
Libraries Tutorial

Mjølner Informatics Report
MIA 94−24

February 2002

Copyright © 1994−2002 Mjølner Informatics.
All rights reserved.

No part of this document may be copied or distributed
without the prior written permission of Mjølner Informatics

http://www.mjolner.com

Table of Contents

List of Programs ..1

1 Introduction ...2
1.1 Acknowledgment..2

2 Hello World..3

3 Simple Types and Output ..5

4 Arithmetic and Expressions ..9
4.1 Constants...9

4.1.1 Integer...9
4.1.2 Reals...9
4.1.3 Booleans...9
4.1.4 Textand Characters...9

4.2 Evaluations..10

5 Multiplication Table..13
5.1 The for imperative..13

6 Loops and Functions ...18

7 Assignment and Procedure Calls ...21

8 Patterns and Variables ...25
8.1 Patterns and Variables...25
8.2 Attribute Access...26
9.1 Primitive Types..28
10.1 Multidimensional Repetitions...31
11.1 Command−line arguments...33
11.2 Storing Characters in a Repetition...36
13.1 Advanced Formatted Input and Output..38

9 Dynamic Data Structures ...39

10 Repetitions (Arrays) ...41

11 Files..44

12 Directory ..46

13 Text Manipulation ...49

14 Container Library ..51
14.1 List Example..51
14.2 HashTable Example...53

15 Exceptions ...55
15.1 14.1 Examples Using Exception..55

16 Access to External Functions and Data...57

 Libraries Tutorial

i

Table of Contents

16.1 Example...57

17 Using the Persistence Library ...61

18 Graphical User Interface ..63
18.1 GUIEnv..63

19 Concurrent Library ...69
19.1 18.1 Example...69
19.2 Concurrency and User Interface Environments...71
19.3 Changes from the Original Design...75
20.1 Interface and Implementation..77

20 The Fragment System..80

Index ...83
A...83
B...83
C..83
E...83
F...83
G..83
H..83
I..84
J...84
L...84
M..84
N..84
O..84
P...84
R..84
S...84
T...84
W..84
X...84

 Libraries Tutorial

ii

List of Programs

List of Programs
1 HelloWorld.bet
2 SimpleTypesWithErrors.bet
3 SimpleTypes.bet
4 ExploreTypes.bet
5 Multiplication1.bet
6 Multiplication2.bet
7 SquareRoot.bet
8 MultipleAssigment.bet
9 StaticAndDynamic.bet
10 QuickSort.bet
11 MultiplicationTable.bet
12 CountChar.bet
13 CountChar1.bet
14 CountChar2.bet
15 ListDir.bet
16 FileCount.bet
17 StaticAndDynamic2.bet
18 SaveListDir.bet
19 DirTable.bet
20 Person.bet
21 DirList.bet
22 SaveListDir2.bet
23 SaveListDir3.bet
24 GetListDir.bet
25 TextEditor.bet
26 Seconds.bet
27 Clock.bet
28 ClockTextEditor.bet
29 HelloWorld.bet
30 HelloWorld with filled program slot
31 putBoxed.bet
32 HelloWorld.bet
33 HelloWorld with filled program and LIB slot
34 putBoxed.bet
35 putBoxedBody.bet
36 HelloWorld.bet
37 HelloWorld with filled program and LIB slot

List of Programs 1

1 Introduction
This manual is a tutorial on the Mjølner System. The tutorial gives an introduction to the Mjølner
System environment to someone who already knows how to program in another (object−oriented)
language and want to know how to do it in BETA.

Often a hidden strength of a language lies in the available libraries and the ease with which it can
interact with the operating system or other software.

We present a sequence of tutorial programs designed to teach the essentials of BETA
programming. The programs start with trivial objectives like printing out 'Hello world' and doing
arithmetic and gradually cover things like input/output, files, arrays, procedures, objects, containers,
GUI, and persistence.

How to install the Mjølner System, call the compiler, etc., will not be described in this tutorial. This
information can be found the system manuals [MIA 90−2].

Most of the tutorial programs developed in this tutorial, are supplied along with the Mjølner System
in the tutorial demo directory.

Although it is not necessary, it will be an advantage for the reader to be familiar with the basic
concepts of the BETA language. The BETA Language Introduction [MIA 94−26] gives an
introduction to the BETA language. The BETA Book [MMN 93] is the main reference for the BETA
language and every programmer with intend to use BETA extensively should read this book.

1.1 Acknowledgment

This tutorial is based on a set of tutorial notes written by Jean Vaucher, Professeur d'informatique,
Universite de Montreal, on sabbatical at CRIM, November 1993. Mjølner Informatics are grateful to
Jean Vaucher for taking the initiative in writing the first BETA tutorial notes. By permission of Jean
Vaucher, we have adopted these notes for this tutorial and extended them with more sections
containing examples on repetitions, texts, containers, persistence, and GUI programming.

1 Introduction 2

#mia90-2
#mia94-26
#mmn93

2 Hello World
We start with the simplest of all programs that prints the statement 'Hello World' on the screen.

Program 1: HelloWorld.bet

ORIGIN '~beta/basiclib/betaenv'
−−−− program: descriptor −−−−
(#
 (* HelloWorld.bet:
 * =======================
 * Author: J.Vaucher
 *
 * Purpose:
 * This is the simplest program possible.
 * Being able to compile and run it shows that the
 * compiler exists and that PATHS and ALIASES have been
 * correctly set. It also brings out "meta−programming"
 * considerations like the "fragment" system.
 *
 ***)
do
 'Hello world !' −> putline
#)

This illustrates the basic syntax of a BETA program:

(#
 <declarations>
do
 <statements>
#)

In this case, there are no declarations and the statement part is merely a simple output statement.

The bulk of the program text is in the form of a comment traditionally delimited by (* and *). In the
BETA book [MMN 93], comments are shown delimited by { and } but the compiler only recognizes
the form shown in Program 1.

The first two lines of the program are not strictly BETA (but are essential for correct compilation).
They are part of the fragment specification language that describes inter−relationships between the
various BETA modules that compose a complete program. A brief introduction of the fragment
system is given in the last section of this tutorial.

The first line formally identifies the library environment required by our program; in other words, it
gives the file path name of the BETA module where all the basic functions and procedures (such as
putline) have been defined. In this respect, it acts much like the #include <stdio.h> statement seen
at the beginning of most C programs.

The body of the program is a simple procedure call to do output. It is interesting to compare the
syntax of BETA's procedure calls with that of other languages:

C++: cout << "Hello world !";
C: printf("Hello world !\n");
BETA: 'Hello world !' −> putline;

2 Hello World 3

#mmn93

In BETA, the syntax of procedure calls is made identical to that of simple assignments (or message
passing). Evaluation is strictly left to right: parameters are evaluated; then passed (−>) to an object
putline whose role is to output them to the screen. Finally, note that text constants are delimited by
apostrophes ('...').

The betaenv library and many of the other libraries used in this tutorial are documented in the
Mjølner System manual [MIA 90−8].

 Libraries Tutorial

2 Hello World 4

#mia90-8

3 Simple Types and Output
In our next program we declare variables of the 4 basic types defined in BETA: integer, real, char
and boolean. Values are assigned to these variables and they are written out. The first version of
our program is shown in Program 2.1.

Program 2: SimpleTypesWithErrors.bet

ORIGIN '~beta/basiclib/betaenv'
−−−− program: descriptor −−−−

(***
 *
 * SimpleTypes1.bet: A program to show handling of simple types
 *
 * Note: this program will not compile
 *
 ***)

(# i,j,k: @integer;
 x,y,z: @real;
 c: @char;
 b1,b2: @boolean;
do 111−>i;
 10−>j −> k;
 i + 3 * j−>k ;

 3.1415−>x;
 10e5−>y;

 'X'−>c;
 true−>b1;

 newline;
 'Printing out integers'−>putline;
 ' i = '−>puttext; i−>putint; newline;
 ' j = '−>puttext; j−>putint; newline;
 ' k = '−>puttext; k−>putint; newline;

 newline;
 'Printing out reals: '−>putline;
 ' x = '−>puttext; x−>putreal; newline;
 ' y = '−>puttext; y−>putreal; newline;
 ' z = '−>puttext; z−>putreal; newline;

 newline;
 'Now for a character, C="'−>puttext; C−>Put;
 '" and as a integer: '−>puttext;
 C−>putint; newline;

 newline;
 'Printing out booleans: '−>putline;
 ' B1 = '−>puttext; b1−>putboolean; newline;
 ' B2 = '−>puttext; b2−>putboolean; newline; newline;

 'Now for something very C−like.'−>putline;
 ' \'A\'+ 3−>put: '−>puttext;
 'A' + 3−>put;

 newline;
#)

3 Simple Types and Output 5

Again, one notes the initial fragment ORIGIN statement, a comment, and then the program.

The declarations are Pascal−like with the addition of the @ character. In BETA, the same
declaration syntax will be used for types, variables, classes and procedures. In this context, the @
denotes a static variable declaration whereas a declaration without the @ corresponds to a type
declaration.

The first few statements after the do show arithmetic and assignment. Arithmetic expressions follow
convention; the usual operators (+,− ,* , / (or div) and mod) are provided. Assignment goes left to
right following the arrow and multiple assignment is allowed.

The next few lines show the syntax of real, character and boolean constants. Note that characters
use the same delimiters as text strings.

In the remainder of the program we do output. The procedures used are:

• newline: skips to a new line
• puttext: writes a text
• putline: same as puttext followed by newline
• putreal: outputs a real
• put: outputs a character
• putboolean: outputs a boolean

Characters are type compatible with integers and can be used interchangeably in expressions. An
example of this is shown at the end of the program.

When we try to compile SimpleTypesWithErrors.bet, we get the following semantic error message:

putreal
 *****Name is not declared
putboolean
 *****Name is not declared

There is also a complete listing of the program text with the same error messages in
SimpleTypesWithErrors.lst to help localize the errors. In this case the error is due to the fact that
putreal is not in the standard environment. putreal is in a library that must be included in the
program [1]. Likewise putboolean is in the textUtils library.

The Mjølner System comes with a library supporting a wide range of input and output for numbers
(integers, based integers, reals, etc.) called numberio. In order to print reals on the screen, this
library must be included. A library is included using a fragment INCLUDE statement:

Program 3: SimpleTypes.bet

ORIGIN '~beta/basiclib/betaenv';
INCLUDE '~beta/basiclib/numberio';
INCLUDE '~beta/basiclib/textUtils';
−−−− program: descriptor −−−−

(***
 *
 * SimpleTypes1.bet: A program to show handling of simple types
 *
 ***)

 Libraries Tutorial

3 Simple Types and Output 6

(# i,j,k: @integer;
 x,y,z: @real;
 c: @char;
 b1,b2: @boolean;
do 111−>i;
 10−>j −> k;
 i + 3 * j−>k ;

 3.1415−>x;
 10e5−>y;

 'X'−>c;
 true−>b1;

 newline;
 'Printing out integers'−>putline;
 ' i = '−>puttext; i−>putint; newline;
 ' j = '−>puttext; j−>putint; newline;
 ' k = '−>puttext; k−>putint; newline;

 newline;
 'Printing out reals: '−>putline;
 ' x = '−>puttext; x−>putreal; newline;
 ' y = '−>puttext; y−>putreal; newline;
 ' z = '−>puttext; z−>putreal; newline;

 newline;
 'Now for a character, C="'−>puttext; C−>Put;
 '" and as a integer: '−>puttext;
 C−>putint; newline;

 newline;
 'Printing out booleans: '−>putline;
 ' B1 = '−>puttext; b1−>putboolean; newline;
 ' B2 = '−>puttext; b2−>putboolean; newline; newline;

 'Now for something very C−like.'−>putline;
 ' \'A\'+ 3−>put: '−>puttext;
 'A' + 3−>put;

 newline;
#)

And the results are shown below.

Printing out integers
 i = 111
 j = 10
 k = 141

Printing out reals:
 x = 3.141500
 y = 1000000.000000
 z = 0.000000

Now for a character, C="X" and as a integer: 88

Printing out booleans:
 B1 = true
 B2 = false

Now for something very C−like.
 'A'+ 3−>put: D

 Libraries Tutorial

3 Simple Types and Output 7

 [1] putreal is not in the standard environment in order to minimize the size of the resulting binary
excutable for simple programs that only uses the basic environment. numberio contains operations
like, put/getreal and put/getbased

 Libraries Tutorial

3 Simple Types and Output 8

4 Arithmetic and Expressions
We will start with the simplest of all expressions:

4.1 Constants

BETA accepts constants in the usual formats:

4.1.1 Integer

1, 1666, 0, −12

There is also a format (<base>X<number>) for integers in other bases. All the following constants
represents 11:

2x1011, 3x102, 16xB, 0xb, 11

Predefined constants exist for MaxInt and MinInt in betaenv.

4.1.2 Reals

3.14159, 3E9 , 3.14E−9

Predefined constants exist for MaxReal and MinReal in the math library.

4.1.3 Booleans

true, false

4.1.4 Textand Characters

'a', 'ABC'

a character is a text of length 1.

the text delimiter character can be represented by doubling: '''Hi''', is the text :'Hi'

following the C convention, many useful control characters can be introduced by using the
backslash: '\t' for tabulator and '\n' for newline.

4 Arithmetic and Expressions 9

4.2 Evaluations

In BETA, the term evaluation is used to refer to expressions, assignment statements and procedure
calls.

For evaluations arithmetic, boolean and relational operators are provided. The operator precedence
is similar to C with the AND and OR operators considered to be on a par with * and + respectively.
This means that parentheses will often be needed to obtain the desired result. The priorities are
shown below:

Relative Priority Class Operators

least relational =, <>, >, >=, <, <=

additive +, −, or, xor

multiplication *, /, div), mod, and

highest unary not, −, +

When a real value is assigned to an integer the fractional part is removed irrespective of the sign of
the value. Various functions for manipulating reals, including rounding, log, log10, sin, cos, tanh,
sqrt, and power are available in the math library. This library also contains predefined constants
such as PI, e, pihalf (PI/2), log2e (log(e) to base 2), log10e (log(e) to base 10), ln2 (natural log of
2), etc.

The max, min and abs functions are not generic; they do not work properly with reals since they will
convert input values to integers. Instead the functions fmax, fmin and fabs in the math library could
be used.

Finally, since characters are type compatible with integers and there is no type control at this level,
some interesting evaluations may be done, such as:

(i+1) * ('a' * i) / 4.33−>putint

The program shown in Program 3 shows some of the things discussed here. First, it includes both
the numberio and the math fragments required for the numeric work. It also shows our first
procedure, tab, introduced to help simplify formatting the output.

