
BETA Terminology

The following is a short description of important concepts used in the BETA
language. Please note, that these descriptions are deliberately informal. The precise
meanings of these terms must be found in [BETA93].

Contents

BETA TERMINOLOGY . 1

MODELLING.. 1
DECLARATIONS AND OBJECT DESCRIPTORS... 2
REFERENCE ATTRIBUTES ... 3
PATTERN ATTRIBUTES... 4
IMPERATIVES .. 4
BLOCK STRUCTURE AND SCOPING .. 7
INSERTED OBJECTS.. 7
INHERITANCE.. 8
VIRTUAL PATTERNS... 9

BETA TERMINOLOGY - INDEX . 10

1

Modelling

Object-oriented programming
A program execution is viewed as a physical model or representation of part of
the world. Objects on the computer model phenomena in the world; attributes of
objects model properties of phenomena.

 Computer Real world
Object Phenomenon
Attribute Property
Pattern Concept

BETA program execution
A collection of objects. Some represent phenomena while others are simply part
of the implementation.

Object
Computer representation of a real world phenomenon. Its structure consists of
attributes and actions.

Pattern
Computer representation of a real world concept. Objects defined according to
the pattern are called instances or pattern defined objects: A pattern is to its
instances as a concept is to its phenomena.

Singular object
An object representing a singular "one-of-a-kind" phenomenon - the object is not
defined as an instance of some pattern.

State of an object
The combined values of its measurable properties at some point in time.

Measurable property
A property which has a measurable value. The value may vary over time.

Part object
An object which is part of another object. Part objects are used to model part or
aggregation hierarchies.

Separate object
An autonomous self-contained object which is not a part object.

Reference to separate object
An attribute which is a reference to a separate object.

Kinds of actions
The actions of a phenomenon in a real world system often take place concurrently
(i.e. in parallel) with those of other phenomena in the system. A single phe-
nomenon normally alternates among its own actions.

2

Declarations and Object Descriptors

Declaration or attribute declaration
An association or binding of a name to some entity. The syntactic construct used
is the colon ":" as in, <name>: <entity>. For attributes of an object
descriptor, these are sometimes referred to as the attribute name and attribute de-
scription, respectively.

Pattern declaration
A declaration binding a pattern name to an object descriptor, describing the
structure of instances of the pattern. Pattern declarations serve as templates for
generating objects having a given structure.
Syntax is:

<name>: <object-descriptor>

Singular object declaration
Declaration of a singular object binding the object name to the singular object
description (an object descriptor).
Syntax is:

<name>: @<object-descriptor>

Attribute reference
An occurrence of an attribute's name in an object descriptor.

Local attribute reference of a pattern
A reference from within a pattern's object descriptor to an attribute declared
inside the same object descriptor.

Global attribute reference
Any attribute reference which is not local.

Object-descriptor
Used to describe the structure of objects and consists of a prefix part and a main
part.

Prefix part
Part of object descriptor used to specify the superpattern of the descriptor. The
prefix part is specified by a pattern name (or is empty).

Main part
Used to describe the additional structure of objects. Has the syntactic form(# …
#) and consists of an attribute part and an action part.

Attribute part
Part of object descriptor used to describe the object's attributes. Consists of a list
of attribute declarations.

Action part
Part of object descriptor used to describe the actions to be performed when the
object is executed. Consists of three parts: enter-part, do-part, exit-part.

Enter part
Part of action part describing the enter parameters.

Do part
Part of action part consisting of a list of imperatives.

3

Exit part
Part of action part describing the exit parameters.

Program
 An object descriptor that can be compiled and executed.

Reference Attributes

Reference attribute
An attribute that denotes an object. Reference attributes can be either static ref-
erences or dynamic references.

Static reference
A reference attribute that constantly denotes the same object. Such objects are
often referred to as static objects. In cases where these objects are used to model
part (or aggregation) hierarchies, they are referred to as part objects, that is, they
are part of an enclosing object.

Static reference declaration
Used to define static reference attributes.
Syntax is:

<name>: @<ptn.name or obj.descriptor>

Dynamic reference
A reference attribute that denotes a object. The reference is variable in that it
may denote different objects over time. Initially it denotes NONE which
represents "no object."

