects pane contains a table of contents of the selected manual, and the Help
text pane shows the text of the selected entry.

As in the browser window, you can place the cursor between the two panes, and
thereby make the one smaller and the other bigger (and zoom the panes, as described
in section 5.3.11).

5.10.1. File Menu

Load Ctrl-l entry enables you to load any HTML file into the help window.

Close Ctrl-w entry enables closing the help window.

5.10.2. Manuals Menu

The entries in the Manuals menu depend on the exact configuration, the source
browser is used in. Here the entries supplied by Ymer is shown . Additional entries
may be available, depending on the tools integrated with the source browser.

54 Source Browser and Editor

Selecting one of the entries, will load the corresponding manual into the help window
panes.

5.10.3. HTML support

The help window offers additional support for reading HTML files in general. This
is done by dynamically including the following 'manuals' in the Manuals menu:

1) If there is a file with the same name as the current group, but with extension
.html

2) If the current project is:

- a directory, and there are files with extension .html in that directory

- a root/domain/extent project, and there exists a file with the same name as
the project, but with extension .html

- a project file, and there exists a file with the same name as the project file,
but with extension .html.

All these .html files will become available in the Manuals menu of the help window.

5.11. Project definition
A project is either:

A. Defined in a 'project-file' (more later)

B. A directory

C. A fragment group

A project may contain subprojects. These are defined differently for the three project
types:

A. A project may have defined subprojects in the project-file.

B. The sub-directories are considered subprojects.

C. Two subprojects are defined: [domain] and [extent]. These subprojects contain
the fragment forms in the dependency-graph of the fragment group. [domain]
contains all those in the domain (that is excluding BODY fragments),
and [extent] contains all those in the extent (that is including BODY
fragments). These two subprojects have in turn defined subprojects, namely the
fragment groups in the domain (resp. the extent), sorted out into the libraries
they are part of (e.g. basiclib, process, etc.).

5.11.1. Standard Projects

Assuming that you have not used source browser applications before, the project-list
(1) will display three projects at start-up: "Std. Libraries", "~/" and "./".

"Std. Libraries" is a predefined project (defined in a project-file located in
~beta/configuration/r4.0/ymer.pjt), containing all the libraries in the standard MBS
system (basiclib, containers, etc.). An example of this file is:

Source Browser Reference Manual 55

project basiclib '~beta/basiclib/v1.5 '
project containers '~beta/containers/v1.5'
project guienv '~beta/guienv/v1.4'
project bifrost '~beta/bifrost/v2.1'
project process '~beta/process/v1.5'
project persistentstore '~beta/persistentstore/v1.5'
project oodb '~beta/oodb/v2.1'
project distribution '~beta/distribution/v1.1'
project sysutils '~beta/sysutils/v1.5'
project unixlib '~beta/unixlib/v1.5'
project Xt '~beta/Xt/v1.9'
project mps '~beta/mps/v5.1'
project objectserver '~beta/objectserver/v2.4'
project contrib '~beta/contrib'
project demo '~beta/demo/r4.0'

"~/" is a directory project, referring to your home directory, and "./" is a directory
project, referring to the current directory (i.e. the directory, where you invoked the
source browser application from).

If you have invoked a source browser application with command line arguments,
these will be shown in the projects list as well.

When a project/directory is selected in the project list pane, the group list pane will
display all fragment files in that project. The source browser remembers the last
selection in the group list pane and the group viewer, such that it will reestablish
these selections next time you enters the same project or group.

When a group with one fragment form, it will automatically be selected.

5.11.2. Fold/unfold Projects

To see the subprojects/subdirectories of a project, double-click on the project (called
unfold the project), then you will see the subprojects, properly indented, e.g.:

Std. Libraries

basiclib

containers

bifrost

(etc.)

Double-clicking again on the "Std. Libraries" will 'fold' the subprojects, only showing
the "Std. Libraries" project, and not the subprojects.

5.11.3. Making a Fragment Group into a Project

You can make a fragment group into a project by double-clicking on it in the group
list pane. It will then appear in the project list pane as a fragment group project.
Double-clicking on it in the project list pane will calculate the dependency graph, and
show the [domain] and [extent] subprojects.

