
The Mjølner BETA System
Using on UNIX

Reference Manual

Mjølner Informatics Report

MIA 90-04(1.3)

August 1996

Copyright © 1990-96 Mjølner Informatics ApS.
All rights reserved.

No part of this document may be copied or distributed
without the prior written permission of Mjølner Informatics

i

Table of Contents

1 The Mjølner BETA System on UNIX... .1
1.1 Search Path.. .1
1.2 Calling the Compiler.. .1
1.3 System Directories .. .2
1.4 Environment Variables .. .3
1.5 Usage of the BETA Compiler .. .7
1.6 Usage of Valhalla .. .7
1.7 Usage of Sif. .7
1.8 The comp.lang.beta Newsgroup... .7

2 Installation.. .9
2.1 Minimum Requirements .. .9

2.1.1 Sun workstations .. .9
2.1.2 HP workstations .. .9
2.1.3 PC's running Linux9

2.2 Distribution Contents .. 10
2.3 Installation .. 11

3. Bibliography ... 13

4. Index ... 15

1

1 The Mjølner BETA System
on UNIX

This document describes the usage of the BETA compiler for UNIX workstations.
The Mjølner BETA System is currently available for the following UNIX platforms:
Sun4 SPARC running SunOS 4.x or Solaris 2.x, HP 9000 series 300, 400, 700
workstations running HP-UX 9.x, Silicon Graphics MIPS workstations running IRIX
5.3, and PC's running ELF based Linux.

1.1 Search Path

The Mjølner BETA System is often installed in the directory:

 /usr/local/lib/beta

The binary executables of the Mjølner BETA System, including the BETA compiler
are then installed in the directory

 /usr/local/lib/beta/bin

The user should include this directory in his or her search path. The file .login
should contain, e.g.

 set path=($path /usr/local/lib/beta/bin)

But the system can be placed anywhere (see chapter 2).

1.2 Calling the Compiler

Assume that the file foo.bet contains a valid BETA fragment. This fragment may be
translated by executing the command

 beta foo

This command will invoke the BETA compiler and assemble and link the output
from the BETA compiler. Assembly and linkage will be done using the standard
UNIX assembler and linker. The final object code will be put on the file foo, which
may be executed by typing:

 foo

2 Using on Unix

1.3 System Directories

Some UNIX installations consist of a network of workstations from different
vendors. For instance, the Computer Science Department, Aarhus University has a
system consisting of Sun-3, Sun-4, and HP-9000 workstations. In order to be able to
use the same BETA source files for the different systems on the same file system, the
assembly code and object code are placed in different subdirectories.

Assume that the file foo.bet resides in the directory:

 /usr/smith/test

If the BETA compiler is invoked on a SPARC SunOS 4.x workstation, the assembly
code and object code for foo is placed in the directory:

 /usr/smith/test/sun4

This means that the directory will contain the files:

 foo..s
 foo.o

Note that foo..s is usually deleted after the compilation. 1

If foo.bet is translated on a HP-9000 series 300 or 400, these files are placed in the
directory:

 /usr/smith/test/hpux9mc

If the foo.bet has been translated at a SUN4, subsequent translations on e.g., a HP-
9000 will only perform code generation, i.e. no parsing and semantic checking will
be performed.

Note that the executable file foo will always reside as

 /usr/smith/test/foo

This means that if foo.bet has been translated on SUN4, then foo may only be exe-
cuted at a SUN4. The user should, e.g., move foo to the directory /usr/
smith/test/sun4 or rename the file to e.g. SUN4foo in order to save the SUN4
executable before translating foo.bet on another system. Alternatively, the -o option
of the compiler may be used , as in

beta -o SUN4foo foo

1 On some platforms binary code is generated directly, and the assembler file

foo..s is thus not generated

1.4 Environment Variables

The following environment variables are used in the Mjølner BETA System on
UNIX platforms. For most users, only the BETALIB variable is relevant:

BETALIB

Specifies where ~beta is located. If not set, beta is assumed to be a user name,
and ~beta being the home directory of that user. If beta is not a user, then

Environment Variables 3

/usr/local/lib/beta will be used. It is used by many tools in the Mjølner
BETA System.

BETAOPTS

Specifies options that the beta compiler should be invoked with by default.

BETALINKOPTIONS

Specifies the linker options to be used by the BETA compiler when linking
(using standard UNIX linker). If set, it totally overwrites the default link op-
tions, the compiler would have used otherwise.