Program 4: ExploreTypes.bet

ORIGIN '~beta/basiclib/betaenv';
INCLUDE '~beta/basiclib/numberio';
INCLUDE '~beta/basiclib/math';
−−−− program: descriptor −−−−
(#

 (* p3.bet: Exploring types and functions
 ***)

 Libraries Tutorial

4.2 Evaluations 10

 i,j,k: @integer;
 x,y,z: @real;
 tab: (# do ' '−>puttext #);

do '\nEnvironment constants: \n\n'−>puttext ;
 '\t MaxInt = '−>puttext; maxint−>putint;
 '\n\t MinInt = '−>puttext; minint−>putint;
 '\n\t MaxReal= '−>puttext; maxreal−>putreal (# do exp−>style #);
 '\n\t MinReal= '−>puttext; minreal−>putreal (# do exp−>style #);
 3−>i; −10−>j;
 '\n\n *** Simple functions *** \n'−>puttext;
 '\n I J max(I,J) min(I,J) abs(J) \n'−>puttext;
 tab ;
 i−>putint; tab;
 j−>putint; tab;
 (i,j)−>max−>putint; tab; tab;
 (i,j)−>min−>putint; tab; tab;
 j−>abs−>putint;
 '\n\n *** Reals ***\n'−>puttext;
 '\nX Y fmax(X,Y) fmin(X,Y) fabs(−3.6) \n'−>puttext;
 3.01−>x; 3.78−>y;
 x−>putreal; tab;
 y−>putreal; tab;
 (x,y)−>fmax−>putreal; tab; tab;
 (x,y)−>fmin−>putreal; tab; tab;
 −3.6−>fabs−>putreal;
 '\n\nPi = '−>puttext; pi−>putreal;
 '\ncos(Pi/4) = '−>puttext;
 (Pi div 4)−>cos−>putreal;
 '\n\nMixing types: (i+1) * (\'a\' * i) / 4.33'−>
 putText; ' = '−>putText;
 (i+1) * ('a' * i) / 4.33−>putint;
 newline;
#)

In BETA, procedures, types and objects are treated in a unified manner as variations of a single
concept, the pattern. The general syntax for such a pattern declaration is:

<names>: <descriptor>

In the simplest case, the object descriptor is what we have called a block which can contain
declarations and imperatives. In the case of procedures which need parameters or functions which
return results, there can also be input and output parameters but we leave that for later.

In our example, tab is defined by:

tab: (# do ' ' −> puttext #);

This has neither parameters nor a result. tab merely stands for the more lengthy statement which
outputs a string of 4 blanks. Contrast this declarations with that of the variables for i,j,...,z which use
@ to indicate that space is to be reserved for the variables.

Returning to our program, we first print out the maxint and minint constants defined for both
integers and reals. Note the use of control characters, e.g. '\n' in the titles to do some formatting.

Next, we show the use of the min, max and abs functions on integers. We also use the tab
procedure to space out the printed results.

 Libraries Tutorial

4.2 Evaluations 11

After that we apply the fmin, fmax and fabs to reals.

Then we print PI, one of the built−in constants defined in math, as well as the value of cos(45
degrees). Note that angles must be expressed as radians.

To finish off, there is a mixed evaluation with integers, booleans, characters and real.

The results of executing ExploreTypes are shown below:

Environment constants:

 MaxInt = 2147483647
 MinInt = −2147483648
 MaxReal= 1.797693e+308
 MinReal= 2.225074e−308

 *** Simple functions ***

 I J max(I,J) min(I,J) abs(J)
 3 −10 3 −10 10

 *** Reals ***

X Y fmax(X,Y) fmin(X,Y) fabs(−3.6)
3.010000 3.780000 3.780000 3.010000 3.600000

Pi = 3.141593
cos(Pi/4) = 0.707107

Mixing types: (i+1) * ('a' * i) / 4.33 = 268

For more sophisticated examples on use of reals and math functions, the reader should look at the
demonstrations programs:

• realtest.bet
• putreals.bet

These are located in the reals demo directory of basiclib.

 Libraries Tutorial

4.2 Evaluations 12

5 Multiplication Table
In this section, we will take on the simple task of printing out a multiplication table of the integers
from 1 to 9. For the purpose of illustration we shall introduce the following concepts:

• procedure with parameters
• the for imperative
• the if imperative

for printing in fixed width columns. We shall also show the correct BETA way to do formatted
output, involving introducing an extension to a virtual pattern.

5.1 The for imperative

In BETA, all syntactic structures have a similar form of delimiters with opening and closing
parentheses and the for is no exception:

Block: (# ... #)
Comment: (* ... *)
For: (for ... for)

In opposition to other languages where the for can count up or down and the step can be varied, in
BETA only a simple version exists going from 1 to N where N is an expression (or evaluation to use
the BETA terminology). This follows the BETA minimalist philosophy of providing the strict
minimum combined with powerful extension mechanisms.

More precisely, there are two forms of the for, depending on whether one wants to have access to
the counting variable or not. These are:

(for <evaluation> repeat <imperatives> for)

and

(for <var> : <evaluation> repeat <imperatives> for)

Both forms will be used in this section. Note that the loop variable <var> acts as a locally defined
variable and is only accessible inside the for imperative. Thus the loop variable <var> need not be
declared elsewhere.

Neglecting labels, the body of our program could have the following form:

(for i:9 repeat
 (for j:9 repeat
 i*j −> putint;
 2 −> tab;
 for);
 newline;
 for);

Where tab is a procedure that outputs blanks to separate the integers printed with putint. In
contrast with previous versions of tab which printed a fixed number of blanks, here we provide it

5 Multiplication Table 13

with a parameter N to indicate the number of spaces to write. Above, in 2 −> tab, we want to print
out 2 spaces.

In BETA, parameters are considered to be local variables which are assigned values from an input
list before executing the procedure body. Hence they are declared the same way as any other local
variable. The number of actual parameters that must be supplied and which local variables will
receive these values is specified by an enter list. tab can be defined as follows:

tab: (# N: @integer
 enter N
 do (for N repeat ' ' −> put for)
 #);

The enter list comes after the declarations and before the do part.

Here is the program:

Program 5: Multiplication1.bet

ORIGIN '~beta/basiclib/betaenv'
−−−− program: descriptor −−−−
(#
 (* Multiplication Table
 *
 * Objectives:
 * − use the FOR imperative
 * − introduce a parameterized procedure
 ***)

 tab: (# N: @integer;
 enter N
 do (for N repeat ' '−>put for)
 #);

do '\n\t** Multiplication Table ** \n\n'−>puttext;
 4−>tab;
 (for i: 9 repeat
 i−>putint; 2−>tab;
 for);
 newline; newline;
 (for i: 9 repeat
 i−>Putint; 3−>tab;
 (for j: 9 repeat
 i*j−>putint ;
 2−>tab;
 for);
 newline
 for)
#)

Since this program uses no reals, we have used the same simplified fragment statements that we
used in our first program. The results are shown below:

** Multiplication Table **

 1 2 3 4 5 6 7 8 9

1 1 2 3 4 5 6 7 8 9

 Libraries Tutorial

5.1 The for imperative 14

2 2 4 6 8 10 12 14 16 18
3 3 6 9 12 15 18 21 24 27
4 4 8 12 16 20 24 28 32 36
5 5 10 15 20 25 30 35 40 45
6 6 12 18 24 30 36 42 48 54
7 7 14 21 28 35 42 49 56 63
8 8 16 24 32 40 48 56 64 72
9 9 18 27 36 45 54 63 72 81

In this output, the columns do not line up because some of the integers use require a single digit
and others require 2 and putint prints with minimum space.

To overcome this, we will write a simple procedure to output an integer in a field of width w. By
simple, we mean that it will only work with positive integers less than 1000. To determine the
number of digits required to print an integer we use the if imperative. The if imperative has two
forms:

(if <Exp> then
 <Imperatives>
 else
 <Imperatives>
if);

and

(if <Exp>
 // <Exp> then <Imperatives>
 // <Exp> then <Imperatives>
 // <Exp> then <Imperatives>
 ...
 else
 <Imperatives>
if);

A first crack at the code to compute ND the number of digits in an integer i is:

(if true
 // i < 10 then 1 −> ND
 // i < 100 then 2 −> ND
 else 3 −> ND
if)

This is coded along the lines of the standard if...else if...else if... pattern of other languages such as
Pascal or Simula but is not quite correct according to the strict definition of the if imperative,
because the if does not specify that the alternatives will be evaluated in a sequential manner.
Therefore if I= 5, ND could receive either 1 or 2 as a value. Although the code would probably work,
it should be written as:

(if true
 // i<10 then 1 −> ND
 // (i>=10) and (i<100) then 2 −> ND
 else 3 −> ND
if)

Remember that the parentheses are required in the second alternative due to the operator priorities.

 Libraries Tutorial

5.1 The for imperative 15

Now we can design a procedure, (N,W) −> Outint, that will print an integer N right justified in a field
of W spaces wide. This procedure will require a list of 2 parameters when it is called.

Outint:
 (# N,W: @integer;
 enter (N,W)
 do (if true
 // N<10 then 1 −> ND
 // (N>=10) and (N<100) then 2 −> ND
 else 3 −> ND
 if);
 ND −> tab;
 N −> putint;
 #);

The complete modified program is given below and the output follows.

Program 6: Multiplication2.bet

ORIGIN '~beta/basiclib/betaenv'
−−−− program: descriptor −−−−
(#
 (* Multiplication Table 2
 *
 * Objectives:
 * − use the IF and FOR imperatives
 * − use procedures & parameters
 ***)

 tab: (# N: @integer;
 enter N
 do (for N repeat ' '−>Put for)
 #);

 Outint:
 (# N,W, ND: @integer;
 enter (N,W)
 do (if true
 //N<10 then 1−>ND
 //(N>=10) and (N<100) then 2−>ND
 else 3−>ND
 if);
 W−ND−>tab;
 N−>putint;
 #);

do
 '\n\t** Multiplication Table ** \n\n'−>puttext;

 4−>tab;
 (for i: 10 repeat
 (i,3)−>Outint;
 for);
 newline; newline;

 (for i: 10 repeat
 (i,4)−>Outint;
 (for j: 10 repeat
 (i*j,4)−>Outint;
 for);
 newline

 Libraries Tutorial

5.1 The for imperative 16

 for)
#)

and the results:

** Multiplication Table **

 1 2 3 4 5 6 7 8 9 10

 1 1 2 3 4 5 6 7 8 9 10
 2 2 4 6 8 10 12 14 16 18 20
 3 3 6 9 12 15 18 21 24 27 30
 4 4 8 12 16 20 24 28 32 36 40
 5 5 10 15 20 25 30 35 40 45 50
 6 6 12 18 24 30 36 42 48 54 60
 7 7 14 21 28 35 42 49 56 63 70
 8 8 16 24 32 40 48 56 64 72 80
 9 9 18 27 36 45 54 63 72 81 90
 10 10 20 30 40 50 60 70 80 90 100

Finally, the way formatted output is done in the demo programs distributed with the Mjølner
System. It involves extending the virtual pattern format defined in putint. Thus the OutInt procedure
of Program 4.1 should be rewritten as follows:

Outint:
 (# N,W : @integer;
 enter (N,W)
 do N −> screen.putint(# format::(# do W −> width #)#)
 #);

and the results would be identical to those obtained previously. The latter procedure would be
much more robust, accepting any positive or negative integer value. Program Multiplication3.bet
uses this procedure. See also Section 12.1.

 Libraries Tutorial

5.1 The for imperative 17

6 Loops and Functions
In this section, we take on the task of writing a function that computes square roots. This will lead
us to consider conditional looping and the definitions of functions, or in BETA terms, patterns that
can return values.

To compute a square root we will use Newton's algorithm where the computation is done by
successive approximations until the error is less than a preset level (epsilon).

The usual way to program this involves a while loop. In C, the code to get the root of X could look
like this:

Root= X;
while (abs(X−Root**2) > epsilon) {
 Root= (Root+X/root) / 2;
}

Assuming that X = 100, the calculated values of Root in each iteration will be:

150.5
226.2401
315.0255
410.8404
510.0326
610.0001
710.0000... and the loop ends.

Surprisingly, there is no while loop in BETA language. BETA is designed with a more fundamental
(and extensible) feature as the ability to either leave or restart any labeled imperative. In the basic
BETA environment betaenv, a loop pattern using these features is defined and can be used like:

X −> Root;
Loop(# while::(# do (X−Root*Root −> fabs) > X / 10E6 −> value #);
 do (Root + X/root) / 2 −> root;
 #);

A while loop can also directly be implemented using a labeled imperative with a restart. The
following BETA code is a repeated conditional imperative implemented using a labeled if with a
restart imperative at the end:

X −> Root;
L: (if (X−Root*Root −> fabs) > X / 10E6 then
 0.5 * (Root + X div Root) −> Root;
 restart L;
 if);

Here, the error, epsilon, is set at one part in a million. The complete program code is given in
Program 5 below. Here the code for the Square Root has been put in the form of a procedure
which returns a value: that is to say a function. As shown in the example, a function call has the
following syntax:

i −> Sqrt −> Res;

We have already seen the notation <parameters> −> <procedure> whereby data is passed (as

6 Loops and Functions 18

parameters) to the procedure object. In BETA, the same syntax is used to show that results are
obtained from Sqrt and passed on to Res.

Program 7: SquareRoot.bet

ORIGIN '~beta/basiclib/betaenv';
INCLUDE '~beta/basiclib/numberio'
 '~beta/basiclib/math';
−−−− program: descriptor −−−−
(#

 (* SquareRoot.bet: Exploring functions
 * + conditional loops
 ***)

 Res: @real;

 Sqrt:
 (# X, Root: @real;
 enter X
 do X−>Root;
 Loop(# while:: (# do (X−Root*Root−>fabs) > (X / 10E6)−>value #)
 do (Root + X/root) / 2−>root;
 #);
 exit Root
 #);

 tab:
 (# N: @integer;
 enter N
 do (for N repeat ' '−>put for)
 #);

do '\n\t ** Functions and variables **\n'−>putline;
 ' I sqrt(i) '−>putline;
 (for i: 10 repeat
 i−>Sqrt−>Res;
 i−>screen.putint(# format:: (# do 2−>width#)#);
 3−>tab;
 Res−>putreal;
 newline;
 for)
#)

The declaration of Sqrt shows an exit list which defines the list of values obtained after executing
the body of the function. In this case, there is only one value, a real, but BETA functions could
return multiple results.

The output obtained upon execution are shown below.

** Functions and variables **

 I sqrt(i)
 1 1.000000
 2 1.414214
 3 1.732051
 4 2.000000
 5 2.236068
 6 2.449490
 7 2.645751

 Libraries Tutorial

6 Loops and Functions 19

 8 2.828427
 9 3.000000
10 3.162278

 Libraries Tutorial

6 Loops and Functions 20

7 Assignment and Procedure Calls
We have previously mentioned that BETA strives for minimalism along with orthogonality. So far we
have hidden this fact by programming in a standard fashion and presenting the programs with
traditional concepts such as variables, functions, assignment statements, etc. Now we shall begin
the study of BETA's particularities by considering assignment.

We have already noticed that BETA evaluates expressions left to right and uses an unusual
assignment operator, −>. Our examples have shown simple examples of assignment such as:

i+1 −> i;

In BETA, we can do more: assignment is defined to operate on lists of values with single value
assignment being a special case. Thus we can say:

(1,2,3) −> (i,j,k);

Which has the same effect as the series of simple assignments:

1 −> i; 2−> j; 3 −> k;

We can also cascade such assignments:

(a,b,c) −> (m,n,o) −> (x,y,z) ;

If we just consider the first items in the lists, the above statement means that we take the value of a
and pass it on to m, then we take the value of m and we pass it on to x.

If the number or types of the items in lists do not match, an error is signaled:

(111, 222) −> i;

or

'string' −> i; (* where i is an integer *)

So far, this is all pretty obvious but, in BETA, the destination of an assignment is not restricted to
being a simple variable or a list of such variables; the target of an assignment can also be a more
complex object with an enter list. In that case, assignment takes place between the values in the
list on the left and the variables named in the target's enter list.