5.11.4. Domain and Extent Projects

When selecting the [domain] or [extent] subprojects, the source browser will try to
find possible conflicts in versions of libraries used, and report such conflicts in a pop-
up window. The conflict analysis is based on the assumption, that versions are
identified by subdirectory names of the form "vn.m", where 'n' is the major version
number, and 'm' is the minor version number.

6. Editor Reference Manual

6.1. Code editor
The code editor provides structure editing on each fragment form.

6.1.1. Edit Menu

Undo
Initiating this command will undo the latest performed editing operation in the
code editor. If the latest operation was Undo, the fragment will return to the
state before the Undo.

Cut
The current selection is removed from the fragment form. If the current
selection may be deleted (e.g. a statement or a declaration) it will disappear. If
the current selection may not be deleted (e.g. the expression part of an if-
statement) a nonterminal of appropriate syntactic category will be inserted in-
stead of the current selection. The deleted fragment part will be put onto a
clipboard and can later be pasted into the same or another fragment form.

Copy
The current selection is copied onto the clipboard, and can later be pasted into
the same or another fragment.

56

Editor Reference Manual 57

Paste
Whenever the current selection and the structure on the clipboard are of
exchangeable syntactic categories, Paste is enabled. Paste will replace the
current selection with the structure currently on the clipboard. The content of
the clipboard will not be changed.

Clear
Same as Cut but nothing is put on the clipboard.

Textedit
This command enters text editing mode on the current selection. See also Text
editing in Editor tutorial. Alternatively the <space> key can be used.
Please note that text editing is only fully available if a parser for the supported
language has been generated. If a parser is not available only lexems can be
edited textually, i.e. name declarations, name applications, strings and
constants. In that case, there is no check that the lexems are legal.

External Textedit
Like Textedit but here an external texteditor is used. This facility is only
available in Unix versions. The environment variable EDITOR is recognized by
Sif. When this command is invoked the current selection is inserted in the
external editor. When the external editing has finished, by saving the results,
the resulting text is inserted instead of the current selection. Parse errors are
detected in the same way as in the internal texteditor.
E.g. emacs can be used by setting EDITOR to /usr/local/bin/emacsclient
and starting emacs as a server in the following way: emacs -f server-start.

Parse Text
Exits text editing mode and parses the edited text according to the syntactic cat-
egory of the current selection before entering text editing mode. See also Text
editing in Editor tutorial.

Revert Text Editing
Exits text editing mode and reestablishes the situation before text editing was
entered. Alternatively the <esc> key can be used.

Show Text Commands
When text editing, the text editing commands can be shown in a separate read-
only window. Currently not enabled.

Insert Before/Insert After Text editing
commandsWhenever the current selection is one or more list elements, these entries will

enable you to insert a nonterminal of same syntactic category as the list ele-
ments either before or after the current selection, respectively. If the list
elements are on separate lines before/after means above/below, respectively. If
the list elements are on the same line before/after means left/right respectively.
An alternative to Insert After is the <cr> key.

Remove Optionals
Removes all nonterminals representing optional productions from the current
selection.

Show Optionals
Inserts all nonterminals representing optional productions in the current
selection.

Create Subeditor
A subeditor on the current selection is created, i.e. a code editor where the
current selection is the root. Shift-double-click can also be used.

58 Source Browser and Editor

Form Write Protection
If checked it is not possible to modify the fragment form. Is automatically set if
group write protection or global write protection is set.

6.1.2. Expand Menu

This menu is a pop-up menu, that is activated by the Pop-up Menu Button on the
mouse (See basic user interface principles).

The content of the Expand menu is dependent on the current selection. If the current
selection is a nonterminal, the Expand menu will contain an entry for each language
construct that can replace this nonterminal. If the current selection is an optional or
list nonterminal, the Expand menu will contain an empty entry as well. This entry
enables you to remove that nonterminal.

6.1.3. SLOTs Menu

This menu is only present in the menu bar if the current fragment group is a BETA
fragment group. The menu makes use of the fragment clipboard that is used as an
intermediate store for fragment forms that are “moved around” between fragment
groups. The fragment clipboard is also used in the Fragment menu.

Make DoPart SLOT...
Substitutes the current selection with a SLOT definition and the removed part
of the document is inserted in an DoPart fragment form, that is stored in the
fragment clipboard. The name of the SLOT is prompted for. The default name
is the name of the enclosing pattern.