CC

Set by the compiler in the jobfiles on all UNIX platforms. Thus $(CC) can be
used in Makefiles.

LD_LIBRARY_PATH

This is a colon separated list of directories to search for external libraries dur-
ing linking. Notice that not all standard UNIX linkers supports this variable di-
rectly, but the ..job files generated by the beta-compiler will still use this
variable.

TMPDIR

Normally, the link-directives in the ..job files will use /tmp for temporary
files. If another directory is to be used (e.g. because /tmp is full), setting TM-
PDIR to the name of a directory, prior to compilation, will cause the link-direc-
tives to place temporary files in this directory.

MACHINETYPE

Is set automatically by the compiler during the execution of the ..job files and
make files. It may be necessary to set this variable manually, if these command
files are executed manually.

BETART

Is used to set various characteristics of the BETA runtime system. The specifi-
cation consists of a list of entries, separated by ':' (colon). Colon in the begin-
ning and at the end of the BETART value is optional. The specification ignores
case, except for the case of string-entry values.

Entries may appear more than once in BETART. The last specification will in
this case be used. The semantics of the different BETART entries are given
below.

There are three types of entries: boolean , integer, and string entries:

Boolean entries : The default value for all boolean entries is false. Mentioning
the boolean entries in BETART sets its value to true. Boolean entries have the
form <entry>, where <entry> is one of:

Info

Print information about heap sizes etc. at startup.

The following is an example of the output produced when Info is set:

#(Heap info: IOA=2*512Kb, AOABlock=512Kb, LVRABlock=512Kb,
CBFABlock=1Kb)

which reports the sizes of the two Infant Object Area (scavenging) heaps,
the size of each Adult Object Area block, the minimum size of each Large
Value Repetition Area block, and the size of each Call Back Function
Area block.

InfoIOA

4 Using on Unix

Print information on garbage collection in the infant object area during
execution.

If set, then after each IOA garbage collection, a line like the following
will be printed:

#(IOA-7 12? 4%)

which tells that this was the seventh IOA garbage collection, that it was
triggered by a request to allocate an object of size 12 long words (48
bytes), and that after the garbage collection, the IOA heap is 4% filled. In
special situations, other information may be printed if InfoIOA is set.
These will also be marked #(IOA.

InfoAOA

Print information on garbage collection in the adult object area during ex-
ecution.

If set, then after each AOA garbage collection, a line like the following
will be printed:

#(AOA-3 1024Kb in 2 blocks, 23% free)

which tells that this was the third AOA garbage collection, that 1024 Kb
is used by 2 AOA blocks, and that after the garbage collection 23% of
AOA is unused.

Another message that may be printed if InfoAOA is set is

#(AOA: new block allocated 512Kb)

which tells that an object was moved to the AOA heap, and that there was
not enough room for it. In this case the best solution was to allocate a new
block. Other times this situation may trigger an AOA garbage collection.
The heuristics for this may be controlled by some of the other properties
mentioned in this section.

In special situations other messages may be printed if InfoAOA is set,
these will also be marked #(AOA.

InfoLVRA

Print Information on garbage collection in the large value repetition area
during execution.

If set, then after each LVRA garbage collection, a line like the following
will be printed:

#(LVRA-2 1536Kb in 2 blocks, 17% free)

which tells that this was the second LVRA garbage collection, that 1536
Kb is used by 2 LVRA blocks, and the after the garbage collection 17%
of LVRA is unused.

Another message that is often printed if InfoLVRA is set is

#(LVRA: make free list 1024Kb in 2 blocks, 243Kb free)

which tells that a large value repetition object was attempted allocated in
the LVRA heap, and that there was not enough room for it. In this case
the best solution was to rebuild an internal free-list. The numbers reported
tell that there was currently two blocks allocated, after the rebuilding of
the free list, 243Kb was found free.

Another message that may be printed if InfoLVRA is set is

#(LVRA: new block allocated 512Kb)

which tells that a large value repetition object was attempted allocated in
the LVRA heap, and in this case the best solution was to allocate a new
block. Other times this situation may trigger rebuilding of the internal

Environment Variables 5

free-list or an LVRA garbage collection. The heuristics for this may be
controlled by some of the other properties mentioned in this section.

InfoLVRAAlloc

Print information on allocation in the large value repetition area during
execution.

If set, then when a large value repetition is attempted allocated in LVRA,
a line like the following will be printed:

#(LVRAAlloc integer repetition, range=300, size=1216)

which tells that it is an integer repetition of range 300 which is requested,
and that it occupies 1216 bytes in the LVRA heap.