If both the source S and target T of an assignment are complex objects, the assignment:

S −> T;

becomes a multiple assignment between the exit list of S, (O1, ..., Oi, ...) and the enter list of T (I1,
..., Ii, ...). In addition, the do part of S is executed before this multiple assignment and the do part of
T is executed after. In other words, this happens:

• 1. Execute do of S

7 Assignment and Procedure Calls 21

• 2. (O1,...Oi...) −> (I1,...Ii...)
• 3. Execute do of T

For cascaded assignments:

S −> T −> U;

We have:

• 1. Execute S
• 2. Output of S −> input of T
• 3. Execute T
• 4. Output of T −> input of U
• 5. Execute U

Note that the body of each object mentioned in the assignment is executed once. Of course,
defining assignment between complex structures or objects in terms of assignment between
individual exit expressions and enter variables is a recursive explanation which eventually leads to
assignment between primitive objects like integers which has an obvious interpretation in terms of
machine code. This is described in great detail in section 5.8 of the BETA Book.

Note that absence of a do part has no effect on assignment: it is equivalent to a null statement; but
absence of an enter or and exit part has great importance. An object without an exit part cannot
appear as a source in an assignment. Similarly, an object without an enter cannot appear as a
target.

This property is exploited in the math fragment to define read−only objects or constants. These
have only an exit list:

e: (# exit 2.7182818284590452354 #);
Pi: (# exit 3.14159265358979323846 #);

BETA's generalized definition of assignment means that there is no fundamental difference
between assignments and procedure calls. Following from this argument is the fact that procedure
declarations and type declarations will be syntactically identical. To illustrate this, consider the
following declarations. The first is a type definition for a complex numbers with two real attributes.
The second is a procedure that adds reals numbers.

complex: (# Re,Im: @real;
 enter (Re,Im)
 exit (Re,Im)
 #);

add: (# A,B: @real;
 enter (A,B)
 exit A+B
 #);

These definitions have been purposely made alike. There is no do part in either; the computation
for add being done by an expression in the exit list. Each has 2 local real attributes. Each has an
enter list and an exit list, meaning that objects of the type complex and those of the type add can
be assigned values and can provide values and thus can be used on both sides of an assignment
statement. For example:

 Libraries Tutorial

7 Assignment and Procedure Calls 22

(1.0, 3.3) −> complex −> (x,y);

(1.0, 3.3) −> add −> x;

In the case of complex, the output value is an exact duplicate of its local state and of the input
values: complex objects will be used mainly for their storage potential (as variables). With add, the
output value is computed from the state (input) values: add objects are more useful for this
computational aspect. In actual fact, complex would seldom be used directly in such an
assignment; it would more properly be used as a model for variables which would in turn be used in
assignments.

(# c1,c2: @complex;
do (1.0, 3.3) −> c1;
 c1 −> c2;
#)

The point, however, is that BETA does not distinguish between types and functions. It considers
both as examples of a more fundamental concept: the object, which can be used for many things
depending on how the programmer chooses to define and use it.

The program below shows the examples that we have talked about:

Program 8: MultipleAssigment.bet

ORIGIN '~beta/basiclib/betaenv'
−−−− program: descriptor −−−−
(#
 (* Multiple assignment and function calls *)

 i,j,k: @integer;
 NINES: (# exit 99999 #); (* Constant *)

 complex: (# Re,Im: @integer;
 enter (Re,Im)
 exit (Re,Im)
 #);
 add: (# A,B: @integer;
 enter (A,B)
 exit A+B
 #);

do
 'Examples using multiple assignment and function calls'−>putline; newline;

 'Outputting a constant: NINES= '−>puttext;
 NINES−>putint;
 newline; newline;

 '(1,2,3)−>(i,j,k); '−>putline; newline;

 (1,2,3)−>(i,j,k);
 ' I= '−>puttext; i−>putint;
 ', J= '−>puttext; j−>putint;
 ', K= '−>puttext; k−>putint; newline;

 newline; '(i,j)−>(j,i): '−>puttext;

 (i,j)−>(j,i);

 Libraries Tutorial

7 Assignment and Procedure Calls 23

 ' I= '−>puttext; i−>putint;
 ', J= '−>puttext; j−>putint; newline;

 'Note that (x,y)−>(y,x) doesn\'t imply swap semantics: ' −>
 putline; newline;

 ' (*** More examples ***)'−>putline; newline;

 (111,999)−>complex−>(i,j);
 (111,999)−>add−>k ;

 ' I= '−>puttext; i−>putint;
 ', J= '−>puttext; j−>putint;
 ', K= '−>puttext; k−>putint; newline;
#)

Now for its output:

Examples using multiple assignment and function calls

Outputting a constant: Nines= 99999

(1,2,3) −> (i,j,k);

 I= 1, J= 2, K= 3

(i,j) −> (j,i): I= 1, J= 1
Note that (x,y) −> (y,x) doesn't imply swap semantics.

 (*** More examples ***)

 I= 111, J= 999, K= 1110

 Libraries Tutorial

7 Assignment and Procedure Calls 24

8 Patterns and Variables
In this section, we get a bit more formal with the BETA way of expressing object−oriented concepts.
This section treats topics from chapter 3 of the BETA Book but with a slightly different approach.

Often object−oriented concepts are summarized as follows:

• 1) Objects are meant to represent the things that we see or talk about in the real world.
• 2) Objects have properties. These are often divided between state (attributes) and potential

actions (services, methods or scripts).
• 3) Objects which have the same attributes and behave the same way are said to belong to

the same class. A class definition specifies the attributes and actions common to all objects
of the same class. The objects described by a class are said to be instances of that class.

• 4) Often it is useful to introduce the notion of class hierarchy to reflect various levels of
similarity. The specification mechanism which allows incremental description of the
similarities at each level is called inheritance.

• 5) Additionally, some languages model the fact that individual objects can operate in
parallel. These active objects are sometimes called agents, processes or actors.

Actually, in this section, we will only talk about points 2 and 3. Point 1 is included for completeness
and point 4 is not covered in this tutorial (see the BETA language introduction [MIA 94−26] or the
BETA book [MMN 93]). Point 5 will be covered later.

In BETA, objects are described by a syntactic construct called an object−descriptor (or descriptor
for short). This has the form:

(# ... #)

and is used to specify the local attributes and actions of an object (or class of objects).

An unusual feature of the BETA object−descriptor (compared to other object−oriented languages)
is that, with enter and exit lists, it introduces the notion of value for objects. The different facets of
an object are defined by the various (optional) parts of the object description:

(# <declarations>
enter <input list>
do <imperatives>
exit <output list>
#)

This single concept of descriptor has been used to replace many diverse concepts that we are
familiar with from traditional languages. In particular, it is used for procedures, functions, types,
classes, macros and local blocks. These different roles are achieved by using the descriptor in
different contexts, by combining it with other operators or by selective use of the internal parts.

8.1 Patterns and Variables

In BETA, a descriptor can be given a name. Thereafter, the name becomes a short−hand form for
the full description. The association of name and descriptor is written amongst the declarations and
is known as a pattern declaration. It has the following syntax:

8 Patterns and Variables 25

#mia94-26
#mmn93

<pattern−name>: <prefix> <descriptor>

Thereafter, the pattern name or the descriptor can be used interchangeably and the term pattern is
used to mean either form. prefix is an optional name of a pattern that pattern−name inherits from.

As we have seen previously, variable declarations are characterized by the @ token:

<variable−names>: @<pattern>

Examples:

POINT: (# X,Y: @real;
 enter (X,Y)
 exit (X,Y)
 #);

P1,P2: @Point;
P3: @(# X,Y: @real;
enter (X,Y) exit (X,Y)
 #);

P1 and P2 are considered to be objects of the same class. Note also that case is immaterial in
BETA: POINT being the same as PoINt or point.

Thereafter, the following assignments are allowed:

P1 −> p2;
(0,0) −> p1 −> p2 −> p3;

Note that BETA uses structural equivalence in its value assignments and comparisons. This is not
as strict as in other languages and assignment is possible between variables of any two patterns
with similar enter and exit lists. This was shown above (with identical lists) and if we define another
pattern complex with two reals as value, assignment will be allowed between Point and complex
objects.

C1: @(# Re,Im: @real;
 enter (Re, Im)
 exit (Re, Im)
 #);

8.2 Attribute Access

So far we have concentrated on showing that BETA objects can behave either as classical data
variables or as procedures. The example patterns that we showed often had local attributes (of
primitive types) used either to implement value or to hold temporary results of computations.

BETA objects also function as structured (or record) data and the local attributes are accessible via
the traditional dot notation. For the POINT P1 defined in the previous section, the examples below
show how its local attributes X and Y can be both read and set directly:

0 −> P1.X; 123 −> P1.Y;
P1.X −> putint;

 Libraries Tutorial

8.2 Attribute Access 26

Notice, that the first line is equivalent to: (0,123) −> P1.

The local attributes can have any type and could be function objects. Below, we use a modified
Point pattern which has a third attribute dist to compute the distance from the origin.

Point: (# X,Y: @real;
 dist: @(# exit (X*X + Y*Y) −> sqrt #);
 enter (X,Y)
 exit (X,Y)
 #);

P1,P2 : @Point;

This third attribute is read−only (because it has no enter list) but can be consulted just like X and Y:

(3,4) −> P1;
P1.dist −> putint;(* will print "5" *)

Many object−oriented languages enforce encapsulation by disallowing direct reading or writing of
the local variables and restrict access to the invocation of the local methods. Smalltalk is the
obvious example of this approach but even Simula, where by default all local data and methods are
accessible, introduced a Hidden/Protected mechanism to allow protection. This is meant to enforce
separation of the provided behavior from the details of implementation.

In the BETA language, there is no provision for hiding the internal details of an object. The
mechanisms for protection as well as those for modularization and configuration management are
relegated to a separate fragment system which is described in the last section of this tutorial.

 Libraries Tutorial

8.2 Attribute Access 27

9 Dynamic Data Structures
The variables that we have declared so far (with @) are said to be static objects and the variable
names are said to be static references.

Advanced programming requires more than just static data structures. In particular, list processing
is based on the notion of dynamically created objects linked by pointers. Recursive procedures also
rely on dynamically allocated activation records. More to the point, objects are generally created on
demand with a new operator.

In BETA, pointers or dynamic references as they are called are declared very much as in C using
the * token. Below, we declare refA and refB to be references to Point objects whereas the
declaration for P1 and P2 cause storage space to be reserved for 2 points and associate
(permanently) the names P1 and P2 to those points.

refA, refB: ^Point;
P1,P2: @Point;

Initially, refA and refB point nowhere and have the value NONE whereas P1 and P2 designate real
live points. Thus, we can assign data to P1 but not to refA.

P1 −> P2; (* OK *)
P1 −> refA; (* run−time error because refA is NONE *)

This seems normal but reread these two imperatives carefully. Anyone having used pointers in
other languages should notice that the BETA pointer concept is a little different that most other
languages. We have used (correctly) the same notation for the variable and for the pointer. If this
were C, with:

Point p1,p2;
Point *refA,*refB;

then refA would represent the address of a Point and *refA would be used to denote the contents of
that Point. In C, the assignments would have read

p2 = p1;
*refA = p1;

Now we can return to the BETA approach to dynamic data which is quite different from the
traditional one.

In BETA, a pointer is treated as a reference which may point to different objects (or to NONE) at
different times during execution whereas a variable is considered to be a reference which will
always denote the same object. Thus both are references but one is static and the other dynamic
and they will be used in the same way to access the data. The concept of pointer storage address
is avoided.

In BETA, simple use of a reference (static or dynamic) in an evaluation refers to the contents of the
object referenced. Thus, assuming that refA and refB designate Points (and not NONE) then,

(0.0, 0.0) −> P1 −> refA −> refB −> P2 ;

9 Dynamic Data Structures 28

means that the contents (or value) of each point is set to (0,0).

To manipulate references to objects and not just the contents, we need to use a reference
operator. In BETA, this is a postfix operator written [] (read box). Thus the following imperative:

refA[] −> refB[];

has the effect that refB now points to (references) the same object as refA.

BETA's approach is the converse of C's: BETA uses a referencing operator and C uses a
dereferencing operator.

Assignment Type

BETA

C

Content

refA −> refB;

*refB = *refA;

Reference

refA[] −> refB[];

refB = refA;

In BETA, it is also possible to make a dynamic reference denote a static object. This can also be
done in C:

BETA: P1[] −> refA[]
C: refA = &P1;

This is one way to give dynamic references values other than NONE. The other and more obvious
one involves dynamic creation of new objects at run−time. In BETA, the new operator is written &.
Thus,

&Point

causes a new point object to be created. Now, comes a delicate aspect.

To create a new object and to get the address of this new Point, we also need the reference
operator:

&Point[] −> refA[];

As mentioned in section 3.2.3 of the BETA book, this is a subtle point:

 Libraries Tutorial

9 Dynamic Data Structures 29

'The difference between &P and &P[] is very important: the expression &P means 'generate a new
instance of P and execute it'; the expression &P[] means 'generate a new instance of P without
executing it and return a reference to this new object'.'

In C a Point is allocated like this:

refA = (Point*) malloc(sizeof(Point));

The following program shows the use of static and dynamic references. This uses a Point
user−type with integer attributes. There are 2 static references, P1 and P2, and a dynamic
reference, refA. At various points in the program refA points to either P1 or P2 or to a dynamically
allocated object. Note that access to Points via the static or dynamic variables is syntactically
identical. We assign various values to the three references and use dump to show the contents of
the first attributes of all three. This shows that effectively refA designates various Points during
execution. At the end, we show the use of a dynamically generated Point in a cascaded
assignment. In this case, the purpose is just to show that it can be done and what happens. Useful
version of this dynamic generation will be shown later.

(111,333) −> &Point −> P1;

What happens here is that

• 1) a new Point object is created,
• 2) the values (111,333) are assigned to the variables in the enter list of the new Object,
• 3) the (empty) do part of the object is executed,
• 4) a value assignment is done between the exit list of the Point and the enter list of P1 and
• 5) finally, the (empty) do part of P1 is executed. The newly created Point is inaccessible and

the space it occupies will be reclaimed by the garbage collector.

Instead using the reference operator gives:

(111,333) −> &Point[] −> refA[];

What happens here is that

• 1) a new Point object is created,
• 2) the values (111,333) are assigned to the variables in the enter list of the new object,
• 3) a reference assignment is done between newly created object and refA. refA now refers

to the new object.

Program 9: StaticAndDynamic.bet

ORIGIN '~beta/basiclib/betaenv'
−−−− program: descriptor −−−−
(#
 (* Static and Dynamic references *)

 Point: (# X,Y: @integer;
 enter (X,Y)
 exit (X,Y)
 #);

 refA: ^Point;
 P1,P2: @Point;

 Libraries Tutorial

9 Dynamic Data Structures 30

 Dump:
 (#
 do 'P1: '−>puttext;
 P1.X−>screen.putint(# format:: (# do 3−>width#)#);
 ', P2: '−>puttext; P2.X−>putint;
 ', refA: '−>puttext; refA.X−>putint;
 newline;
 #);

do
 'Dynamic references'−>putline;
 newline;

 &Point[]−>refA[];

 (1,1)−>P1−>P2−>refA;
 Dump;

 (2,2)−>P2;
 (3,3)−>refA;
 Dump;

 P1[]−>refA[]; Dump;
 P2[]−>refA[]; Dump;

 (1,1)−>P1; (2,2)−>P2; (3,3)−>refA;
 Dump;

 (111,333)−>&Point−>P1;
 Dump;
 Newline;
#)

The results from execution are shown below:

Dynamic references

P1: 1, P2: 1, refA: 1
P1: 1, P2: 2, refA: 3
P1: 1, P2: 2, refA: 1
P1: 1, P2: 2, refA: 2
P1: 1, P2: 3, refA: 3
P1: 111, P2: 3, refA: 3

9.1 Primitive Types

In the previous section, all examples of static and dynamic references dealt with a user defined
type, Point. Could we have done the same thing with one of the four primitive types in BETA:
integer, char, boolean or real? The answer is no. For these 4 types, it is not legal to apply neither
the new nor the reference operators. Similarly, we shall see later that other limitations apply and
these types cannot be used as prefixes for other object definitions.