Dynamic reference declaration
Used to define dynamic reference attributes.
Syntax is:

<name>: ^<pattern name>

Indexed collection of static / dynamic references
A repetition (or array) of object references referred to by a single name plus an
index. The size of a repetition A is denoted by A.range. A[1] refers to the
first element in the repetition, A[A.range] to the last.
Syntax is:

Name: [eval] @<ptn.name or obj.descriptor>
Name: [eval] ^<ptn.name>

The size of the repetition can be dynamically extended by:
<number> -> A.extend

Qualification or qualifying pattern
The pattern name appearing in a reference attribute declaration. It restricts the set
of objects that can be denoted by the reference.

Remote access
Used to denote attributes within an enclosing object.
Syntax is:

reference.attribute

4

Computed Remote access
Used to denote attributes within objects that are returned as the result of
evaluations.
Syntax is:

(evaluation).attribute

Pattern Attributes

Pattern reference
A reference attribute that denotes a pattern. The structure of the pattern is repre-
sented locally using a structure object. Such objects include a reference back to
the object of which the pattern is an attribute. This reference is called the origin
of the pattern.

Pattern reference declaration
Used to define a pattern.
Syntax is:

<name>: <object descriptor>

Pattern variable declaration
Used to define pattern variable attributes. A pattern variable may denote different
patterns during the execution. The qualification restricts the set of patterns which
may be denoted by the pattern variable.
Syntax is:

<name>: ##<pattern name>

Class pattern
Generally, a pattern used to model physical objects.

Procedure pattern
Generally, a pattern used to model action sequences.

Function pattern
A procedure pattern which computes and returns a value. Such patterns always
have an exit part.

Basic pattern
A pattern that is predefined within the BETA language. Examples are integer,
real, boolean, and char. Relevant operations include: +, -, *, div, mod,
and, or, not, true, false, =, <, >, <>, <=, >=.

Imperatives

Imperative
Describes an action; executing the imperative causes the action. Imperatives
appear in the do-part of an object. Kinds of imperatives include evaluations,
reference assignments, dynamic object creation, and control structures.

5

Evaluation imperative
An imperative that can cause state changes and may produce a value when
executed.

Value assignment
An evaluation imperative that sets (changes) the value of an attribute.
Syntax is:

3 -> I

Reference assignment
An imperative used to change the value of a dynamic reference.
Syntax is:

objRef[] -> dynObjRef[]
objRef may be any object reference but dynObjRef must be a dynamic
object reference.

Pattern assignment
An imperative used to change the pattern denoted by a pattern variable.
Syntax is:

ref## -> dynPatRef##
Ref may be the name of a pattern variable, the name of an object, or the name of
a pattern but dynPatRef must be a dynamic pattern reference.

Multiple assignment
An evaluation imperative that causes several assignments.
Syntax is:

3 -> I -> J

Dynamic object creation / generation
Imperatives used to create new dynamic objects.
Syntax is:

&Pat or &Pat[]

Value equality
True when two references denote objects that have the same state.
Syntax is:

A = B

Reference equality
True when two references denote the same object.
Syntax is:

A[] = B[]

Pattern equality
True when two pattern references denote the same pattern.
Syntax is:

A## = B##
Note that < and <= are also defined for pattern comparisons based on the
inheritance hierarchy.

Procedure call
An evaluation imperative that causes invocation of a procedure pattern.
Syntax is:

&ProcPat
or
(arg1,arg2) -> &ProcPat

6

Function call
An evaluation imperative that causes invocation of a function pattern.
Syntax is:

(arg1,arg2) -> &FuncPat -> result

Control structure
An imperative that controls the flow of executions.

For imperative
A control structure used to support iteration. A list of imperatives are executed
repeatedly while an index steps from 1 up to the number of iterations.
Syntax is:

(for Index: Range repeat
 Imperative-list
for)

General-if imperative
A control structure used to support selection. Based on evaluating a condition
evaluation and comparing it to the values of a number of selection evaluations,
one of a set of imperative-lists is executed.
Syntax is:

(if E0
 // E1 then I1
 // E2 then I2
 …
 // En then In
 else I
if)

Simple-if imperative
A control structure used to support boolean selection. Based on evaluating a
condition evaluation and testing if it is true or false, one of two imperative-lists is
executed.
Syntax is:

(if E then
 I1
 else I2
if)

Labelled imperative
A means of naming an imperative. References to the label (via jump imperatives)
can be made from within the imperative.
Syntax is:

L: Imperative or L: (# … do … #)

Jump imperative
Causes flow of control to "jump" to another location. A jump imperative is one
of a Leave imperative or a Restart imperative.