Make Descriptor SLOT...
Substitutes the current selection with a SLOT definition and the removed part
of the document is inserted in an Descriptor fragment form, that is stored in
the fragment clipboard. The name of the SLOT is prompted for. The default
name is the name of the enclosing pattern.

Make Attributes SLOT...
Substitutes the current selection with a SLOT definition and the removed part
of the document is inserted in an Attributes fragment form, that is stored in
the fragment clipboard. The name of the SLOT is prompted for. The default
name is the name of the enclosing pattern.

Editor Reference Manual 59

Set Current as Implementation File
The current fragment group selected in the browser is set to be the implemen-
tation file. If this file is set the Make SLOT commands and the Hide Imple-
mentation... command will automatically paste the created fragment forms
that correspond to the SLOTs into the implementation file.

Unset Implementation File
The file set in Set Current as Implementation File is unset.

Set SLOT Name Prefix...
When one of the Make SLOT commands or the Hide Implementation...
command is used the default name in the dialog for the SLOT name will be the
text set by this command, followed by the name of the enclosing pattern (if
any).

Unset SLOT Name Prefix
Clears the text set in Set SLOT Name Prefix...

Hide Implementation...
For each DoPart in the current selection in the code editor the user is asked
whether it should be hidden into the implementation file by making it into a
SLOT and moving the DoPart into a fragment form in the implementation file.

Paste Fragment Form
Currently disabled.
If the current selection is a SLOT definition with the same name and syntactic
category as the fragment form on the clipboard this command substitutes the
SLOT definition with the fragment form on the fragment clipboard.

Fill SLOT...
Currently disabled.
If the current selection is a SLOT definition, this command searches for a
binding of the SLOT in the BODY and MDBODY hierarchy of the fragment
group that this fragment form belongs to. If found, you are asked whether you
want to substitute the SLOT definition with a copy of the found fragment form.

Fill All SLOTs...
Currently disabled.
Like Fill SLOT... but tries to fill all SLOTs in the fragment form. There is no
undo on this operation.

60 Source Browser and Editor

6.2. Group Editor
The group editor is only relevant if the language in question is BETA. It is used for
browsing or editing BETA programs. It is used to present and modify the structure of
a group, i.e. the properties (ORIGIN, BODY, MDBODY, INCLUDE etc.) and frag-
ments (Descriptor forms or Attributes forms).

6.2.1. Group Menu

New...
Makes it possible to create a new fragment group with one fragment form. You
can choose between the currently available grammars. A dialog pops up.

New BETA Program...
Creates a minimal BETA program. You are prompted for the name and location
of the new fragment group.

New BETA Library...
Creates a minimal BETA library. You are prompted for the name and location
of the new fragment group.

Close
Closes the current fragment group. If changes have been made to the fragment
group, you are asked whether the changes should be saved.

Save
If changes have been made to the fragment group, it is saved. A backup of the
old text file (if existent) is taken on e.g. foo.bet~ and a new text file is
generated e.g. foo.bet.

Save As...
Saves the current fragment group under a another name. You are prompted for
the name and location of the new fragment group. The editor continues with the
new fragment group.

Save All...
Calls Save on all open group editors.

Editor Reference Manual 61

Save Abstract...
Saves the current fragment group on textual form at the current abstraction
level. You are prompted for the name and location of the text file.

Recover
Recovers to the latest auto save file (.ast# or .astL# on PC). This command is
enabled if the .ast# exists and is newer than the .ast file.

Revert
Reverts any changes (since the latest save) made to the current fragment group.

Group Write Protection
If checked, it is not possible to modify the fragment group. Group write
protection is set automatically if there is no write permission on the fragment
group file or if the global write protection is set.

Global Write Protection
If checked the whole editor is in read-only mode.

6.2.2. Fragment Menu

The cut, copy and paste operations are using a so-called fragment clipboard.

Most commands in this menu are performed according to the currently selected item
in the group editor. The selected item can be a property, like ORIGIN, INCLUDE and
BODY or a fragment form,.

Undo
Undo the last executed command in the group editor. Not implemented yet.

Cut
The selected fragment form is deleted. A copy of the fragment form is put on
the fragment clipboard.

Copy
A copy of the selected fragment form is put on the fragment clipboard.

Paste Before
The fragment form on the fragment clipboard is inserted in the fragment group
before the selected item.