Thus the following expressions are illegal:

RefInt: ^integer;(* ILLEGAL *)
&real −> ...(* ILLEGAL *)

 Libraries Tutorial

9.1 Primitive Types 31

The reason is that for safe pointer operation, each object that can be designated by a dynamic
reference (pointer) needs extra space for administrative data. In the case of primitive types, this
overhead can be overwhelming and it has been chosen to handle them differently (and more
efficiently) than other patterns. This is the same approach used in Simula, Pascal and Eiffel.

In Smalltalk, another approach was used: the language tries to treat all objects (and types) in
exactly the same way. This makes for a very powerful system but, in spite of considerable
research, Smalltalk programs are still bulky and notoriously slow.

With the & operator, C allows pointers to anything and this is a major source of errors in C code
that neither the compiler nor the run−time system can help to control.

For situations where one would like to use primitive objects in ways identical to user−defined
objects, BETA has defined 4 special patterns: IntegerObject, CharObject, RealObject and
BooleanObject. These are completely compatible with their primitive counterparts (assignment,
comparison, etc.) but dynamic creation (&), the reference operator ([]), inheritance, etc., are
allowed on them.

 Libraries Tutorial

9.1 Primitive Types 32

10 Repetitions (Arrays)
In BETA arrays are called repetitions.

A: [10] @integer;

This repetition describes a set of static references to integers. 10 is called the range of the
repetition (the upper bound). In spite that the lower bound is always 1, repetitions are flexible since
the upper range is accessible as a local attribute of the repetition, they can be assigned, extended
and sub−range access is possible (slices).

BETA repetitions compared to its C counterpart:

Language

BETA

C

Declaration

A: [10] @integer;

int [10] A;

Lower

1

0

Upper

A.range

9

Size

A.range

10

Access

A[i]

A[i]

Assignment

10 Repetitions (Arrays) 33

A −> B;

not possible

Extend

10 −> A.extend

not possible

Slices

A[2..3]

not possible

It should be noted that it is not possible to take the address of a repetition, i.e. A[] is illegal (legal in
C as &A).

In the current Mjølner implementation, it is possible to declare repetitions of types: char, boolean,
integer, real, and any object reference:

(# Record: (# ... #);
 A: [100] ^Record;
do &Record[] −> A[1][]; (* create a new instance of Record and
 * assign it to first entry in A *)
 ...
#)

Besides assigning values to the elements of a repetition, whole repetitions can be assigned to other
repetitions regardless of their ranges, e.g.:

a: [10] @integer;
b: [1] @integer;
do (for i: A.range repeat (* initialize a *)
 i −> a[i]; (* put i into i'th position in repetition a *)
 for);
 14 −> b[1]; (* a is [1,2,3,4,5,6,7,8,9,10], and
 * b is [14]
 *)
 a −> b; (* make repetition assignment:
 * a is [1,2,3,4,5,6,7,8,9,10], and
 * b is [1,2,3,4,5,6,7,8,9,10]
 *)

The next program illustrates how to use repetitions in a simple sorting program called quick sort,
originating from C.A.R Hoare. Given a repetition, one element is chosen and the others partitioned
into two subsets: those less than and those greater than or equal to the partition element. The
same process is then applied recursively to the two subsets. When a subset has fewer than two
elements it does not need any sorting and the recursion stops.

In BETA it is illegal to use the reference operator on repetitions, and since the quick sort algorithm
is inherently recursive with the repetition as function argument in each recursion, we face a
problem. However, this problem is easily solved in BETA. We simply define a pattern containing a
repetition, and using an object of this type as the argument to quick sort.

 Libraries Tutorial

10 Repetitions (Arrays) 34

numberRepetition: (# r: [1] @Integer #);
 qsort:
 (# nr: ^numberRepetition;
 enter (nr[], ...)
 do
 #);
 numbers: @numberRepetition;
do
 ...
 qsort(numbers[],...);

So the limitation of not being allowed to take a reference to repetitions is easily circumvented.

The quick sort algorithm also uses a swap operation, that swaps two elements in the repetition.
This operation can be define locally inside (statically nested inside) qsort, so swap can operate on
the same repetition:

qsort:
 (# nr: ^numberRepetition;
 swap:
 (# i,j: @Integer;
 temp: @Integer;
 enter (i,j)
 do nr.r[i] −> temp;
 nr.r[j] −> nr.r[i];
 temp −> nr.r[j];
 #);
 enter (nr[], ...)
 do ...
 #);

The complete code including a loop for reading numbers to be sorted from the keyboard follows
below:

Program 10: QuickSort.bet

ORIGIN '~beta/basiclib/betaenv';
−−−program: descriptor−−−
(# (* Hoare QuickSort program illustrating how to use
 * repetitions, simple pattern declarations,
 * block structure and recursion.
 *)
 numberRepetition: (# r: [1] @Integer #);
 qsort:
 (# nr: ^numberRepetition;
 left, right, last: @Integer;
 swap:
 (# i,j: @Integer;
 temp: @Integer;
 enter (i,j)
 do nr.r[i]−>temp;
 nr.r[j]−>nr.r[i];
 temp−>nr.r[j];
 #);
 enter (nr[], left, right)
 do L: (if left >= right then (* stop if rep. contains *)
 leave L; (* fewer than two elements *)
 else
 (* move partition element to nr.r[1] *)

 Libraries Tutorial

10 Repetitions (Arrays) 35

 (left, (left+right)/2) −> swap;
 left−>last;
 (* partition *)
 (for i: right−left repeat
 (if nr.r[i+left] < nr.r[left] then
 last+1−>last;
 (last,i+left) −> swap;
 if);
 for);
 (left,last) −> swap; (* restore partition element *)
 (nr[],left,last) −> qsort;
 (nr[],last+1,right) −> qsort;
 if);
 #);
 numbers: @numberRepetition;
 t: ^Text;
 i: @Integer;
do
 (* initialize a repetition with numbers typed
 * by the user
 *)
 'Type some numbers: '−>puttext;
 getline−>t[]; (* read all what the user types until newline *)
 1−>i;
 t.reset;
 L: (if not t.eos then
 (* parse the text;
 * assuming that the user only types numbers
 *)
 (if i>numbers.r.range then
 (* remember to extend the repetition *)
 numbers.r.range−>numbers.r.extend;
 if);
 t.getint−>numbers.r[i];
 i+1−>i;
 restart L;
 if);

 (* sort the repetition *)
 (numbers[],1,i−1) −> qsort;

 'Sorted numbers: '−>puttext;
 (for j: i−1 repeat
 numbers.r[j]−>putint; ' '−>put;
 for);
 newline;
#)

Running the program and typing some numbers results in the following output:

nil% QuickSort
Type some numbers: 9 8 4 6 3 8 2 7 12 45 2 78 5 6 1 0 2
Sorted numbers: 0 1 2 2 2 3 4 5 6 6 7 8 8 9 12 45 78

10.1 Multidimensional Repetitions

It is not possible to make multidimensional repetitions using the current version of the Mjølner
System. However, multidimensional repetitions are easily constructed, e.g. a repetition with
dimension NxM can be declared like:

 Libraries Tutorial

10.1 Multidimensional Repetitions 36

mul_table: [N*M] @Integer;

which is intended to realize a two−dimensional array of the form:

The following example shows how the multiplication table constructed in section 4 previously can
be stored in a two−dimensional repetition:

Program 11: MultiplicationTable.bet

ORIGIN '~beta/basiclib/betaenv'
−−−− program: descriptor −−−−
(#
 (* Multiplication Table 3
 *
 * Objective: Store values in a repetition
 *)
 N,M: @Integer;
do
 '\n\t** Multiplication Table ** \n\n'−> puttext;
 'Enter dimensions (NxM): '−>puttext;
 getint −> N;
 getint −> M;
 (# mul_table: [N*M] @Integer;
 do (* build table *)
 (for i: N repeat
 (for j: M repeat
 i*j −> mul_table[(i−1)*M + j];
 for);
 for);

 (* print table *)
 newline;
 ' '−>puttext;
 (for i: M repeat
 i −> screen.putint(# format::(# do 4−> width #)#);
 for);
 newline;
 (for i: N repeat
 i −> screen.putint(# format::(# do 4−> width #)#);
 (for j: M repeat
 mul_table[(i−1)*M + j]
 −> screen.putint(# format::(# do 4−> width #)#);
 for);
 newline;
 for)
 #);
#)

 Libraries Tutorial

10.1 Multidimensional Repetitions 37

11 Files
Our objective in this section is to open a file and analyze the characters that it contains. This means
that we will be doing input for the first time. At first, we will merely count the characters in the file
but we will also use command−line arguments to apply the program to various files.

File handling in BETA is quite painless. Files for both input and output are implemented through a
single pattern: file. This pattern is not in the standard environment betaenv but in an extended
library called file which includes betaenv so it is sufficient to replace betaenv by file in the ORIGIN
statement.

A complete program skeleton to read a file called data1 is as follows:

ORIGIN '~beta/basiclib/file'
−−− program: descriptor −−−
(# F: @File;
do 'data1' −> F.Name;
 F.openRead;

 (*... use F ...*)

 F.close;
#)

Here, F is declared as a file variable. The external file name is provided then openread is invoked.
After use, the close operation should be called. Here we have used only three attributes of the
pattern file:

• Name
• OpenRead
• Close

Other useful attributes/operations are:

• OpenWrite: creates an empty file or erases the current contents of an existing one
• OpenAppend: positions for writing at end of existing data
• OpenReadWrite: to allow Get, Put and Pos operations
• Get: returns the next character
• Put: writes or appends a character
• Eos: end−of−file check

The standard while <not end−of−file> loop for sequentially handling the contents of a file translates
into the following BETA code:

Loop:
 (if not F.Eos then
 F.get −> ch;(* reading the next element *)
 ...
 restart Loop
 if);

Here is the whole program for counting the characters in the file data1. We have added visual
feedback to the user by printing '.' on the screen for every 10 characters read. Note that using the
input/output predicates directly (i.e. put or get) without . notation (i.e. f.get) accesses the standard
streams (keyboard and screen).

11 Files 38

Program 12: CountChar.bet

ORIGIN '~beta/basiclib/file'
−−−− program: descriptor −−−−

(# (* −−
 * count.bet: Simple file handling program
 * −Counting characters−
 * −−*)

 inFile: @file;
 Ch: @char;
 nc: @integer;
do
 'data1'−>inFile.name ; inFile.openRead; (* OPENING *)
 'Reading: '−>puttext; inFile.name−>putline;
 Loop:
 (if not inFile.eos then
 inFile.get−>Ch;
 nc + 1−>nc;
 (if nc mod 10 = 0 then '.'−>put if);
 restart Loop
 if);
 newline;
 nc−>putint; ' characters in file'−>putline;
 inFile.close;
#)

The output looks like this:

nil% CountChar
Reading: data1
....
41 characters in file

If the file data1 is not present, execution gives the following error message.

nil% CountChar

**** Exception processing
File exception for 'data1'
No such file

Beta execution aborted: Stop is called
Look at CountChar.dump'

11.1 Command−line arguments

At present, our program only works with one file data1. It would be more useful if the name of the
file could be specified by the user. A common way to allow this in UNIX is to pass the name of the
files to be used as arguments on the command line used to invoke the program. For example, to
count the characters in file data2, we would like to invoke count as follows:

% CountChar data2

 Libraries Tutorial

11 Files 39

The demo file programs that come with BETA all work this way. To do this, there are two useful
functions in the standard environment which correspond to the UNIX C argc and argv variables.
These are:

• noOfArguments: which returns the number of arguments on the command line and
• arguments: which given an integer parameter N returns the n'th argument on the command

line. Remember that argument 1 is the name used for the program − CountChar1 in our
example − and that the one we want will be argument 2.

Below, we show how count has been modified to use the command argument. To keep things
simple, we do not check the number of arguments or provide for an error message. For examples
of how to do this, see the demo programs.

Program 13: CountChar1.bet

ORIGIN '~beta/basiclib/file'
−−−− program: descriptor −−−−

(# (* −−
 * count.bet: Simple file handling program
 * −Counting characters−
 * −−*)

 inFile: @file;
 Ch: @char;
 nc: @integer;
do
 (if NoofArguments = 2 then
 2−>ARGUMENTS−>inFile.name ;
 inFile.openRead; (* OPENING *)

 'Reading: '−>puttext; inFile.name−>putline;
 Loop:
 (if not inFile.eos then
 inFile.get−>Ch;
 nc + 1−>nc;
 (if nc mod 10 = 0 then '.'−>put if);
 restart Loop
 if);
 newline;
 nc−>putint; ' characters in file'−>putline;
 inFile.close;
 else
 'Missing Arguments'−>putline;
 if)
#)

And below we show the application of CountChar1 to the count program itself.

nil% CountChar1 CountChar1.bet
Reading: CountChar1.bet
...
681 characters in file
nil%

A nice thing about passing file names as command line arguments is that the shell will expand the
file name as expected. In particular, the '~' and '*' characters are interpreted correctly in the
example below [2]:

 Libraries Tutorial

11.1 Command−line arguments 40

nil% count ~/Beta/dat*
Reading: ../Beta/data1
....
41 characters in file

These also work:

• count ~vaucher/Beta/data1
• count ./data1
• count ../Beta/file/../data1

Were we to set the filename directly, it would be OK to include '.' and '..' in the path name but '~'
would not be handled properly.

 [2] For Unix shells only

11.2 Storing Characters in a Repetition

The following example program illustrates how to count each occurrence of characters in the input
file. The count for each character is stored in a repetition:

occurrences: [256]@Char;

using the assignment:

occurrences[Ch]+1−>occurrences[Ch];

and the occurrences are printed using a for and an if statement:

(for i:256 repeat
 (if occurrences[i]>0 then (* only print if > 0 *)
 i−>put; (* notice how a char can be printed *)
 ': '−>puttext;
 occurrences[i]−>putint;
 newline;
 if);
 for);

The complete program is as follows:

Program 14: CountChar2.bet

ORIGIN '~beta/basiclib/file'
−−−− program: descriptor −−−−

(# (* −−
 * count.bet: Simple file handling program
 * −Counting occurrences of characters−
 * −−*)

 inFile: @file;
 Ch: @char;

 Libraries Tutorial

11.2 Storing Characters in a Repetition 41

 nc: @integer;
 occurrences: [256]@Char;
do
 (if NoofArguments = 2 then
 2−>Arguments−>inFile.name ;
 inFile.openRead; (* OPENING *)
 Loop:
 (if inFile.eos//false then
 inFile.Get−>Ch;
 nc+1−>nc;
 occurrences[Ch]+1−>occurrences[Ch];
 restart Loop
 if);
 NewLine;
 (for i: 256 repeat
 (if occurrences[i]//0 then else (* only print if > 0 *)
 i−>put; (* notice how a char can be printed *)
 ': '−>puttext;
 occurrences[i]−>putint;
 newline;
 if);
 for);
 'Total '−>puttext;
 nc−>putint;
 ' characters in file'−>putline;
 inFile.close;
 else
 'Missing Argument'−>putline;
 if)
#)

And below we show the application of CountChar2 to the CountChar2.bet program itself.

nil% CountChar2 CountChar2.bet

 : 241
#: 2
': 8
(: 8
): 8
*: 11
+: 2
−: 117
.: 7
/: 7
0: 2
1: 3
2: 3
4: 1
5: 2
6: 2
:: 9
;: 21
>: 12
@: 4
A: 1
C: 6
E: 1
F: 6
G: 3
I: 3
L: 3
N: 4

 Libraries Tutorial

11.2 Storing Characters in a Repetition 42

O: 2
P: 1
R: 2
S: 1
T: 1
[: 5
]: 5
a: 20
b: 5
c: 34
d: 5
e: 55
f: 13
g: 6
h: 13
i: 41
l: 20
m: 5
n: 39
o: 26
p: 16
r: 34
s: 16
t: 31
u: 15
v: 1
w: 3
x: 2
y: 1
~: 1
Total 952 characters in file
nil%

 Libraries Tutorial

11.2 Storing Characters in a Repetition 43

12 Directory
Directory handling is very similar to file handling in the Mjølner System. Files and directories have
similar properties like name, path, etc. Files are special since the contents typically are characters
that can be read and written, directories are special since the contents are files and directories.
These similar and special properties are both modeled in the file and directory libraries.

