
Mjolner Tool Workshop

Mjølner Informatics Report
MIA 01−44

September 2002

Copyright © 2001−2002 Mjølner Informatics.
All rights reserved.

No part of this document may be copied or distributed
without the prior written permission of Mjølner Informatics

http://www.mjolner.com

Table of Contents

1 Mjolner Workshop ..1
1.1 Exercise 1: The basics − editing and compiling...1
1.2 Exercise 2: Browsing code...5

1.2.1 What is maxint/minint?..5
1.2.2 Adjust the 'Minimum'−output right and add zero−padding..................................5
1.2.3 Which containers are available?...6
1.2.4 What else is in the Beta system?..7

1.3 Exercise 3: Editing using syntactic code fragments...7
1.3.1 Marking code fragments ...7
1.3.2 Code fragments: Cut, copy paste..9

1.4 Exercise 4: The fragment system..12
1.4.1 Hiding details of your implementation...12
1.4.2 Browsing through SLOTs and fragment forms..13

1.5 Exercise 5: Debugging...15
1.5.1 Reference is none...15
1.5.2 Break points..16

1.6 Appendix: Important commands and keyboard shortcuts..16
1.6.1 File operation commands..16
1.6.2 General navigation and editing commands...16
1.6.3 Text editing commands...19
1.6.4 Entering and leaving text editing mode...19

 Mjolner Tool Workshop

i

1 Mjolner Workshop
These notes contain five exercises which cover the most important features of the Mjolner tool.
Furthermore an appendix containing keyboard shortcuts is supplied −− you might want to read that
section before you continue.

• Exercise 1: The basics − editing and compiling
• Exercise 2: Browsing code
• Exercise 3: Editing using syntactic code fragments
• Exercise 4: The fragment system
• Exercise 5: Debugging
• Appendix: Keyboard shortcuts

To get started on the exercises, download the files syntaxedit.bet, useloops.bet og loops.bet to
your own directory.
Then start the Mjolner tool ('mjolner' − not 'mjolner &').

Now you are ready for the exercises.

Please report any errors you may find in this document to support@mjolner.dk

Author: Christian Heide Damm (damm@daimi.au.dk), October 1999
Updated by Elmer Sandvad (ess@mjolner.dk), September 2000
Updated and translated by Karsten Jorgensen (karsten@mjolner.dk), May 2001

1.1 Exercise 1: The basics − editing and compiling

In this exercise we will construct a program that reads a list of integers and prints the minimum and
maximum value.

Choose 'File−>New BETA Program...' Name the program 'minmax.bet'.

The <<PrefixOpt>> in the Form window means that you can type a super pattern here. We do
not want that here, so click <<PrefixOpt>> and press Delete.

The <<AttributeDeclOpt>> means that you can declare attributes here. The program needs
two integers: min and max.

Click <<AttributeDeclOpt>> and type min,max: @integer. Choose 'Edit−>Parse Text' or

1 Mjolner Workshop 1

syntaxedit.bet
useloops.bet
loops.bet
mailto:support@mjolner.dk

press Ctrl+space to leave text editing mode.

The <<ImpOpt>> means that you can type imperatives here. We need to initialize min
and max, so click <<ImpOpt>> and type maxint−>min; minint−>max. Leave text editing
mode.

Now we need a loop. Mark minint−>max by holding down the mouse button from the middle
of minint to the middle of max .

Then append some "empty code" by choosing 'Edit−>Insert After' or by pressing Enter.

Replace the <<ImpOpt>> by myloop: (# do restart myloop #). Leave text editing
mode.

Mark myloop as shown above and re−enter text editing mode by pressing Ctrl+space or F2. Type
the code in the loop, so that it looks like this:

 Mjolner Tool Workshop

1 Mjolner Workshop 2

Is the program correct?

Find out by checking it: choose 'Compile/Run−>Check Current (minmax)' or click on the Check
button in the toolbar. If there are errors in the program a window showing the errors will
appear:

You can click the 'Nodes' list to browse through the errors. At the bottom of the window information
on the error is displayed: "i is not declared". Insert a declaration of i by clicking on max and

 Mjolner Tool Workshop

1 Mjolner Workshop 3

inserting "empty code" (using menus or pressing Enter). Type i and leave text editing mode.