Leave imperative
Causes termination of the execution of a labelled imperative; execution resumes
after the labelled imperative. This imperative can only appear within the labelled
imperative.
Syntax is:

leave L

7

Restart imperative
Causes restarting of the execution of a labelled imperative, that is, jump is to the
start of the imperative. Can only appear within the labelled imperative.
Syntax is:

restart L

Block Structure and Scoping

Block structure
The nesting of one structure in another in the text of a program. In BETA, object
descriptors and imperatives can be nested inside of other object descriptors and
imperatives. It is the job of the programmer to use indentation to make such
nesting visible to readers. In the following example, Deposit's object descriptor is
nested inside of Account's.

Account:
 (# Deposit:
 (# …
 do …
 #);
 #);

Declaration of a name
An association of a name with some defining expression.
Syntax is:

<name>: …
Recall that colon ":" always signals a declaration of some kind.

Application of a name
Any occurrence of a name in a program which is not a declaration. Note that this
does not include keywords of the BETA syntax (e.g. if, for, repeat, do), but does
include predefined pattern and attribute names (e.g. char, putInt, stream).

Scope of a declaration
The part of the program text "covered" by the declaration, that is, where
applications of the declared name refer to the given declaration. In BETA, the
scope of a declaration is the object descriptor it appears in. The exception to this
is that the declaration may be "hidden" by declarations of the same name in
nested object descriptors or labelled imperatives. Note that the declared name can
also be applied outside its object descriptor using remote access. We say that a
name is local to the object descriptor in which it is declared and global to any
nested object descriptors (for which it is not hidden).

Inserted Objects

Inserted item
A means of generating (and executing) a procedure object allocated as part of the
enclosing object.
Syntax is:

8

A -> P -> B
or
A -> P(# … #) -> B

This differs from dynamic generation, &P, in that the instance of P is generated
only once rather than each time the imperative is executed. Note that inserted
items should not be used to define recursive procedures. That is, an inserted
instance of P may be specified in the action part of P.

Inheritance

Direct subpattern
A pattern P is a direct subpattern of Q if P extends (specialises) the definition of
Q. Q is called the direct superpattern of P and instances of P are also instances of
Q.
Syntax is:

P: Q(# … #)
Q is called the prefix pattern (or simply prefix), while the contents of (# … #) is
called the main-part of P. The prefix Q means that P's object descriptor inherits
all of Q's declarations in addition to any new ones defined in P's main-part.

Subpattern
A pattern P is a subpattern of Q if it is either a direct subpattern of Q or a
subpattern of a direct subpattern of Q. Likewise, Q is a superpattern of P if it is
either a direct superpattern of P or a superpattern of the direct superpattern of P.
A pattern can have at most one direct superpattern.

Abstract superpattern
A pattern used only as a superpattern for other patterns, that is, it is not intended
to be used to generate objects. If P is declared without the use of a superpattern,
P: (# … #), then P is assumed to be a subpattern of the most general abstract
superpattern, Object. Note that the basic patterns, Integer, Real, Boolean, Char
and Real are not subpatterns of Object.

Superpattern as qualification
If R is a dynamic reference qualified by the pattern Q (i.e. R: ^Q) and Q is a
superpattern of P, then instances of both P and Q can be assigned to R. However,
only attributes of Q (and of superpatterns of Q) can be accessed using remote
access through R. That is, if attribute A is declared in the main part of P, then the
remote access R.A is illegal.

Action specialisation
The use of a subpattern to extend the action part of a pattern. Action
specialisation can involve any or all of the enter-part, exit-part and do-part. The
enter and exit parts of instances of P (again, a subpattern of Q) consist of Q's enter
and exit parameters together with those defined by P. Extending the do-part of Q
requires the use of the inner imperative in Q's action part. Executing the do-
part of an instance of P proceeds by executing Q's do-part and executing P's do-
part each time inner is encountered.
Syntax is:

Q: (# … do … inner … #);
P: Q(# … do … #);

9

Virtual Patterns

Virtual pattern
A pattern attribute V of a pattern Q is virtual if it is only partially defined in Q.
That is, the definition of V can be extended in subpatterns of Q.
Syntax is:

Q: (# V:< S #)
Q: (# V:< S0(# … #) #)
Q: (# V:< (# … #) #)

In the first of the three forms, we say that the virtual V is qualified by the pattern
S, in the second and third forms, we say that V is directly qualified.