When using the directory library, a directory is simply declared as

ORIGIN '~beta/basiclib/directory';
...
 d: @directory;
...

A directory can be given a name:

'myDir' −> d.name;

And it can be tested for existence, content, entries, and be scanned:

• d.exists: returns true if the directory exists
• d.empty: returns true if the directory has some content
• d.noOfEntries: returns the number of entries (files and directories) in the directory.
• d.scanEntries: calls INNER for each entry (found) in the directory.

The following program shows a simple use of directory: The directory with the path given as
argument is scanned, and the names of all the entries are printed.

Program 15: ListDir.bet

ORIGIN '~beta/basiclib/directory';
−−−program: descriptor−−−
(# d: @directory;
do (if noOfArguments <> 2//true then
 'Usage: '−>puttext; 1−>arguments−>puttext; ' path'−>putline;
 stop;
 if);
 (* set name of directory *)
 2−>arguments−>d.name;
 (* print name of directory *)
 newline;
 d.name−>puttext;
 (* test for content *)
 (if d.empty//true then ' is empty.'−>putline;
 else ' is not empty.'−>putline;
 if);
 'It contains the following '−>puttext;
 d.noOfEntries−>putint;
 ' entries: '−>putline;
 (* scan the entries *)
 d.scanEntries
 (# (* found refers to the current entry *)
 do found.path−>putline;
 #);
 newline;
#)

12 Directory 44

This program also checks for the number of arguments. If the number of arguments is not 2, then
an error message is printed, and stop is called. stop is defined in the basic environment betaenv,
and when called, terminates the execution.

Below we show the output of ListDir on the current working directory:

nil% ListDir .

. is not empty.
It contains the following 17 entries:
.
..
CountChar.bet
CountChar1.bet
CountChar2.bet
ExploreTypes.bet
HelloWorld.bet
ListDir
ListDir.ast
ListDir.bet
MultipleAssignment.bet
Multiplication1.bet
Multiplication2.bet
Multiplication3.bet
SimpleTypes.bet
SquareRoot.bet
sun4s

 Libraries Tutorial

12 Directory 45

13 Text Manipulation
The basic BETA environment defines a Text pattern for manipulating texts. Text constants have
been used a lot in the previous examples. Here we explore more on the many facilities of the text
concept. Constant texts can be assigned to text variables and texts can be added:

(# t: @text;(* declare t as a static ref. to a text object *)
 r: ^text;(* declare t as a dynamic ref. to a text object *)
 i: @integer;
do 'foo' −> t; (* assign a constant to t = 'foo' *)
 ' ' −> t.append; (* append one blank to t = 'foo ' *)
 ' ' −> t.prepend; (* prepend one blank to t = ' foo ' *)
 t.length −> i; (* assign the length of t to i (5) *)
 (2,4) −> t.sub −> r[]; (* get substring 'foo' from t *)
#)

Users do not have to bother about extending the text when adding or manipulating. The length of
the text object will automatically be adjusted. Many functions on texts uses a current position in the
text (t.pos). For example:

(# t: @text;
do 'foo'−>t; (* sets pos to t.length *)
 'bar'−>t.puttext; (* adds 'bar' after current pos: t='foobar'*)
 1−>t.pos;
 'bar'−>t.puttext; (* t = 'barbar' *)
#)

Texts sub−strings can be fetched and assigned to another text object reference, and texts can be
inserted at a specified position:

(# t: @text; (* declare t as a static ref. to a text object *)
 r: ^text; (* declare t as a dynamic ref. to a text object *)
do ' foo ' −> t; (* assign a constant to t = ' foo ' *)
 (2,4) −> t.sub −> r[]; (* get substring 'foo' from t *)
 ('bar',5) −> t.insert; (* insert substring 'bar' in t = ' foobar ' *)
#)

Texts can be compared using the equal function.

(# t: @text;
 b: @boolean;
do ...
 'foo' −> t.equal −> b; (* case sensitive comparison *)
 'foo' −> t.equalNCS −> b; (* not case sensitive comparison *)
#)

The following example program is an extended version of the character counting programs
constructed before. The program can count either characters or lines in the input file. In addition to
text comparison, the program uses two new features.

getline: reads from input, i.e. what the user types. Waits until the user has typed a newline

ascii.newline: ascii is an object defined in betaenv containing attributes for manipulating and
comparing ASCII characters. newline is a generic definition of the newline character. ascii also
contains conversion functions, e.g. toLower, definition of white space, e.g. isWhiteSpace, etc.

13 Text Manipulation 46

Program 16: FileCount.bet

ORIGIN '~beta/basiclib/file'
−−−− program: descriptor −−−−

(# (* −−
 * count.bet: Simple file handling program
 * −Counting lines/characters−
 * −−*)

 inFile: @file;
 Ch: @char;
 nc: @integer;
 answer: ^text;
 lines, chars: @Boolean;
do
 (if NoofArguments
 // 2 then
 2−>Arguments−>inFile.name ;
 inFile.openRead; (* OPENING *)
 'Count what in \''−>Puttext; inFile.name−>PutText;
 '\' (lines/chars)? '−>PutText;
 GetLine−>answer[]; (* read from keybord - what the user types *)
 (if true
 //('lines'−>answer.equal) then true−>lines;
 //('chars'−>answer.equal) then true−>chars;
 else
 'Unknown input'−>PutLine;
 Stop; (* end execution *)
 if);
 Loop:
 (if inFile.eos//false then
 inFile.Get−>Ch;
 (if true
 //lines then (if Ch//ascii.newline then nc + 1−>nc if);
 //chars then nc + 1−>nc;
 if);
 restart Loop
 if);
 NewLine;
 nc−>PutInt;
 (if true
 //lines then ' lines '−>PutText;
 //chars then ' characters '−>PutText;
 if);
 'in file \''−>Puttext;
 inFile.name−>PutText;
 '\'\n\n'−>PutText;
 inFile.close;
 else
 'Missing Argument'−>putline;
 if)
#)

The output running FileCount on itself is:

nil% FileCount FileCount.bet
Count what in 'FileCount.bet' (lines/chars)? lines

46 lines in file 'FileCount.bet'

nil% FileCount FileCount.bet
Count what in 'FileCount.bet' (lines/chars)? chars

 Libraries Tutorial

13 Text Manipulation 47

1238 characters in file 'FileCount.bet'

Finally, the table below lists some of the useful attributes of texts:

t.length Returns number of characters of text

t.pos Returns current position

t.empty −> b Returns True if t is empty

t.clear −> b Sets the length to zero

c −> t.put Appends the character c to t

t.get −> c Returns the character at current position, and increments position by 1

t.peek −> c Returns the character at current position, without updating the position

r[] −> t.puttext Adds r to t starting at current position

r[] −> t.prepend Prepends the text r to t

r[] −> t.append Appends the text r to t

i −> t.putint Inserts the integer i to t starting at current position

t.getint −> i Reads the next integer from t starting at current position

t.getAtom −> r[] Reads characters until next white−space and returns the text

t.getLine −> r[] Reads characters from t until next newline and returns that text.

i −> t.inxget −> c Returns the character at position i

(c,i) −> t.inxput Replaces the character at position i

t.copy −> r[] Returns a copy of t

r[]−>(t.copy).append−>s[] Returns s[] where s = t cat r [3]

r[]−>(t.copy).prepend−>s[] Returns s[] where s = r cat t

t.scanAtom(# do ... #) Scans from current position until next white−space and call INNER for
each char

t.scanAll(# do ... #) Scans all the elements in t and calls INNER for each char

(i,j) −> t.sub −> r[] Returns the text from position i to position j from t

(i,j) −> t.delete Deletes characters in the range i:j

r[] −> t.less Tests whether r is less than t. Lexicographic ordering is used

r[]−>t.greater Tests whether r is greater than t. Lexicographic ordering is used

t.makeLC Converts all characters to lower case

t.makeUC Converts all characters to upper case

c −> findAll(# do ... #) Calls INNER for each occurrence of c in t

t.EOSerror Called when reading past length of the text

Please see the basic libraries manual [MIA 90−8] for more details about the text concept.

 [3] Actually this is an example of how to combine patterns that exits references. Append is called

 Libraries Tutorial

13 Text Manipulation 48

#mia90-8

on the reference returned by copy. This facility is called computed remote

13.1 Advanced Formatted Input and Output

The Mjølner System also provides facilities for formatted input and output (similar to the scanf and
printf functions in C). These facilities are implemented in the form of the getFormat and putFormat
operations defined in the '~beta/basiclib/formatio' library.

Both getFormat and putFormat take a text string as argument. This text string must contain a
format specification of the input to be read from (respectively output to) the stream. The format
string may be any string, possibly with one or more embedded markers. The markers specify the
variable parts of the expected input (respectively output), such as integer values. The markers are
indicated in the string by a leading '%'. Following the '%' is the specification of the marker type.

In section 8 previously, the example program uses a complex Dump function to print out three
numbers and some text. putFormat could have been used instead as illustrated in the following
example.

Program 17: StaticAndDynamic2.bet

ORIGIN '~beta/basiclib/formatio'
−−−− program: descriptor −−−−
(#
 (* Static and Dynamic references *)

 Point: (# X,Y: @integer;
 enter (X,Y)
 exit (X,Y)
 #);

 refA: ^Point;
 P1,P2: @Point;

 Dump:
 (#
 do 'P1: %3d, P2: %d, refA: %d\n'−>
 putformat(# do P1.X −> d; P2.X −> d; refA.x −> d #)
 #);

do
 'Dynamic references'−>putline;
 newline;

 &Point[]−>refA[];

 (1,1)−>P1−>P2−>refA;
 Dump;

 (2,2)−>P2;
 (3,3)−>refA;
 Dump;

 P1[]−>refA[]; Dump;
 P2[]−>refA[]; Dump;

 (1,1)−>P1; (2,2)−>P2; (3,3)−>refA;
 Dump;

 Libraries Tutorial

13.1 Advanced Formatted Input and Output 49

 (111,333)−>&Point−>P1;
 Dump;
 Newline;
#)

The output is exactly the same as in section 8:

nil% StaticAndDynamic2
Dynamic references

P1: 1, P2: 1, refA: 1
P1: 1, P2: 2, refA: 3
P1: 1, P2: 2, refA: 1
P1: 1, P2: 2, refA: 2
P1: 1, P2: 3, refA: 3
P1: 111, P2: 3, refA: 3

 Libraries Tutorial

13.1 Advanced Formatted Input and Output 50

14 Container Library
One of the strengths of the Mjølner System is the large set of available libraries. One of very useful
libraries, is the container libraries. The container library supports a number of different ways to
store data: sets, multisets, lists, hashtables, stacks, etc. Here we will show how to use the list and
the hashTable.

14.1 List Example

The list library is available in the '~beta/containers/list', thus this library must be included when
using lists.

We will use the directory example above, and make a list to store the entries of the directory.

A list is simply declared as follows:

dirList: List
 (# element:: Text #);

Here we declare a pattern named dirList that inherits from the list pattern in the
'~beta/containers/list' library. We specify the type of the elements in the list by extending the virtual
pattern element to be the type of text. For details about the BETA concept of virtual patterns, see
the BETA language introduction [MIA 94−26].

The dirList pattern inherits an operation from the list pattern that can be used to add elements, so
we can simply add an element to the list by:

dirname[] −> dirList.append;

Lists have several other operations. Some useful operations are briefly described in the table
below. Please see the container manual [MIA 92−22] for more details.

l.clear Removes all elements currently in the list, making it empty

l.empty −> b Returns true if the list is empty

l.size −> i Returns the number of elements currently in the list

equal:: (# ... #) Defines the equality test used by the implementation of the different operations.
Users of list must further bind equal to contain the proper equality test for the
specified element type. Default equality test for equal references (i.e. the same
object)

e[] −> l.has Takes an element, and checks whether it is in the list

l.scan(# ... #) Scans through the list, invoking INNER for each element in the list. In each turn
of the scan, "current" refers to the current element in the list.

l.copy−> ll[] Default copy is one−level (shallow) copying. I.e. copying the list and all objects
in the list.

elm[]−>l.prepend insert elm as first element

14 Container Library 51

#mia94-26
#mia92-22

elm[]−>l.append insert elm as last element

In the table above, it is mentioned, that the equality test should always be defined. For our directory
list this can be done like:

dirList: List
 (# element:: Text;
 equal::
 (# (* since the element type is text simply test whether the
 * two text strings are equal
 *)
 do left[]−>right.equal−>value;
 #);
 #);

The extended directory listing program can the be as follows:

Program 18: SaveListDir.bet

ORIGIN '~beta/basiclib/directory';
INCLUDE '~beta/containers/list';
−−−program: descriptor−−−
(# dirList: @List
 (# element:: Text;
 equal::
 (# (* since out element type is text simply test whether the
 * two text strings are equal
 *)
 do left[]−>right.equal−>value;
 #);
 #);
 d: @directory;
do (if noOfArguments <> 2//true then
 'Usage: '−>puttext; 1−>arguments−>puttext; ' path'−>putline;
 stop;
 if);
 (* set name of directory *)
 2−>arguments−>d.name;
 (* print name of directory *)
 newline;
 (* initialize list *)
 dirList.init;
 (* scan the entries and append to list *)
 d.scanEntries
 (# (* found refers to the current entry *)
 do found.path−>dirList.append;
 #);
 (* dirList now contains all the names of the entries in the
 * directory
 *)
 dirList.scan
 (# (* current referns to the current text element *)
 do current[]−>putline; (* print the text *)
 #);
#)

Later we shall see how this list can be saved (persistent) and used in another program.

 Libraries Tutorial

14.1 List Example 52

14.2 HashTable Example

We could also choose to save the file list in a hash table. A hash table is typically used to store
objects that should be retrieved fast from the table. In order to store an object in a hash table it is
necessary to define a hash function that given an element returns a value that can be used in the
hash table implementation. A good hash function for our file list could be

hashFunction::
 (# (* scan all characters in the filename and compute a value
 * for the hash function
 *)
 do name.scanAll(# do value*100 + ch −> value #);
 #);

The hashtable can then be defined as follows:

dirTable: @ hashTable
 (# element:: Text;
 hashFunction::
 (#
 do e.scanAll(# do value*100 + ch −> value #);
 #);
 #);

And the complete program using this hash table:

Program 19: DirTable.bet

ORIGIN '~beta/basiclib/directory';
INCLUDE '~beta/containers/hashTable';
−−−program: descriptor−−−
(# dirTable: @hashTable
 (# element::< Text;
 hashFunction::
 (#
 do e.scanAll(# do value*100 + ch−>value #);
 #);
 #);
 d: @directory;
do (if noOfArguments <> 2 then
 'Usage: '−>puttext; 1−>arguments−>puttext; ' path'−>putline;
 stop;
 if);
 (* set name of directory *)
 2−>arguments−>d.name;
 (* print name of directory *)
 newline;
 (* initialize table *)
 dirTable.init;
 (* scan the entries and append to list *)
 d.scanEntries
 (# (* found refers to the current entry *)
 do found.path−>dirTable.insert;
 #);
 (* dirTablenow contains all the names of the entries in the
 * directory
 *)

 Libraries Tutorial

14.2 HashTable Example 53

 dirTable.scan
 (# (* current refers to the current text element *)
 do current[]−>putline; (* print the text *)
 #);

 (* print hashtable statistics on screen*)
 '\nStatistics: '−>screen.putline;
 dirTable.statistics(# do screen[]−>print #);
#)

Running this program on the current directory gives the following output:

nil% DirTable .