InfoCBFA

Print information about the callback function area during execution.

If set, then when enough new callbacks have been installed that a new
block is needed in the CBFA area, a line like the following will be
printed:

#(CBFA: new block allocated 1Kb)

which tells that a new block 1 kilobyte in size was allocated to extend the
CBFA heap.

In special situations other messages may be printed if InfoCBFA is set,
these will also be marked #(CBFA.

InfoAll

Sets all Info entries: Info, InfoIOA, InfoAOA, InfoLVRA, InfoCBFA,
and InfoLVRAAlloc.

QuaCont

Continue execution after runtime detection of qualification error in refer-
ence assignments.

Integer entries: These have the form <entry>=<value>, where <entry> is one
of the following, and <value> is any positive integer. The default values are
noted in parenthesis below:

IOA

The size in Kb of the infant object area (Default: 512).

IOAPercentage

The minimum free fraction in percent of the infant object area. If less than
this fraction is free in IOA after an IOA garbage collection, then, in the
current version of the runtime system, the execution of the program is
terminated. This limitation will be eliminated in a future version of the
runtime system. (Legal range: 3 to 40, default: 10).

AOA

The size in Kb of one block in the adult object area (Default: 512).

AOAMinFree

The minimum free area in Kb in the adult object area. If less than this size
is free after an AOA garbage collection, then the next allocation in AOA
will cause a new block to be allocated. Please note that it is only meaning-
ful to specify one of AOAMinFree and AOAPercentage (below), because
they specify conflicting behaviour for allocation in AOA. (Default: 100).

AOAPercentage

6 Using on Unix

The minimum free fraction in percent of the adult object area. If less than
this fraction is free after an AOA garbagecollection, then the next alloca-
tion in AOA will cause a new block to be allocated. Please note that it is
only meaningful to specify one of AOAMinFree (above) and AOAPer-
centage, because they specify conflicting behaviour for allocation in
AOA. (Legal range: 3 to 97, default: 0, i.e., AOAMinFree is used).

LVRA

The default size in Kb of one block in the large value repetition area
(Default: 512).

LVRAMinFree

The minimum free area in Kb in the large value repetition area. If less
than this size is free after an LVRA garbage collection, then the next allo-
cation in LVRA will cause a new block to be allocated. Please note that it
is only meaningful to specify one of LVRAMinFree and LVRAPercent-
age (below), because they specify conflicting behaviour for allocation in
LVRA. (Default: 200).

LVRAPercentage

The minimum free fraction in percent of the large value repetition area. If
less than this fraction is free after an LVRA garbage collection, then the
next allocation in LVRA will cause a newblock to be allocated. Please
note that it is only meaningful to specify one of LVRAMinFree (above)
and LVRAPercentage, because they specify conflicting behaviour for al-
location in LVRA. (Legal range: 3 to 97, default: 0, i.e., LVRAMinFree is
used).

CBFA

The size in Kb of one block in the callback function area (Default: 1).

String entries: These have the form <entry>=<value>, or <entry># <value>,
where <entry> is one of the following, and <value> is any string. The default
values are noted in parenthesis below:

InfoFile

Name of file on which to write all this information (Default: standard er-
ror file stderr).

Example (using csh):

setenv BETART "InfoIOA:IOA=1024:InfoFile=info.dump"

1.5 Usage of the BETA Compiler

The BETA compiler can be used, using the following steps:

Usage of the BETA Compiler 7

1. Copy a demo program from demo directory to your working directory:

 cp ~beta/demo/current/beta/record.bet .

 cp ~beta/demo/current/beta/recordlib.bet .

2. Compile the record program (record.bet):

 beta record

3. Execute the record program:

 record

For further details, see [MIA 90-2].

1.6 Usage of Valhalla

The Mjølner BETA debugger valhalla uses the X window system. To use it start X
the way you are used to. Then start the debugger by issuing the command (to debug
the record program):

 valhalla record

For further details, see [MIA 92-12].

1.7 Usage of Sif

The Mjølner Hyper Structure Editor sif uses the X window system. To use Sif start
X the way you are used to. Sif must be activated from an xterm window, or a corre-
sponding shell program. Just type:

 sif record

or just

 sif

For further details, see [MIA 90-11].