Check the program again. This time it should work.

Now we insert a few statements that print the results of the loop. Mark all of myloop and insert
some "empty code" after the loop and add the lines shown below:

Compile and run the program from the Mjolner tool (NOT in a shell). You can interact
with the program in the shell where the Mjolner tool was started.

 Mjolner Tool Workshop

1 Mjolner Workshop 4

1.2 Exercise 2: Browsing code

In this exercise we will use the program 'minmax' from exercise 1 to illustrate code browsing in the
Mjolner tool.

1.2.1 What is maxint/minint?

In 'minmax' we use maxint and minint. Find out how they are defined by marking e.g. maxint
and clicking the Definition button in the toolbar (or double−click maxint, or press Alt+Right).

Maxint is apparently defined in the file 'betaenv'. Double−click the three dots beside maxint.

Continue the same way with maxint32 to find out the actual value.

Now we return to 'minmax'. Click the Back button in the toolbar (or right−click and choose
'back', or press Ctrl+Left). Go back until the 'minmax'−program is displayed.

1.2.2 Adjust the 'Minimum'−output right and add zero−padding

Mark min−>putint and enter text editing mode. Add (# format::< (##) #) to putint
as shown:

 Mjolner Tool Workshop

1.2 Exercise 2: Browsing code 5

Double−click format. Because the compiler has not yet checked the text you have just typed, it
does not yet know what it means. So answer yes when asked whether to check the program.

Now you can see the attributes of putint, they should be self−explanatory. Further
bind putint.format in minmax, so that it prints min right adjusted with width 10 and
zero−padding.

1.2.3 Which containers are available?

You have probably heard of lists and arraycontainers, but there are many other containers. At the
top of the Projects window there is a line that reads 'Std. Libraries/'. Double−click that line or click
'+' to open it. Then open 'containers'.

Now all the files in ~beta/containers/ are displayed. Browse through the files and inspect the

 Mjolner Tool Workshop

1.2.3 Which containers are available? 6

different kinds of containers. There are quite a few of them.

Whenever you find (*) in a program, it means the program contains a comment at that point. If
you double−click the asterisk, the comment is displayed. Double−click again, and the comment is
hidden. You can also use Alt+Right or the Definition button in the toolbar.

If ever you find that too much code is being displayed and you would like an overview of the
program, you can press Alt+Up. This hides all the details. Double−click to get more details (or mark
and press Alt+Right or click the Definition button in the toolbar). To show all details in a
selection recursively, press Alt+Down.

1.2.4 What else is in the Beta system?

You should know about the files listed below −− have a quick look at them:

• basiclib
• directory (interface to directories on a disk)
• file (file handling)
• math (mathematical computation)
• random (random numbers)
• guienv
• controls (elements for graphical user intefaces, such as buttons, text fields, check−boxes)
• stddialogs (standard dialogue elements, such as file dialogues)
• persistentstore (for storing objects on disk)
• sysutils
• envstring (access environment variables, e.g. $USER)
• time (handle time and dates)

1.3 Exercise 3: Editing using syntactic code fragments

A central feature of the Mjolner tool is that it enables you to copy and move around large chunks of
code quite easily −− without running into syntactic errors such as missing brackets etc.
Unfortunately, it is difficult to illustrate the usefulness of this feature in a small example. Therefore
this exercise consists of a description of the techniques required to use syntactic editing.

Load the file syntaxedit.bet.

1.3.1 Marking code fragments

First of all, you need to know how to mark a chunk of code. In the Mjolner tool it is impossible to
mark something that is not a "whole", for instance you cannot select half a descriptor. The tool will
always expand the marking until it fits a syntactic category.

 Mjolner Tool Workshop

1.2.4 What else is in the Beta system? 7

syntaxedit.bet

In the example above, the selection becomes the entire pattern.

Another example: Mark from the middle of one pattern to the middle of the next.