StaticAndDynamic.bet
FileCount.bet
ExploreTypes.bet
CountChar2.bet
CountChar1.bet
CountChar.bet
Multiplication3.bet
Multiplication2.bet
Multiplication1.bet
MultiplicationTable.bet
DirTable.bet
DirTable.ast
HelloWorld.bet
SaveListDir.bet
QuickSort.bet
SquareRoot.bet
..
.
MultipleAssignment.bet
DirTable
sun4s
ListDir.bet
SimpleTypes.bet

Statistics:
Histogram: (0,2,1,3,0,0,0,0,2,3,0,3,2,0,0,2,0,0,0,1,2,2,2,0,1)
Maximum Collisions: 3
Minimum Collisions: 0
Average Collisions: 2

More information and more examples using the other containers in this library can be found the
Mjølner System manual [MIA 92−22].

 Libraries Tutorial

14.2 HashTable Example 54

#mia92-22

15 Exceptions
The pattern exception defined in '~beta/basiclib/betaenv' is used as a superpattern for all
exceptions in the Mjølner System. The default action of an exception is to stop the program
execution and print an informative error message on the screen. In addition, the file
<programname>.dump contains a dump of the call stack. Exception uses the pattern Stop for
termination. Specific error messages can be defined by specializing the exception pattern. The
attribute msg of exception is a text object that is used to accumulate error messages . If you wish to
prevent the program execution from being stopped in order to handle the exception during
execution, the boolean attribute continue of exception must be set to true.

The exceptions are often defined as a virtual pattern of other patterns (such as the file pattern,
discussed below).

In order to differentiate between potential fatal exceptions and more harmless exceptions, the
notification pattern is also defined in betaenv defined as:

notification: exception(# do true−>continue; INNER #);

15.1 14.1 Examples Using Exception

In order to illustrate the use of exceptions, let us return to the previous file example. Without using
the exception handling facilities an attempt to open a non−existing file produced the following error
messages:

nil% CountChar

**** Exception processing
File exception for 'data1'
No such file

Beta execution aborted: Stop is called
Look at CountChar.dump'

Now let us see what can be done by using exceptions.

The binding of noSuchFileError shows how to prevent the system from stopping the execution
when the program attempts to open a non−existing file. Instead the user is prompted for another
file name. The binding of noSpaceError shows that a message can be added to msg.

ORIGIN '~beta/basiclib/file'
(# inFile: @file
 (# noSuchFileError:: (* continue execution *)
 (# do true−>continue; false−>OK #)#);
 outFile: @file
 (# noSpaceError:: (* extend exception; put message to msg *)
 (# do 'It is time to delete garbage!'−>msg.putline #)#);
 OK: @boolean;

do 'in.bet' −> inFile.name;
 true −> OK;
 openFile: (* labeled block *)
 (#
 do inFile.openRead;

15 Exceptions 55

 (if not OK then
 'File does not exist!' −> screen.putline;
 'Type input file name: ' −> screen.puttext;
 inFile.readFileName;
 true −> OK;
 restart openFile (* restart labeled block *)
 if)#);

 'out.bet' −> outFile.name;
 outFile.openWrite;
 readFile:
 (#
 do (if not inFile.eos then
 false −> inFile.gettext −> outFile.puttext;
 outFile.newline;
 restart readFile
 else leave readFile
 if)#);
 inFile.close;
 outFile.close;
#)

An attempt to open a non−existing file will produce the following error messages:

File does not exist!
Type input file name:

It gives the possibility to proceed with another file name.

In case of disk space exhausted, the following message will be printed on the screen before the
program execution is stopped:

**** Exception processing
Error in file 'in.bet'
File system is full
It is time to delete garbage!

The first line is from the general pattern exception, the second and the third lines are from the
binding of noSpaceError in file and the fourth line is from the binding above, i.e. at the user level.

 Libraries Tutorial

15 Exceptions 56

16 Access to External Functions and Data
The Mjølner System allows a tight integration between the BETA language and routines and data
structures, originating from the C language. Many of the libraries in the Mjølner System (such as
the interface to the X Window System) is based on this tight integration.

The integration allows for two types of integration, namely integration of routines, and integration of
data structures. The facilities give the BETA programmer the possibility to invoke routines, written
in C, and for accessing data structures, allocated in C. Moreover, the facilities also works the other
way around, namely by allowing BETA patterns to be invoked (instantiated) from C routines, and
BETA objects to be manipulated by C routines.

16.1 Example

Imagine that we have a database with person records. The database has a C interface and we like
to use the database in BETA.

The following C declarations and functions illustrates a simplified database:

typedef struct Person {
 long ID;
 char *firstname,*surname;
 char sex; /* m(ale) or f(emale) */
} Person;

#define MaxPersons 200

Person Persons[MaxPersons];

Person *getPerson(long ID) {
 if (ID>=0 && ID<MaxPersons)
 return &Persons[ID];
 else
 return 0;
}

long putPerson(long ID, char * firstname, char* surname, char sex) {
 if (ID>=0 && ID<MaxPersons) {
 Persons[ID].ID=ID;
 Persons[ID].firstname=firstname;
 Persons[ID].surname=surname;
 Persons[ID].sex=sex;
 return 1;
 } else {
 return 0;
 }
}

We can then interface to the two functions and the Person struct by the following external and
externalRecord declarations:

getPerson: external
 (# ID: @integer;
 ptr: @integer;
 enter ID
 exit ptr
 #);

16 Access to External Functions and Data 57

putPerson: external
 (# ID: @integer;
 firstname, surname: [1]@char;
 sex: @char;
 result: @boolean;
 enter (ID,firstname,surname,sex)
 exit result
 #);
Person: externalRecord
 (# ID: @long(# pos::(# do 0−> value #)#);
 firstname: @long(# pos::(# do 4−> value #)#);
 surname: @long(# pos::(# do 8−> value #)#); (* char ptr *)
 sex: @byte(# pos::(# do 12−> value #)#);
 #);

Interfacing to C routines are done by specifying the external pattern as the superpattern for the
BETA pattern, which, when invoked, should invoke the C routine. The name of the entry call of the
C routine should be the same as the name of the BETA pattern. The BETA compiler will then
generate a call to an external routine with the same name as the BETA pattern, using C's style of
passing parameters. The pattern:

getPerson: external
 (# ID: @integer;
 ptr: @integer;
 enter ID
 exit ptr
 #);

describes the interface to an external C function with the name getPerson.

Transferring data to and from the external languages is dealt with through two special purpose
patterns: cStruct and externalRecord. cStruct is the means for specifying a BETA object with a
specific storage layout, and with the purpose of transferring this object to the external language for
processing. That is, a cStruct object is allocated by BETA and made available for processing
externally. externalRecord is the means for specifying a BETA interface into some data structures,
allocated externally. The pattern:

Person: externalRecord
 (# ID: @long(# pos::(# do 0−> value #)#);
 firstname: @long(# pos::(# do 4−> value #)#);
 surname: @long(# pos::(# do 8−> value #)#); (* char ptr *)
 sex: @byte(# pos::(# do 12−> value #)#);
 #);

describes an interface to an external allocated struct (Person) with four fields.

We can create a person by calling putPerson like this:

(117,'Roger','Smith','m')−>putPerson

We can get a person from the database by:

117 −> getPerson −> aPerson.ptr;

Notice, that we must assign to the ptr attribute of the externalRecord Person.

 Libraries Tutorial

16 Access to External Functions and Data 58

The Person can now be examined like any other BETA object, except for the 'string' declarations
firstname and surname. These refers to C strings. The Mjølner System includes a cString library for
easy interface to these C strings, so we simply make a small operation to print out the strings:

putCString:
 (# cstr: @cString;
 enter cstr
 do cstr.get −> puttext;
 #);

Finally we must specify where to find the C object file we are interfacing to. This is done using a
OBJFILE specification. The specification:

OBJFILE nti '$/cperson.obj'
 mac '$/cperson.obj'
 default '$/cperson.o';

means that we should link with the file cperson.o (or cperson.obj, depending on the platform)
located in the subdirectory with the name of the platform − the same name as the code
subdirectory ('$' expands to name of platform).

The C file can also be generated directly by the BETA compiler by a BUILD specification. The
specification:

BUILD nti '$$/cperson.obj' 'cperson.c'
 'betacc $0 $1'
 ppcmac '$$/cperson.obj' 'cperson.c'
 'MrC −w 2 −o $0 $1'
 default '$$/cperson.o' 'cperson.c'
 '$CC −c −o $0 $1';

means that we should link with the file cperson.o (or cperson.obj) located in the subdirectory with
the name of the platform − the same name as the code subdirectory ('$$' expands to name of
platform). And that in order to generale the cperson.o (or cperson.obj file), the BETA compiler
should invoke the betacc, MrC og CC compiner, depending on the platform)

And now the complete program:

Program 20: Person.bet

ORIGIN '~beta/basiclib/external';
INCLUDE '~beta/sysutils/cstring';
BUILD nti '$$/cperson.obj' 'cperson.c'
 'betacc $0 $1'
 ppcmac '$$/cperson.obj' 'cperson.c'
 'MrC −w 2 −o $0 $1'
 default '$$/cperson.o' 'cperson.c'
 '$CC −c −o $0 $1';
−−program: descriptor−−
(#
 getPerson: external
 (# ID: @integer;
 ptr: @integer;
 enter ID
 exit ptr
 #);

 Libraries Tutorial

16.1 Example 59

 putPerson: external
 (# ID: @integer;
 firstname, surname: [1]@char;
 sex: @char;
 result: @boolean;
 enter (ID,firstname,surname,sex)
 exit result
 #);
 Person: ExternalRecord
 (# ID: @long(# pos::(# do 0−> value #)#);
 firstname: @long(# pos::(# do 4−> value #)#);
 surname: @long(# pos::(# do 8−> value #)#); (* pointers to text *)
 sex: @byte(# pos::(# do 12−> value #)#);
 #);
 putCString:
 (# cstr: @cString;
 enter cstr
 do cstr.get −> puttext;
 #);
 aPerson: @Person;
do
 (* store a person in C−database *)
 (if not ((117,'Roger','Smith','m')−>putPerson) then
 'Failed to store person'−>putline; stop;
 if);
 (* get person from C−database *)
 117 −> getPerson −> aPerson.ptr;
 (if aPerson.ptr = 0 then
 'Failed to retrieve person' −> putline; stop;
 if);
 'Person: ' −> puttext;
 aPerson.ID −> putint;
 ' ' −> put;
 'Name: \'' −> puttext;
 aPerson.firstname −> putCString;
 ' ' −> put;
 aPerson.surname −> putCString;
 '\' ' −> puttext;
 'Sex: ' −> puttext;
 aPerson.sex−> put;
 newline;
#)

Output of running the program is:

nil% Person
Person: 117 Name: 'Roger Smith' Sex: m

 Libraries Tutorial

16.1 Example 60

17 Using the Persistence Library
The persistence library can be used to save your data on the disk for later use in another program
execution. Any object created can be saved using the persistence library. The patterns defining the
objects do not have to be extended in any way before the objects can be saved. Imagine that we
like to save the character count in the previous example for usage in another program. The pattern
definition of the directoryList can be described in a separate file (called DirList.bet) as follows:

Program 21: DirList.bet

ORIGIN '~beta/containers/list
−−− lib: Attributes −−−
 directoryList: List
 (# ...
 #);

Notice, that we do not define a program fragment in this file, instead we define attributes only. A file
describing simple pattern declarations only can use the slot called lib defined in the betaenv
environment (see section 19 below about the fragment system, for more details). The declarations
in the DirList file can be used by including the file in the program. Thus the program listed Program
13.1 can be changed like:

Program 22: SaveListDir2.bet

ORIGIN '~beta/basiclib/file';
INCLUDE 'DirList'
−−−− program: descriptor −−−−
(# dir: @directory;
 dirList: ^directoryList;
do &directoryList[] −> dirList[];
 ...
#)

We can now save DirList using the persistent store, The persistent store is available as a library in
the file ~beta/persistentstore/persistentstore. By including this file we can use the
persistentstore pattern to save the list. persistentstore has the following useful operations:

persistentstore.create: given a text create a persistent store with that name

persistentstore.openWrite: given a name opens the persistent store with read and write permission.
openRead opens a store with read permission only

persistentstore.get: given a name and a pattern variable, returns an object in the storage with that
type

persistentstore.put: given a name and an object, stores that object in the persistent store

persistentstore.close: closes the persistent store

The following program is similar to the one above, except that it stores the dirList in a persistent
store.

17 Using the Persistence Library 61

Program 23: SaveListDir3.bet

ORIGIN '~beta/basiclib/file';
INCLUDE '~beta/persistentstore/persistentstore;
INCLUDE 'DirList'
−−−− program: descriptor −−−−

(# (* Saving the file names in a persistent store *)

 dir: @directory;
 theStore: @persistentstore;
 dirList: ^directoryList;
do &directoryList[] −> dirList[];

 ... (* Program 13.1 *)

 'fileStore'−>theStore.create;
 (dirList[],'myList')−>theStore.put;
 theStore.close;
#)

The persistent store is now located in the file directory: fileStore.

Finally, we can make a program that reads the list, and examines the data:

Program 24: GetListDir.bet

ORIGIN '~beta/basiclib/file';
INCLUDE '~beta/persistentstore/persistentstore;
INCLUDE 'DirList'
−−−− PROGRAM: descriptor −−−−

(# (* Reading counted occurrences of characters
 * from a persistent store
 *)
 theStore: @persistentstore;
 dirList: ^directoryList;
do
 'fileStore'−>theStore.openWrite;
 ('myList', directoryList##)−>theStore.get−>dirList[];
 dirList.scan(# ... #);
 ...
 theStore.close;
#)

A complete description of the facilities in the persistent store library can be found in [MIA 91−20].

 Libraries Tutorial

17 Using the Persistence Library 62

#mia91-20

18 Graphical User Interface

In this section we will show how to use the device independent library called GUIEnv.

18.1 GUIEnv

GUIEnv is a device independent graphical user interface library, intended for making applications
with graphical user interfaces running on:

• Macintosh
• X Window System (Motif Widgets)
• Windows (Win32)

GUIenv realizes user interfaces of many different look−and−feels. GUIenv allows construction of
portable user interfaces in such a way that the look−and−feel of the applications, will conform to the
standardized look−and−feel of the specific platform.