1.8 The comp.lang.beta Newsgroup

The USENET newsgroup comp.lang.beta is intended for discussions about the
BETA language and the programs and systems written in or supporting BETA.
Discussions concerning object-oriented programming principles based on the
concepts known from BETA will also take place in comp.lang.beta, possibly cross-
posted to comp.object. The BETA language Frequently Asked Questions (beta-
langauge-faq) will be posted to comp.lang.beta, and the most frequently asked
questions from comp.lang.beta will be included in the subsequent versions of this
FAQ.

8

2 Installation Guide for
UNIX Workstations

This chapter contains a guide for installing BETA on UNIX platforms.

The Mjølner BETA System is currently available for the following UNIX platforms:
Sun4 SPARC running SunOS 4.x or Solaris 2.x, HP 9000 series 300, 400, 700
workstations running HP-UX 9.x, Silicon Graphics MIPS workstations running IRIX
5.3, and PC's running ELF based Linux.

2.1 Minimum Requirements

2.1.1 Sun workstations

SunOS 4.0 or Solaris 2.x, 16 Mbytes, X window system (Rel. 11.3 or later). 150
Mbytes of available disk space (the full distribution occupies about 100 Mbytes).

2.1.2 HP workstations

HP 9000 series: HP-UX 9, 16 Mbytes, X window system (Rel. 11.3 or later), 150
Mbytes of available disk space (the full distribution occupies about 100 Mbytes).

2.1.3 PC's running Linux

ELF based Linux, CPU: Intel 386/486/586/Pentium, 16 MB RAM, X window
system (Rel. 11.3 or later), Motif 1.2 or later2, 120 Mbytes of available disk space
(the full distribution occupies about 80 Mbytes).

2 Motif is not required to compile simple programs, but programs using the

platform independent GUI libraries as well as the graphical tools require motif.

2.2 Distribution Contents

The distribution contains:

Distribution Content 9

• BETA Compiler v5.2

• Libraries

basic libraries, persistence, the BETA interface to the X window system, a
platform independent GUI environment etc.

• BETA demo programs

including demo programs of how to use BETA and how to use the basic li-
braries and the BETA GUI libraries.

• BETA debugger

Source level debugger with graphical interface.

• Sif

Hyper Structure Editor.

• Frigg

Graphical Interface Builder .

• Freja3

The Mjølner BETA CASE Tool.

3 Currently only available on SPARC Solaris.

2.3 Installation

The easiest way to install the system is to place it in /usr/local/lib/beta, but it
can be placed anywhere (see below). The location of the BETA system in your file
directory is in the following referred to as $BETALIB. By default $BETALIB is
/usr/local/lib/beta.

1. Unpack the tapes (skip this if tar-files have been obtained by ftp)

 cd $BETALIB

The details below may vary on different systems.

 tar -xvfb device-file 2000

where device-file is the UNIX file used for interfacing the tape station, e.g.
/dev/rst8.

2. Uncompress and untar the system:

The above command will have extracted a file called system.tar.Z or
system.tar.gz and a number of other compressed tar-files. Refer to the
release notes for your package for the exact list of files.

Each of the compressed files should now be unpacked; use either

 uncompress system.tar.Z
 tar -xvf system.tar

or (if zcat is available)

 zcat < system.tar.Z | tar -xvf -

On Linux systems use:

 tar -xzvf system.tar.gz

10 Using on Unix

Repeat this for the other files too.

3. Include $BETALIB/bin in your search path
by including

 set path=($path $BETALIB/bin)

in the .login file.4

4. Placing $BETALIB elsewhere

To place $BETALIB in a directory other than /usr/local/lib/beta the envi-
ronment variable BETALIB must be set, e.g.:

 setenv BETALIB /usr/smith/beta

or when using bash on Linux:

 bash$ BETALIB=/usr/smith/beta
 bash$ export BETALIB

See also the section on environment variables in the previous chapter.

5. Scripts in $BETALIB/bin

The scripts located in $BETALIB/bin use another script to perform some tests
for, e.g., machine type. This script is placed in $BETALIB/configura-
tion/r3.0/env.sh. If you have a very special installation, it may be neces-
sary to modify the env.sh script according to your system.

6. Make Current Links

Many of the examples in the system manuals use the notation
~beta/<library>/current/… to describe the version of libraries in the
current release of the Mjølner BETA System. In each directory current is a
link to the current version of the library. The current links can be generated
using the make_currentlinks script supplied with the Mjølner BETA System.