62 Source Browser and Editor

Paste At End
The fragment form on the fragment clipboard is appended to the list of
fragment forms in the fragment group. It can also be pasted into a SLOT
definition in a code editor (See the Paste Fragment Form command in the
SLOTs menu).

New Descriptor Fragment Form...
A new Descriptor fragment form is created and inserted before the selected
item. You are prompted for the name of the fragment form.

New Attributes Fragment Form...
A new Attributes fragment form is created and inserted before the selected item.
You are prompted for the name of the fragment form.

New DoPart Fragment Form...
A new Dopart fragment form is created and inserted before the selected item.
You are prompted for the name of the fragment form.

Edit Properties
The properties of this fragment group can be edited in a separate code editor
that supports the “property specification language”. See Property Editor.

Edit Name...
The name of the selected fragment form item can be modified.

6.3. Property Editor
The property editor is able to edit the properties that can be attached to a fragment
group, i.e. properties like ORIGIN, INCLUDE; BODY, MDBODY, OBJFILE,
LIBFILE, BETARUN etc. In order to edit the properties of a fragment group, a
structure editor supporting a grammar for the “property language” is used. The
property editor is activated in the Fragment menu by means of the Edit Properties
command.

6.4. Tools Menu

This menu is only present in the menu bar, if the language supported in the active
code editor is BETA.

Editor Reference Manual 63

Check Current
The current fragment group in the browser is checked. Output from the
checking is written in the Info pane. Possible semantic errors are shown in
semantic error viewer and the structure corresponding to the firs semantic error
in the list is selected.

Recheck
The fragment group that was previously checked or compiled is checked.

Compile Current
The current fragment group in the browser is compiled, i.e. checking, code
generation, assembling (if binary code is not directly generated on the actual
platform) and linking is performed. Output is written in the Info pane. Possible
semantic errors are shown in semantic error viewer and the structure
corresponding to the firs semantic error in the list is selected.

Recompile
The fragment group that was previously checked or compiled is compiled.

Execute Current
If an executable exists that has the same name as the current fragment group it
is executed.

Reexecute
The application that was previously executed is started again.

Debug
Activates the debugger Valhalla on the executable of the current fragment
group if it exists..

Semantic Errors...
Opens the semantic error viewer.

Show Diagram
The diagram that corresponds to the current selection in the code editor of the
browser window is shown. in Freja, the CASE tool. Is only enabled if the actual
version of Sif is integrated with Freja.

6.5. Backup
Backup group file: .ast~ (or .astL~ on PC)

When a fragment group is opened in Sif a backup of, say, foo.ast is taken on
foo.ast~.

Auto-save group file: .ast# (or .astL# on PC)

When a certain number of structure editing operations has been performed, a copy of
the fragment group, say, foo.ast is stored on foo.ast# Text editing including
parsing is considered as 1 structure editing operation. When a fragment group is
being opened in the editor and an auto-save group file exists that is newer than the
.ast file, you are asked whether that file should be used instead.

Backup of text file: .bet~

When a fragment group is saved either by the user or by the compiler, a copy of the
corresponding text file, say, foo.bet (if present) is taken on foo.bet~

64 Source Browser and Editor

6.6. Opening Grammar Files
Sif can also be used to edit or inspect the available grammars and corresponding pret-
typrint specifications. The grammar files of the Mjølner BETA System are normally
located in ~beta/grammars.

File naming
convention

There is a naming convention for the grammar files and the prettyprint specification
files. For BETA the grammar file is called beta-meta.gram and the corresponding
group file is called beta-meta.ast. The prettyprint specification file for BETA is
called beta-pretty.pgram and the corresponding group file is called beta-
pretty.ast. To open the grammar file for BETA the entry beta-meta must be se-
lected. To open the prettyprint specification file for BETA the entry beta-pretty
must be selected. The grammar directory contains also a group file called beta.ast
but this is for internal use only.

For more information on grammars and prettyprint specifications etc. see [MIA91-
14].