The tool selects both patterns.

Try marking different chunks of code and observe what is being selected. For example, try marking
the following:

• UnregisteredVehicle: Vehicle ...;

• Person: ... until aPerson: @person

• Inside Person.print mark 'living at'−>puttext

 Mjolner Tool Workshop

1.2.4 What else is in the Beta system? 8

• Inside Person.print mark the entire do−part

Experiment with the use of Alt+Up (overview), Alt+Left (abstract recursively), Alt+Right (detail) and
Alt+Down (detail recursively).

1.3.2 Code fragments: Cut, copy paste

The tool supports cut, copy, paste, undo and redo on the usual keys:

Command Keyboard shortcut

cut
copy
paste
undo
redo

Ctrl+X
Ctrl+C
Ctrl+V
Ctrl+Z
Ctrl+Y

 Mjolner Tool Workshop

1.3.2 Code fragments: Cut, copy paste 9

Now we want to move the Person pattern down to aPerson: @person:

1. Mark the Person pattern.

2. Press Ctrl+X to cut.

 Mjolner Tool Workshop

1.3.2 Code fragments: Cut, copy paste 10

3. Mark Moped: UnregisteredVehicle.

4. Press Enter to insert code.

5. Press Ctrl+V to paste.

 Mjolner Tool Workshop

1.3.2 Code fragments: Cut, copy paste 11

Now try undoing it all using Ctrl+Z.

Notice that the Person pattern could have been thousands of lines of code, and it would still be
very simple to move it around or copy it.

You can apply this to all sorts of other code fragments: imperatives, descriptors, do−parts,
enter−parts, exit−parts, variabels, superpattern−prefixes. But it does take a little practice to be able
to use it efficiently.

1.4 Exercise 4: The fragment system

This exercise is about the fragment system and how it is represented in the Mjolner tool.

1.4.1 Hiding details of your implementation

Load the files loops.bet and useloops.bet in the Mjolner tool.

If you click the '+' next to the 'useloops' icon in the Projects window, you will see that the
program INCLUDEs the file 'loops' (symbolized by a single up−arrow:).

Click the line that says loops. We would like to save the do−parts in another file; our
implementation file.

While viewing 'loops' choose 'SLOTs−>Create Implementation File...' and type loopsbody. Now
you have created a new file 'loopsbody' whose ORIGIN is 'loops' (symbolized by a double
up−arrow:). Conversely, 'loops' now has BODY 'loopsbody' (symbolized by a down arrow:).

 Mjolner Tool Workshop

1.4 Exercise 4: The fragment system 12

loops.bet
useloops.bet

Go back to 'loops' by clicking loops in the Projects window.

Mark the do−part of upTo (press and hold the mouse button from the middle of 'do' to somewhere
in the do−part).

Choose 'SLOTs−>Make DoPart SLOT', and name it upToImplementation. Now the
implementation of upTo is automatically moved down into 'loopsbody'.

Double−click <<SLOT upToImplementation: DoPart>> in 'loops'. This takes you directly to
the code in 'loopsbody' (or click the Definiton button in the toolbar or press Alt+Right).

The Mjolner tool keeps track of your current implementation file at all times. This is the file into
which the implementaion is moved when you choose 'SLOTs−>Make DoPart SLOT'. When you use
'SLOTs−>Create Implementation File...' to create a new file, that file becomes the current
implementation file. If you wish to change it, use the SLOTs menu.

Move the do−parts of downTo and stepTo down into 'loopsbody' as well. This can be done in
one step by selecting both downTo and stepTo and choosing 'SLOTs−>Hide Implementation'.

1.4.2 Browsing through SLOTs and fragment forms

A SLOT is something of the form <<SLOT blahblah: DoPart>>. The corresponding fragment
form contains a line such as −−−blahblah: DoPart−−−.

Using the Mjolner tool you can easily jump from a SLOT to the corresponding fragment form or vice
versa.