The basic GUI library is defined in the file '~beta/guienv/guienv'. An application with a graphical
user interface, thus must have origin in this file. The guienv library defines a pattern also called
guienv in which all the user interface attributes, operations, and patterns are available. So every
GUIEnv application typically has the following outline:

ORIGIN '~beta/guienv/guienv';
−− program: descriptor −−
guienv
 (# (* write GUI code here *)
 #)

Our task will be to develop a simple texteditor that can open a text file, edit the file and save the file.
We would like an application that looks like the following (Motif version):

We will need a window to display the text in. guienv defines a window pattern, that we can use. We
would like that this window is opened when the application starts up, so in the do part of the
specialization of guienv we open the window.

guienv

18 Graphical User Interface 63

(# theWindow: @window
 (# ...
 #);
do theWindow.open;
#);

Inside the window we want a texteditor that can contain the text from the file. guienv supplies a
textEditor for this purpose:

theWindow: @window
 (# thetextEditor: @textEditor
 (# open::
 (#
 do theWindow.size −> Size;
 True −> bindBottom; True −> bindRight
 #)
 #);
 open::(# do thetextEditor.open #);
 #);
do theWindow.open;

The lines:

open::
 (#
 do theWindow.size −> Size;
 True −> bindBottom; True −> bindRight
 #);

means that we extend the open virtual of textEditor, set the size of the textEditor to be same size
as the window, and bind the textEditor to the bottom and right corners of the window.

The next thing we need to do, to complete the user interface is to make a menu. The application
should have a menu with three items: open a file, save the file, and quit the application. guienv
supplies a standard menubar on each window for this purpose. We extend the standard menubar
with one menu called File, and we make three items in this menu called Open, Save, and Quit.

menubarType::
 (# fileMenu: @menu
 (# openItem: @menuitem
 (# ... #);
 saveItem: @menuitem
 (# ... #);
 quitItem: @menuitem
 (# ... #);
 open::
 (#
 do 'File' −> name;
 openItem.open; openItem[] −> append;
 saveItem.open; saveItem[] −> append;
 quitItem.open; quitItem[] −> append;
 #)#);
 open::(# do fileMenu.open; fileMenu[] −> append #);
 #);

Like the textEditor, we extend the open virtual of the File menu to open and append the three items
and to give the menu a title.

 Libraries Tutorial

18 Graphical User Interface 64

Each menuitem has two virtuals that needs to be extended: eventHandler and open. For the quit
item we do the following:

quitItem: @menuitem
 (# eventHandler::
 (# onSelect::(# do Terminate #)
 #);
 open::(# do 'Quit' −> name #);
 #);

The eventHandler has a virtual called onSelect that is invoked whenever this menuitem is selected.
We call Terminate (defined in guienv) to stop execution. The open virtual is extended to give the
item a name.

Finally, we need to do some file handling in the open and save items. The open item does the
following when selected

onSelect::
 (# theText: @StyledText;
 do theWindow[] −> fileSelectionDialog −> textFile.name;
 textFile.openRead;
 textFile.scan
 (# while:: (# do true−>value #);
 do ch −> theText.put
 #);
 theText[]−>theTextEditor.contents.contents;
 textFile.close;
 #)

First we call fileSelectionDialog that opens a standard file open dialog and returns a name of a file
that we can open (we ignore errors, pressing cancel, etc.). We open the file, read all the file content
into a StyledText and sets the StyledText as the content of the textEditor. StyledText is a
specialization of Text with specification of face, font, size, etc.

The save item does the following when selected:

onSelect::
 (# theText: @Text;
 do textFile.openWrite;
 theTextEditor.contents.contents−>textFile.puttext;
 textFile.close;
 #)

Because StyledText is a specialization of Text we can write the StyledText contents of the
TextEditor directly to the file using the puttext operation.

We open the same file, write the textEditor content into the file and close the file.

The complete code needed for this application is shown below.

Program 25: TextEditor.bet

ORIGIN '~beta/guienv/guienv';
INCLUDE '~beta/guienv/fields'
 '~beta/guienv/stddialogs'

 Libraries Tutorial

18.1 GUIEnv 65

 '~beta/basiclib/file'
−− program: descriptor −−
guienv (* inherit from guienv *)
(# theWindow: @window (* make a window *)
 (# menubarType:: (* extend the menubar *)
 (# fileMenu: @menu (* make a file menu *)
 (# textFile: @file; (* the file we open and save *)
 openItem: @menuitem (* make an open item *)
 (# eventHandler:: (* extend the virtual that is called *)
 (# onSelect:: (* this menu item is selected *)
 (# theText: @StyledText;
 do theWindow[]−>fileSelectionDialog
 −> textFile.name;
 textFile.openRead;
 textFile.scan
 (# while:: (# do true−>value #);
 do ch−>theText.put
 #);
 theText[]−>theTextEditor.contents.contents;
 textFile.close;
 #)#);
 open:: (# do 'Open'−>name #);
 #);
 saveItem: @menuitem (* make a save item *)
 (# eventHandler:: (* extend the virtual that is called *)
 (# onSelect:: (* this menu itme is selected *)
 (# theText: @Text;
 do textFile.openWrite;
 theTextEditor.contents.contents−>textFile.puttext;
 textFile.close;
 #)#);
 open:: (# do 'Save'−>name #);
 #);
 quitItem: @menuitem (* make a quit item *)
 (# eventHandler:: (# onSelect:: (# do Terminate #) #);
 open:: (# do 'Quit'−>name #);
 #);
 open:: (* extend the open virtual of filemenu to open the items *)
 (#
 do 'File'−>name;
 openItem.open; openItem[]−>append;
 saveItem.open; saveItem[]−>append;
 quitItem.open; quitItem[]−>append;
 #)#);
 open:: (* extend the open virtual of the menubar to open the filemenu *)
 (# do fileMenu.open; fileMenu[]−>append #);
 #);
 thetextEditor: @textEditor (* our text editor *)
 (# open:: (* extend the open virtual to set the size and the placement *)
 (#
 do theWindow.size−>Size;
 True−>bindBottom; True−>bindRight
 #);
 #);
 open:: (* extend the window open virtual to open the textEditor *)
 (#
 do thetextEditor.open;
 #);
 #);
do theWindow.open; (* open the window when the application start up *)
#)

The two screen snapshots following below show how this application appears on Windows NT and
Macintosh after the program has loaded its own source code for editing, and with the menu

 Libraries Tutorial

18.1 GUIEnv 66

opened. The Motif version was shown above.

Windows NT

X Window System − Motif

Macintosh

More details and examples about the GUIEnv libraries can be found in [MIA 94−27].

 Libraries Tutorial

18.1 GUIEnv 67

#mia94-27

 Libraries Tutorial

18.1 GUIEnv 68

19 Concurrent Library
 Concurrent programming in BETA is supported by the systemenv library. This library contains
patterns for describing the BETA concepts of concurrent systems. The basic ideas are:

• 1. Components (coroutines) can be executed concurrently.
• 2. A primitive semaphore pattern is available for synchronization. The operations on a

semaphore is executed as an indivisible unit.
• 3. An abstract pattern Monitor similar to the monitor proposed by Hoare and

Brinch−Hansen.
• 4. An abstract pattern System is defined. System defines communication between systems

by means of synchronized rendezvous. A concurrency imperative conc and an alternation
imperative alt are defined for system.

19.1 18.1 Example

The following example of using the systemenv library makes three concurrent coroutines that each
sleeps for a specified number of seconds and then prints out the seconds elapsed since startup. All
three systems inherit from a generic system:

everyNthSecond: System
 (* inherit from System: can run concurrently *)
 (# N:< IntegerValue;
 now: @Integer;
 do cycle
 (#
 do INNER everyNthSecond;
 N −> sleep; (* sleep for N seconds *)
 now+N −> now; (* accumulate time *)
 #)
 #)

everyNthSecond inherits from system, i.e. it is able to run concurrently. The do−part consists of a
loop that calls INNER, then sleeps for N seconds, and when activated again, updates the time, and
calls INNER again. Notice, that N is defined as an IntegerValue.

Now we can make a coroutine that inherits from everyNthSecond like this:

fourth: @| everyNthSecond
 (* a co−routine that inherits from everyNthSecond *)
 (# N:: (# do 4 −> value #); (* sleep for 4 seconds *)
 do 'fourth: ' −> puttext; now −> screen.putint; newline
 #)

A coroutine is declared using the '|' symbol. The declaration '@|' means that we declare fourth to be
a static reference to a coroutine. The do−part will be called every 4'th second since fourth inherits
from everyNthSecond and extends the IntegerValue N to be 4.

Finally, we need to start the coroutines concurrently. This is done by starting the coroutine inside a
conc pattern like this:

conc (* execute concurrently: *)
 (# do ... fourth[]−>start; ... #)

19 Concurrent Library 69

The execution of conc will not terminate until all the systems executed inside it has terminated.

The complete program with three concurrent systems is shown in Program 18.1. Notice, that the
program never terminates.

Program 26: Seconds.bet

ORIGIN '~beta/basiclib/systemenv'
−−− program: descriptor −−−
systemEnv (* inherits from systemEnv *)
(#
 (* everyNthSecond calls INNER every Nth second. *)
 everyNthSecond: System (* Inherit from System: can run concurrently *)
 (# N:< IntegerValue;
 now: @Integer;
 do cycle
 (#
 do INNER everyNthSecond;
 N −> sleep; (* sleep for N seconds *)
 now+N −> now; (* accumulate time *)
 #);
 #);
 every: @| everyNthSecond (* a co−routine that inherits from everyNthSecond *)
 (# N::< (# do 1 −> value #); (* sleep for 1 second *)
 do 'every: ' −> putText; now −> screen.putInt; newline;
 #);
 fourth: @| everyNthSecond (* a co−routine that inherits from everyNthSecond *)
 (# N::< (# do 4 −> value #); (* sleep for 4 seconds *)
 do 'fourth: ' −> putText; now −> screen.putInt; newline;
 #);
 eigth: @| everyNthSecond (* a co−routine that inherits from everyNthSecond *)
 (# N::< (# do 8 −> value #); (* sleep for 8 seconds *)
 do 'eigth: ' −> putText; now −> screen.putInt; newline;
 #);
do
 (* execute concurrently: *)
 conc (# do every[] −> start; fourth[] −> start; eigth[] −> start; #);
 (* terminates when all systems stops *)
#)

Output of running Program 18.1 for 20 seconds:

nil% Seconds
every: 0
fourth: 0
eighth: 0
every: 1
every: 2
every: 3
fourth: 4
every: 4
every: 5
every: 6
every: 7
eighth: 8
fourth: 8
every: 8
every: 9
every: 10
every: 11
fourth: 12

 Libraries Tutorial

19.1 18.1 Example 70

every: 12
every: 13
every: 14
every: 15
eighth: 16
fourth: 16
every: 16
every: 17
every: 18
every: 19
fourth: 20

19.2 Concurrency and User Interface Environments

Graphical user interface environments are usually event−driven in the sense that actions in the
program are executed as a response to user input events. To handle this, a separate
implementation of systemenv exists for the user interface library guienv:

• Use ~beta/basiclib/systemenv as origin for programs not using event−driven user−interface
libraries.

• Use ~beta/guienv/guienvsystemenv as origin for programs using GUIEnv interface library.

Please note, that programs should only use one of the systemenv, xsystemenv, and
guienvsystemenv fragments.

Suppose that we like to extend the texteditor above with a clock that should be updated every
second. A clock can easily be made using the basic systemenv:

Program 27: Clock.bet

ORIGIN '~beta/basiclib/systemenv';
INCLUDE '~beta/sysutils/time';
−− program: descriptor −−
systemEnv
(#
 updateClock: @|System
 (#
 do cycle
 (#
 do 1 −> sleep;
 systemtime −> formattime −> putline;
 #);
 #);
do updateClock[] −> fork;
#)

Here we simply print out the current system time on the screen. Notice, that we have included a
new library called time in '~beta/sysutils/time'. This library contains facilities for getting the date and
time, time usage, and for formatting times for nice printing. Running the program shown above
gives the following result:

Tue Aug 23 11:48:35 1994
Tue Aug 23 11:48:36 1994
Tue Aug 23 11:48:37 1994
Tue Aug 23 11:48:38 1994

 Libraries Tutorial

19.2 Concurrency and User Interface Environments 71

Tue Aug 23 11:48:39 1994
Tue Aug 23 11:48:40 1994
Tue Aug 23 11:48:41 1994
Tue Aug 23 11:48:42 1994
Tue Aug 23 11:48:43 1994
Tue Aug 23 11:48:44 1994
Tue Aug 23 11:48:45 1994
Tue Aug 23 11:48:46 1994
Tue Aug 23 11:48:47 1994
Tue Aug 23 11:48:48 1994
Tue Aug 23 11:48:49 1994

Now we want to integrate this clock in our GUIEnv texteditor program, so we can always see the
time in the low left corner of the window. We need to use the '~beta/guienv/guienvsystemenv':

ORIGIN '~beta/guienv/guienvsystemenv';
INCLUDE '~beta/guienv/fields'
 '~beta/guienv/stddialogs'
 '~beta/basiclib/file'
 '~beta/sysutils/time'
−− program: descriptor −−
systemenv
(#
 setWindowEnv:: (* tell systemenv that myguienv is the
 * the graphical user interface
 *)
 (# do myguienv[] −> theWindowEnv[] #);

 updateClock: @|System
 (#
 do cycle
 (#
 do 1 −> sleep;
 systemtime −> formattime −> ... ;
 (* put time into the clock *)
 #);
 #);

 myguienv: @guienv (* inherit from guienv *)
 (# (* guienv code as before *)
 #);

do (* fork updateClock as a separate system *)
 updateClock[] −> fork;
#)

We need to specify to systemenv what graphical user interface system we are using. This is done
by extending the virtual setWindowEnv like the following:

setWindowEnv::(# do myguienv[] −> theWindowEnv[] #);

In order to do that, we have changed the guienv into a static object called myguienv. myguienv will
automatically be started by systemenv.