7. Bibliography

[MIA91-14] The Metaprogramming System - Reference Manual

[MIA90-2] BETA Compiler - Reference Manual

[MIA90-8] Basic Libraries

65

Index
% 44 Follow Link to SLOT 40
(*) 13 Follow Semantic Link 40
* 44 Follow Semantic Links 12
... 11 Form Write Protection 58
.ast (or .astL# on PC) Forward 41
.ast~ (or .astL~ on PC) 63 fragment clipboard 29
.bet~ 63 Fragment Form Editor 1
Abstract 39 Fragment Group Editor 1
Abstract presentation 2, 11 fragment group list pane 8
Abstract Recursively 39 fragment group viewer/editor 8, 37
Adaptive incremental prettyprinting 2 Fragment Menu 61
Back 41 Fragmenting 28
Backup 63 Get Started 7, 35
beta-meta.gram 64 Global Write Protection 61
beta-pretty.pgram 64 grammar files 64
browsing 2, 8, 10 Grammar-basis 2
Buffers Menu 47 Group editor 17, 60
c 44 Group Level 10
Check Current 23, 63 group list pane. 8, 37
Clear 57 Group Menu 60
Close 38, 49, 51, 53, 60 group viewer/editor. 8, 37
Close Menu 46 Group Write Protection 61
Code Editor 17, 19, 56 Help 37
code viewer/editor 8, 37 Help Window 53
comment mark 13 Hide Implementation... 59
comments 2, 13 History menu 41
Compile Current 63 HTML 53, 54
contraction 11 Hypertext facilities 2
Copy 49, 56, 61 Import Menu 45
Create Subeditor 57 Incremental parsing 2
Cut 49, 56, 61 Info 37
Debug 63 Info Pane 43
Detail 39 inner Panes 43
Detail Recursively 40 Insert Before/Insert After 57
Domain 55 Integration 2
Double-click 42 Load 53
Edit Name... 62 Location 37
Edit Menu 49, 56 Macintosh 5
Edit Properties 62 Make Attributes SLOT... 58
Editing and contractions 40 Make Descriptor SLOT... 58
Execute Current 63 Make DoPart SLOT... 58
Expand Menu 58 Manuals menu 37, 53
Extent 55 Mark as Corrected 51
External Textedit 57 Mark Menu 51
File Menu 37, 45, 47, 49, 51, 53 Metaprogramming system 2
Fill All SLOTs... 59 Mouse 5
Fill SLOT... 59 New Attributes Fragment Form... 62
Fold/unfold Projects 55 New BETA Library... 60
Follow Link to Fragment 40 New BETA Program... 60

67

68 Source Browser and Editor

New Descriptor Fragment Form... 62 SLOTs menu 28, 58
New DoPart Fragment Form... 62 Source Browser 1
New... 38, 60 Standard Projects 54
Open Semantic Errors Editor 42 Structure editing 1, 19
Open Semantic Errors Viewer 42 Subviewer Window 47
Open Separate Browser 41 Text editing 1, 22
Open Separate Code Viewer 42 Textedit 57
Open Workspace 41 the current selection 58
Open... 38 Tools menu 37, 62
Overview 39 Undo 56, 61
Parse Editor Window 48 UNIX 5
Parse Text 22, 57 Unmark 52
Paste 49, 57 Unset Implementation File 59
Paste At End 62 Unset SLOT Name Prefix 59
Paste Before 61 View Menu 39, 45, 47, 48
Paste Fragment Form 59 Warnings Menu 51
Pop-up Menu Button 5 Windows menu 41
Project 54 Windows NT/95 5
Project Level 8 Workspace Window 44
project list pane, 7, 36 Zoom In 40
Project Menu 38 Zoom Out 40
Property Editor 62 Zoom To Full Editor 40
Quit 38 Zooming 43
Recheck 63
Recompile 63
Recover 61
Reexecute 63
Reload 38, 51
Remove Optionals 57
Rename... 38
Replace... 40
Reprettyprint 40
Reset settings 37
Revert 49, 61
Revert Text Editing 57
Save 38, 49, 60
Save Abstract... 61
Save All... 60
Save As... 38, 60
Save settings 37
Scroll Menu 45
Search 16, 43
Search... 40
Selection 5
Selection Button 5
Semantic Errors Editor 52
Semantic Errors Viewer 50
Semantic Errors... 63
Semantic Links 12
Separate Code Viewer 46
Set Current as Implementation File 59
Set SLOT Name Prefix... 59
Shift-double-click 42
Show AST Dump 40
Show Diagram 63
Show Optionals 57
Show Text Commands 57
Size 43