While viewing 'loops', double−click the stepTo SLOT. This causes the implementation

 Mjolner Tool Workshop

1.4.2 Browsing through SLOTs and fragment forms 13

of stepTo to be displayed. In the Fragment Forms window you can see that it contains three
do−parts and that currently 'stepToImplementation' is displayed.

Jump to the implementation of downTo by clicking on the corresponding line in the Fragment
Forms window. To find the SLOT mathing the 'downTo' fragment form, click the 'ToSlot' button

 in the toolbar or right click in the Form window and select 'Follow−>Link To SLOT'.

Now the tool searches through the chain of ORIGINs (adhering to the rules for doing so) looking for
a matching SLOT. It ends up finding such a SLOT in 'loops'.

 Mjolner Tool Workshop

1.4.2 Browsing through SLOTs and fragment forms 14

Three patterns are defined in 'loops': upTo, downTo and stepTo. To be precise, they are
defined in a lib:attributes fragment form. as can be seen in the Fragment Forms window.
But which slot will this fragment form be inserted into, i.e. where is the SLOT corresponding
to lib:attributes? Find out the same way as above. Of course, the matching SLOT is located
in 'betaenv'.

1.5 Exercise 5: Debugging

In this exercise we will take a brief look at how the Mjolner tool can help you locate errors in your
programs.

Load the file syntaxedit.bet.

Compile and run the program. It contains a 'Reference is none'−error.

Click the Debug button in the toolbar or right click in the code and choose
'Compile/Run−>Debug syntaxedit'. Now a debugging window pops up.

1.5.1 Reference is none

Click 'Go' in the debugging window. This time, when the program stops, the window tells you at the
bottom that there is an error: 'Reference is none'. And in the Form window the command causing
the error is marked ('kg'−>value, which should be 'kg'−>value[]). Close the debugging
window, correct the error and run the program again.

It is that easy to find and correct errors like 'Reference is none'!

 Mjolner Tool Workshop

1.5 Exercise 5: Debugging 15

syntaxedit.bet

1.5.2 Break points

For practice we will insert a breakpoint at 'The car is:'−>putline. Mark this line and right
click. Choose 'Set Break' and mark something else (anything).

Click 'Go' in the debugging window. Now the program runs for a little while and then stops at the
break point.

Click the Object button in the debugging window. This displays the active object, i.e. the object
whose do−part is currently being executed. Here, the active object is of course the entire program.

You can see that the object has a component called aPerson which is an instance of
the program.Person pattern. But we already knew that. Now double click that line. Double
click Name, and double click T. You can see that the person is Santa Claus.

In this manner the object structure can be observed at runtime. Sometimes this is preferable to
inserting debug−printlines.

Now click the break point <<1>>, then right click and choose 'Erase Break'. Choose 'Rerun' either
from the right click menu or the new window. Now the program is ready to start over.

1.6 Appendix: Important commands and keyboard shortcuts

1.6.1 File operation commands

Operation Keys Description Menu item

New BETA
Program

Ctrl+N Create a new BETA program
File −> New
BETA Program

Open file Ctrl+O Open a BETA file File −> Open

Save file Ctrl+S Saves the current open file on disk File −> Save

Print Ctrl+P Print your code File −> Print

Quit Mjolner
Tool

Ctrl+Q
Of course, you wouldn't want to, but sometimes it is
necessary to stop the fun.

File −> Quit

1.6.2 General navigation and editing commands

Operation Keys Mouse/Button Description Menu item

Re−prettyprint F5

Redraws the
code if
something has
gone awry

View −> Reprettyprint

Overview Alt+Up
Abstract the
code around the
current selection

View −> Overview

Detail

Show definition

Alt+Right Double click
or

This command
has a number of
different
meanings

View −> Detail

View −> Follow Semantic
Link

 Mjolner Tool Workshop

1.5.2 Break points 16

Show code depending on
the current
selection. Show
more details
around the
current
selection, find
the definition of
a name, open or
close a comment

View−>Follow Link to SLOT

Abstract
Recursively

Alt+Left
Abstract the
current selection

View −> Abstract
Recursively

Detail
Recursively

Alt+Down

Detail the
current selection
until nothing
remains abstract
in it

View −> Detail Recursively

To slot F3

Search through
the chain of
ORIGINs looking
for a SLOT
matching the
fragment form