Finally, we need to create a user interface element that can show the time. We use a staticText,
that we position below the TextEditor field:

clock: @staticText
 (# open::

 Libraries Tutorial

19.2 Concurrency and User Interface Environments 72

 (# w,h: @integer;
 do systemtime −> formattime −> label;
 theWindow.size −> (w,h);
 (5,h−16) −> position; (50,15) −> size;
 True −> BindBottom; False −> BindTop;
 #);
 #);

The complete program is:

Program 28: ClockTextEditor.bet

ORIGIN '~beta/guienv/guienvsystemenv';
INCLUDE '~beta/guienv/fields'
 '~beta/guienv/stddialogs'
 '~beta/basiclib/file'
 '~beta/sysutils/time';
−− program: Descriptor −−
systemEnv
(#
 setWindowEnv::< (# do myguienv[]−>theWindowEnv[] #);
 updateClock: @|System
 (#
 do
 cycle
 (# theText: @StyledText;
 do 1−>sleep;
 systemtime−>formattime−> myguienv.theWindow.clock.label;
 #);
 #);
 myguienv: @guienv (* inherit from guienv *)
 (# theWindow: @window (* make a window *)
 (# menubarType:: (* extend the menubar *)
 (# fileMenu: @menu (* make a file menu *)
 (# textFile: @file;
 openItem: @menuitem (* make an open item *)
 (# eventHandler::
 (* extend the virtual that is called *)
 (# onSelect::
 (* this menu item is selected *)
 (# theText: @StyledText;
 do theWindow[]−>
 fileSelectionDialog−>
 textFile.name;
 textFile.openRead;
 textFile.scan
 (# while::(#do true−>value#);
 do ch−>theText.put
 #);
 theText[]−>
 theTextEditor.contents.
 contents;
 textFile.close;
 #)#);
 open:: (# do 'Open'−>name #);
 #);
 saveItem: @menuitem (* make a save item *)
 (# eventHandler::
 (* extend the virtual that is called *)
 (# onSelect::
 (* this menu item is selected *)
 (# theText: @Text;

 Libraries Tutorial

19.2 Concurrency and User Interface Environments 73

 do
 textFile.openWrite;
 theTextEditor.contents.
 contents−>
 textFile.puttext;
 textFile.close;
 #)
 #);
 open:: (# do 'Save'−>name #);
 #);
 quitItem: @menuitem (* make a quit item *)
 (# eventHandler::
 (# onSelect:: (# do Terminate #) #);
 open:: (# do 'Quit'−>name #);
 #);
 open::
 (* extend the open virtual of filemenu
 * to open the items *)
 (#
 do 'File'−>name;
 openItem.open;
 openItem[]−>append;
 saveItem.open;
 saveItem[]−>append;
 quitItem.open;
 quitItem[]−>append;
 #)
 #);
 open::
 (* extend the open virtual of the menubar
 * to open the filemenu *)
 (# do fileMenu.open; fileMenu[]−>append #);
 #);
 thetextEditor: @textEditor (* our text editor *)
 (#
 open::
 (* extend the open virtual to set the size
 * and the placement *)
 (# w,h: @integer;
 do theWindow.size−>(w,h);
 (w,h−20)−>Size;
 True−>bindBottom;
 True−>bindRight
 #);
 #);
 clock: @staticText
 (# open::
 (# w,h: @integer;
 do systemtime−>formattime−>label;
 theWindow.size−>(w,h);
 (5,h−16)−>position;
 (300,15)−>size;
 True−>BindBottom;
 False−>BindTop;
 #);
 #);
 open::
 (* extend the window open virtual
 * to open the textEditor *)
 (# do thetextEditor.open; clock.open; #);
 #);
 do theWindow.open;
 (* open the window when the application start up *)
 #)
do updateClock[]−>fork;

 Libraries Tutorial

19.2 Concurrency and User Interface Environments 74

#)

The following figure shows a snapshot of the program running on Motif:

19.3 Changes from the Original Design

The abstractions defined here are based on the ones described in chapter 12 of the BETA book.
The implementation is identical to the design in the BETA book, except for the following changes:

• 1. The syntax of fork is
• S[]−>fork and not S.fork.
• 2. The syntax of conc is

conc(# do S1[]−>start; S2[]−>start; S3[]−>start #)

• and not conc(# do S1.start; S2.start; S3.start #).
• 3. The syntax of alt is

alt (# do S1[]−>start; S2[]−>start; S3[]−>start #)

• and not alt(# do S1.start; S2.start; S3.start #).

This implementation of systemenv includes some new facilities, not described in the BETA book:

• 4. semaphore had an additional attribute: tryP, which is a non−blocking call of P.
• 5. In addition to s[]−>fork, s[]−>kill is possible, and in addition to pause, 100 −> sleep is

possible.
• 6. system has a new virtual attribute, onKilled, that is invoked before the system terminates
• 7. systemenv has a new virtual attribute, deadlocked, that is invoked if all processes are

deadlocked.
• 8. Finally, systemenv defines three new attributes to cope with event driven user interfaces:

windowEnvType, theWindowEnv, and setWindowEnv. See further details on cooperation
with user interface environments below.

In order to implement real concurrency, an interrupt mechanism must be implemented. This is
currently not done. A component/system will thus keep the control until it makes an explicit or
implicit SUSPEND. An implicit SUSPEND is made when a component must wait for a semaphore,
or executes the pause and sleep patterns.

The systemenv libraries are thoroughly described in the manual [MIA 94−25]

 Libraries Tutorial

19.3 Changes from the Original Design 75

#mia94-25

 Libraries Tutorial

19.3 Changes from the Original Design 76

20 The Fragment System

Every BETA program uses the Fragment System. A fragment can be viewed as a piece of a BETA
program ist of one or more fragments.

The basic BETA environment, called betaenv, supplies basic BETA patterns, such as integer, char,
boolean, and text. In order to use these basic patterns, the program must specify that the betaenv
environment is to be used. The following example illustrates how:

Program 29: HelloWorld.bet

ORIGIN '~beta/basiclib/betaenv'
−−−− program: descriptor −−−−
(#
 (* HelloWorld.bet:
 * =======================
 * Author: J.Vaucher
 *
 * Purpose:
 * This is the simplest program possible.
 * Being able to compile and run it shows that the
 * compiler exists and that PATHS and ALIASES have been
 * correctly set. It also brings out "meta−programming"
 * considerations like the "fragment" system.
 *
 ***)
do
 'Hello world !' −> putline
#)

The example consists of two parts, the specification of ORIGIN and the descriptor [4] called
program.

The specification of ORIGIN tells that the program uses the fragment file ~beta/basiclib/betaenv.
The descriptor program tells that following the line

−−−program: descriptor−−−

comes a BETA descriptor, i.e. (# ... #), that will be named program. The name is used to identify
the descriptor for the purpose of binding it to an unbound hole in the betaenv environment. A
simple betaenv environment could have the following outline:

(* The basic BETA environment betaenv *)
(# ...
 put: (# c: @char; enter c do ... #);
 puttext: (# t: ^text; enter t[] do ... #);
 putline: (# t: ^text; enter t[] do t[]−>puttext; newline #);
 newline: (# do ... #);
 text: (# ... #);
 ...
 <<SLOT LIB: Attributes>>
 ...
do (* initialize for execution *)
 <<SLOT program: descriptor>>
 (* terminate execution *)

20 The Fragment System 77

#)

The betaenv environment consists of a single descriptor with two holesÑslots. One named program
of type descriptor and one named LIB of type Attributes.

The program slot is empty and can be filled (or bound) by a BETA program by defining an
descriptor like:

−−−program: descriptor−−−
(# ... #)

as illustrated above. Every BETA program must have exactly one such construct in order to fill the
empty slot in betaenv.

Filling a slot can be compared to a textual replacement [5]. The Hello World example program
above, thus replaces the program slot in betaenv, resulting in the following expanded BETA
program:

Program 30: HelloWorld with filled program slot

(* The basic BETA environment betaenv *)
(# ...
 put: (# c: @char; enter c do ... #);
 puttext: (# t: ^text; enter t[] do ... #);
 putline: (# t: ^text; enter t[] do t[]−>puttext; newline #);
 newline: (# do ... #);
 text: (# ... #);
 ...
do (* initialize for execution *)
 (#
 do 'Hello World!'−>putline;
 #)
 (* terminate execution *)
#)

The LIB slot can be used to define libraries that may used in other BETA programs. If we want to
add an operation called putBoxed to the basic environment, we can fill the LIB slot:

Program 31: putBoxed.bet

ORIGIN '~beta/basiclib/betaenv'
−−−LIB: Attributes−−−
 putBoxed:
 (* print the text with a box surrounding:
 * 'text'−>putBoxed results in '[text]'
 *)
 (# t: ^Text;
 enter t[]
 do '['−>put; t[]−> puttext; ']'−>put;
 #);

The HelloWorld program can then use this library by including it:

 Libraries Tutorial

20 The Fragment System 78

Program 32: HelloWorld.bet

ORIGIN '~beta/basiclib/betaenv'
−−−− program: descriptor −−−−
(#
 (* HelloWorld.bet:
 * =======================
 * Author: J.Vaucher
 *
 * Purpose:
 * This is the simplest program possible.
 * Being able to compile and run it shows that the
 * compiler exists and that PATHS and ALIASES have been
 * correctly set. It also brings out "meta−programming"
 * considerations like the "fragment" system.
 *
 ***)
do
 'Hello world !' −> putline
#)

Resulting in the following output:

[Hello World!]

The HelloWorld example program using the putBoxed library, results in the following expanded
BETA program:

Program 33: HelloWorld with filled program and LIB slot

(* The basic BETA environment betaenv *)
(# ...
 put: (# c: @char; enter c do ... #);
 puttext: (# t: ^text; enter t[] do ... #);
 putline: (# t: ^text; enter t[] do t[]−>puttext; newline #);
 newline: (# do ... #);
 text: (# ... #);
 putBoxed:
 (* print the text with a box surrounding:
 * 'text'−>putBoxed results in '[text]'
 *)
 (# t: ^Text;
 enter t[]
 do '['−>put; t[]−> puttext; ']'−>put;
 #);
 ...
do (* initialize for execution *)
 (#
 do 'Hello World!'−>putline;
 #)
 (* terminate execution *)
#)

The program can be made even more simpler by having ORIGIN in the putBoxed.bet file:

ORIGIN 'putBoxed'
−−−program: descriptor−−−
(#

 Libraries Tutorial

20 The Fragment System 79

do 'Hello World!'−>putBoxed;
#)

This works because the putBoxed.bet has ORIGIN in the betaenv environment, so the HelloWorld
program will also have access to the betaenv environment.

The −−−LIB: Attributes−−− may be multiply specified in the same file or in different files. The way to
make libraries in BETA is thus to define the pattern declarations in a fragment called LIB. The file
containing the −−−LIB: Attributes−−− fragment can then be included in your program and the
declarations can be used.

 [4] descriptor is an alias for ObjectDescriptor, i.e.
−−program:ObjectDescriptor−− is also legal
 [5] Textual replacement is not exactly correct due to the scope rules. Please see the BETA book
chapter 17 for a description of these rules

20.1 Interface and Implementation

The fragment system can be used to separate interface from implementation. In the putBoxed
example above we included the implementation of the operation in the interface. We can move the
implementation of putBoxed to another file using a dopart slot. This is specified as follows:

putBoxed:
 (* print the text with a box surrounding:
 * 'text'−>putBoxed results in '[text]'
 *)
 (# t: ^Text;
 enter t[]
 <<SLOT putBoxed: dopart>>
 #);

Here we have described only the interface of putBoxed, i.e. it can be seen that the operation takes
a text as a argument (and the comment states that the operation will print the text with a
surrounding box). The implementation is hidden. The implementation can be described in a dopart
fragment:

−−−putBoxed: dopart−−−
 do '['−>put; t[]−> puttext; ']'−>put;

In order to make things work we must specify where the implementation can be found. This is done
using a BODY specification in the putBoxed.bet file:

The file with the −−−putBoxed: dopart−−− fragment must specify where the dopart fragment is to be
filled. This is done using the ORIGIN:

Program 34: putBoxed.bet

ORIGIN '~beta/basiclib/betaenv';
BODY 'putBoxedBody'
−−−LIB: Attributes−−−
 putBoxed:

 Libraries Tutorial

20.1 Interface and Implementation 80

 (* print the text with a box surrounding:
 * 'text'−>putBoxed results in '[text]'
 *)
 (# t: ^Text;
 enter t[]
 <<SLOT putBoxed: dopart>>
 #);

Program 35: putBoxedBody.bet

ORIGIN 'putBoxed'
−−−putBoxed: dopart−−−
 do '['−>put; t[]−> puttext; ']'−>put;

Another major advantage of separating the implementation from the interface is separate
compilation. The putBoxed.bet and the putBoxedBody.bet file can be separately compiled, and the
putBoxedBody.bet file can be changed and recompiled without recompiling the interface file
putBoxed.bet or any of the programs that are using the library putBoxed.

The HelloWorld program using the putBoxed library has not changed:

Program 36: HelloWorld.bet

ORIGIN '~beta/basiclib/betaenv'
−−−− program: descriptor −−−−
(#
 (* HelloWorld.bet:
 * =======================
 * Author: J.Vaucher
 *
 * Purpose:
 * This is the simplest program possible.
 * Being able to compile and run it shows that the
 * compiler exists and that PATHS and ALIASES have been
 * correctly set. It also brings out "meta−programming"
 * considerations like the "fragment" system.
 *
 ***)
do
 'Hello world !' −> putline
#)

And the expanded BETA program, using the files: betaenv, HelloWorld, putBoxed, and
putBoxedBody is (exactly as above):

Program 37: HelloWorld with filled program and LIB slot

(* The basic BETA environment betaenv *)
(# ...
 put: (# c: @char; enter c do ... #);
 puttext: (# t: ^text; enter t[] do ... #);
 putline: (# t: ^text; enter t[] do t[]−>puttext; newline #);
 newline: (# do ... #);
 text: (# ... #);
 putBoxed:

 Libraries Tutorial

20.1 Interface and Implementation 81

 (* print the text with a box surrounding:
 * 'text'−>putBoxed results in '[text]'
 *)
 (# t: ^Text;
 enter t[]
 do '['−>put; t[]−> puttext; ']'−>put;
 #);
 ...
do (* initialize for execution *)
 (#
 do 'Hello World!'−>putline;
 #)
 (* terminate execution *)
#)

The fragment system is described in abstract terms in the BETA book [MMN 93]. That description
also suggests many ideas of how to use the fragment system. The current implementation of the
fragment system is described in the compiler manual [MIA 90−2].

 Libraries Tutorial

20.1 Interface and Implementation 82

#mmn93
#mia90-2

Index
The entries in the alphabetic index consists of selected words and symbols from the body files of
this manual − these are in bold font − as well as the identifiers defined in the public interfaces of
the libraries − set in regular font.
In the manual, the entries, which can be found in the index are typeset like this. This can help
localizing the identifier, when the link from the index if followed − especially in the case where the
browser does not scroll the line to the top, e.g. because there is less than a page of text left.
In the small table of letters and symbols below, each entry links directly to the section of the index
containing entries starting with the corresponding letter or symbol.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A

alt

B

betaenv
BODY

BooleanObject
Booleans

C

Characters
CharObject
Command−line arguments

conc
Concurrent
Constants

container
coroutine [2]
cString

E

evaluation

F

for imperative
Formatted Input and Output

fragment system
Fragment System

G

Graphical User Interface GUIEnv

H

HashTable

Index 83

I

if imperative
Implementation

INCLUDE [2]
Integer

IntegerObject
Interface

J

Jean Vaucher

L

List

M

Macintosh Monitor Multidimensional Repetitions

N

nested

O

object−descriptor OBJFILE ORIGIN

P

pattern declaration persistence Primitive Types

R

RealObject
Reals

recursion
repetitions

S

S.fork. semaphore [2] systemenv

T

Text [2]

W

Windows

X

X Window System

 Libraries Tutorial

I 84

	Table of Contents
	List of Programs
	1 Introduction
	1.1 Acknowledgment

	2 Hello World
	3 Simple Types and Output
	4 Arithmetic and Expressions
	4.1 Constants
	4.1.1 Integer
	4.1.2 Reals
	4.1.3 Booleans
	4.1.4 Textand Characters

	4.2 Evaluations

	5 Multiplication Table
	5.1 The for imperative

	6 Loops and Functions
	7 Assignment and Procedure Calls
	8 Patterns and Variables
	8.1 Patterns and Variables
	8.2 Attribute Access
	9.1 Primitive Types
	10.1 Multidimensional Repetitions
	11.1 Command-line arguments
	11.2 Storing Characters in a Repetition
	13.1 Advanced Formatted Input and Output

	9 Dynamic Data Structures
	10 Repetitions (Arrays)
	11 Files
	12 Directory
	13 Text Manipulation
	14 Container Library
	14.1 List Example
	14.2 HashTable Example

	15 Exceptions
	15.1 14.1 Examples Using Exception

	16 Access to External Functions and Data
	16.1 Example

	17 Using the Persistence Library
	18 Graphical User Interface
	18.1 GUIEnv

	19 Concurrent Library
	19.1 18.1 Example
	19.2 Concurrency and User Interface Environments
	19.3 Changes from the Original Design
	20.1 Interface and Implementation

	20 The Fragment System
	Index
	A
	B
	C
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	W
	X