7. Online manuals

Standard UNIX manual pages for the tools in the Mjølner BETA System are
placed in $BETALIB/man/current/man1. To include these in the search path
of the man program, either include $BETALIB/man/current/ in your MANPATH
environment variable, or have your system administrator copy the files in
$BETALIB/man/current/man1 to the directory containing local manual pages
(usually /usr/man/manl).

The Internet also contains various sites with documentation on the Mjølner
BETA System. Use the URL

http://www.mjolner.dk/

which contians the BETA home page. This home page contains links to the
BETA FAQ, Newsletters, etc., and it is the intent, that the Mjølner BETA
System manuals will be made available through this home page too.

8. The Emacs Editor

If you want to use the very popular GNU Emacs text editor as an alternative to
the Sif hyper structure editor included in the Mjølner BETA System, you may
benefit from the beta-mode for Emacs located in the file $BETALIB/emacs/
current/beta-mode.el. A large comment in the start of this file describes
how to make use of beta-mode. Also you may want to byte-compile beta-
mode.el from within Emacs for improved performance. The directory
$BETALIB/emacs/current also contains various other contributions for using
Emacs to edit BETA programs. For instance, the file beta-hilit19.el

4 Remember to do a rehash if you source your .login file manually.

Installation 11

contains a setup for syntactic coloring of your BETA programs, when using
Emacs version 19.

9. Motif on SunOS and Linux

If you are running SunOS 4.x or Linux, then Motif is normally not included in
the standard libraries on your machine. You will then have to buy a separate
Motif package (version 1.2 or later) in order to use the graphical tools and
libraries included in the Mjølner BETA System.

After you have installed such a package, you should change the two environ-
ment variables MOTIFINC and MOTIFHOME set in the $BETALIB/configuration
/r4.0/env.sh file to reflect the placement of your Motif installation.

13

3. Bibliography

[MIA 90-2] Mjølner Informatics: The Mjølner BETA System: BETA
Compiler Reference Manual Mjølner Informatics Report
MIA 90-2.

[MIA 90-11] Mjølner Informatics: Sif – A Hyper Structure Editor, Tu-
torial and Reference Manual Mjølner Informatics Report
MIA 90-11.

[MIA 92-12] Mjølner Informatics: The Mjølner BETA System – The
BETA Source-level Debugger – Users's Guide, Mjølner
Informatics Report MIA 92-12

[MIA 91-13] Mjølner Informatics: The Bifrost Graphics System: Refer-
ence Manual, Mjølner Informatics Report MIA 91-13

[MIA 91-16] Mjølner Informatics: The Mjølner BETA System—X Win-
dow System Libraries, MjølnerInformatics Re port MIA
91-16.

[MIA 91-19] Mjølner Informatics: The Bifrost Graphics System, Tuto-
rial. Mjølner Informatics Report MIA 91-19.

15

4. Index

.login 1, 11
Adult Object Area 4
AOA 4, 6
AOAMinFree 6
AOAPercentage 6
~beta 3
BETA Compiler 7
beta-hilit19 12
beta-mode 12
BETALIB 3, 11
BETALINKOPTIONS 3
BETAOPTS 3
BETART 3
Boolean entries 3
Call Back Function Area 4
CBFA 5, 6
code generation 2
comp.lang.beta 7
compiler 1
csh 6
current links 12
ELF 9
Emacs 12
env.sh 12
Environment Variables 3
executable file 2
FAQ 8
free-list 5
Frequently Asked Questions 8
ftp 11
heap sizes 4
home directory 3
HP workstations 9
Infant Object Area 4
Info 4
InfoAll 5
InfoAOA 4
InfoCBFA 5
InfoFile 6
InfoIOA 4
InfoLVRA 4
InfoLVRAAlloc 5
Installation 9, 11
Integer entries 5
Internet 12
IOA 4, 5
IOAPercentage 5
Large Value Repetition Area 4
LD_LIBRARY_PATH 3

linker options 3
Linux 9
LVRA 4, 5, 6
LVRAMinFree 6
LVRAPercentage 6
MACHINETYPE 3
make_currentlinks 12
MANPATH 12
manual pages 12
Motif 12
MOTIFHOME 12
MOTIFINC 12
network 2
newsgroup 7
object code 2
Online manuals 12
parsing 2
path 1
PC's running Linux 9
QuaCont 5
qualification error 5
Requirements 9
scavenging 4
Search Path 1, 11
semantic checking 2
Sif 7
stderr 6
String entries 6
Sun workstations 9
System Directories 2
tar 11
TMPDIR 3
uncompress 11
URL 12
Valhalla 7
zcat 11