View−> Follow Link to SLOT

Back Ctrl+Left

Go back to
where you were
before, e.g.
before you
pressed Show
Definition and
jumped to the
definition

History−>Back

Forward Ctrl+Right
The oppposite of
Back

History−>Forward

Append empty
code

Enter
Append "empty
code" to the
current selection

Edit−>Insert After

Prepend empty
code

Ctrl+Enter
Prepend "empty
code" to the
current selection

Edit −> Insert Before

Paste before Insert

Prepend the
contents of the
clipboard to the
current selection

Edit−> Paste Before

Paste After Ctrl+Insert

Append the
contents of the
clipboard to the
current selection

Edit−> Paste After

Find Ctrl+F Open a dialog
that lets you

Edit−>Find...

 Mjolner Tool Workshop

1.5.2 Break points 17

search for a
string in either
the current
selection, the
current fragment
form, a file or its
"domain" or
"extent".

Replace Ctrl+H

Like Find, but
lets you replace
the string by
another one

Edit−>Replace...

Check current F4
Check the
current code for
errors

Compile/Run−>Check
Current

Check program Ctrl+F4

Re−check the
program that
was last
checked

Compile/Run−>Check
Program

Compile current F7

Compile the
current code and
(if it is a
program)
produce an
executable file

Compile/Run−>Compile
Current

Compile
program

Ctrl+F7

Compile and
create
executable for
the most
recently selected
program

Compile/Run−>Recompile

Run program F8

Run the most
recently selected
program (if it has
been compiled)

Compile/Run−>Run
Program

Compile and run Shift+F7

Compile and run
the most
recently selected
program

Compile/Run−>Compile
and Run Program

Debug the
program

F9

Debug the most
recently selected
program (if it has
been compiled)

Compile/Run−>Debug
Program

Debug
Executable

Ctrl+F9
Choose an
executable to
debug

Compile/Run−>Debug
Executable

Get help Ctrl+Alt+H

Open a browser
with the Mjolner
System
Documentation

Help −> Web
Documentation −> Mjolner
System Documentation

 Mjolner Tool Workshop

1.5.2 Break points 18

1.6.3 Text editing commands

Command Keyboard shortcut

Cut
Copy
Paste
Undo
Redo

Ctrl+X
Ctrl+C
Ctrl+V
Ctrl+Z
Ctrl+Y

These commands are available in text editing mode as well as in syntax browsing mode.

1.6.4 Entering and leaving text editing mode

Command Keys Description Menu item

Enter text
editing mode

Space,
Ctrl+Space

Enter text editing mode for the current selection Edit−>Edit Text

Leave text
editing mode

Ctrl+Space
Re−parse the edited chunk of code. The code
must be syntactically correct

Edit−>Parse
Text

Cancel Text
editing

Escape Discards all changes to the edited chunk of code
Edit−>Cancel
Textediting

 Mjolner Tool Workshop

1.6.3 Text editing commands 19

	Table of Contents
	1 Mjolner Workshop
	1.1 Exercise 1: The basics - editing and compiling
	1.2 Exercise 2: Browsing code
	1.2.1 What is maxint/minint?
	1.2.2 Adjust the 'Minimum'-output right and add zero-padding
	1.2.3 Which containers are available?
	1.2.4 What else is in the Beta system?

	1.3 Exercise 3: Editing using syntactic code fragments
	1.3.1 Marking code fragments
	1.3.2 Code fragments: Cut, copy paste

	1.4 Exercise 4: The fragment system
	1.4.1 Hiding details of your implementation
	1.4.2 Browsing through SLOTs and fragment forms

	1.5 Exercise 5: Debugging
	1.5.1 Reference is none
	1.5.2 Break points

	1.6 Appendix: Important commands and keyboard shortcuts
	1.6.1 File operation commands
	1.6.2 General navigation and editing commands
	1.6.3 Text editing commands
	1.6.4 Entering and leaving text editing mode