Further binding of a virtual pattern
The means by which a virtual attribute V of a pattern Q is extended in a
subpattern P of Q.
Syntax is:

P: Q(# V::< S1 #)
P: Q(# V::< S1(# … #) #)
P: Q(# V::< (# … #) #)

S1, S1(# … #), or (# … #) is called the extended descriptor of V. If we're using
either the first or second form, and if V is qualified by S in the pattern Q, then S1
must be a subpattern of S. In the case of the third form there are no constraints on
Q's declaration of V. If X is an instance of P, then X.V specialises (that is, adds
properties to) the definition of V in Q. Note that V is now a virtual pattern in P
(as well as Q) and can continue to be further bound in subpatterns of P.

Final binding of a virtual pattern
The means by which a virtual attribute V of a pattern Q is extended in a
subpattern P of Q, and at the same time made non-virtual.
Syntax is:

R: P(# V:: S2 #)
R: P(# V:: S2(# … #) #)
R: P(# V:: (# … #) #)

Final binding is identical to further binding, except that with final binding, V is
no longer virtual.

10

BETA Terminology - Index

A

Abstract superpattern 8
action part ...2, 3
Action specialisation................................. 8
aggregation hierarchies.............................. 1
Application of a name 7
array.. 3
Attribute ... 1
attribute declarations 2
attribute description.................................. 2
attribute name ... 2
attribute part ... 2
Attribute reference.................................... 2
attributes .. 1

B

Basic pattern..4
BETA program execution 1
binding... 2
Block Structure.. 7

C

Class pattern.. 4
Computed Remote access........................... 4
 Computer .. 1
Concept.. 1
Control structure 6
control structures 4

D

Declaration of a name 7
Declaration or attribute declaration 2
Declarations and Object Descriptors............. 2
Direct subpattern...................................... 8
direct superpattern 8
Do part... 2
do-part ... 2
dynamic object creation............................. 4
Dynamic object creation / generation............ 5
dynamic objects 5
Dynamic reference.................................... 3
Dynamic reference declaration.................... 3
dynamic references 3

E

enclosing object 3
enter parameters 2
Enter part.. 2
enter-part ... 2

Evaluation imperative 5
evaluations ... 4
exit parameters.. 3
Exit part ... 3
exit-part ... 2
extended descriptor 9

F

Final binding of a virtual pattern 9
For imperative... 6
Function call ... 6
Function pattern....................................... 4
Further binding of a virtual pattern 9

G

General-if imperative................................ 6
Global attribute reference 2

I

Imperative .. 4
imperatives .. 2, 4
indentation ... 7
Indexed collection of static / dynamic

references... 3
Inheritance.. 8
inherits .. 8
inner imperative..................................... 8
Inserted item ... 7
Inserted Objects....................................... 7
instances .. 1
instances of the pattern 2
iteration ... 6

J

Jump imperative 6
jump imperatives...................................... 6

K

Kinds of actions....................................... 1

L

Labelled imperative.................................. 6
Leave imperative...................................... 6
Local attribute reference of a pattern............ 2

M

main part.. 2
main-part ... 8
measurable properties............................... 1
Modelling... 1

11

Multiple assignment.................................. 5

N

ncurrent..1
nesting ... 7
NONE .. 3

O

Object .. 1
Object-descriptor...................................... 2
Object-oriented programming 1
Objects... 1
one-of-a-kind... 1
origin... 4

P

Part object... 1
part objects ... 3
Pattern ... 1
Pattern assignment.................................... 5
Pattern Attributes 4
Pattern declaration.................................... 2
pattern defined objects 1
Pattern equality.. 5
pattern name ... 2
Pattern reference 4
Pattern reference declaration....................... 4
Pattern variable declaration 4
Phenomenon.. 1
physical model... 1
prefix ... 8
prefix part... 2
prefix pattern... 8
Procedure call.. 5
Procedure pattern 4
Program..3
program execution.................................... 1
Property ... 1

Q

Qualification or qualifying pattern 3

R

 Real world .. 1
recursive .. 8
Reference assignment 5
reference assignments 4
Reference attribute 3
Reference Attributes................................. 3
Reference equality.................................... 5
Reference to separate object 1
Remote access... 3
repetition.. 3
representation ... 1
Restart imperative 6, 7

S

Scope of a declaration............................... 7
Scoping.. 7
selection... 6
Separate object .. 1
Simple-if imperative................................. 6
Singular object .. 1
Singular object declaration......................... 2
State of an object 1
static objects ... 3
Static reference.. 3
Static reference declaration 3
static references....................................... 3
structure object.. 4
subpattern .. 8
Superpattern as qualification 8

V

Value assignment..................................... 5
Value equality ... 5
virtual.. 9
Virtual pattern ... 9
Virtual Patterns.. 9

