
Lidskjalv: User Interface Framework − Tutorial

Mjølner Informatics Report
MIA 95−30

February 2002

Copyright © 1995−2002 Mjølner Informatics.
All rights reserved.

No part of this document may be copied or distributed
without the prior written permission of Mjølner Informatics

http://www.mjolner.com

Table of Contents

1 The Lidskjalv User Interface Framework ..1
1.1 Further Readings...4

2 Structure of a Lidskjalv application ..5
2.1 Lidskjalv Declarations..5
2.2 Lidskjalv Initialization ..5
2.3 Lidskjalv Event Handling..6
2.4 Application Suspend, Resume and Terminate...6

3 Overview of Lidskjalv ...7

4 Access to Global Structures ...8
4.1 Access to the Mouse..8
4.2 Access to the Clipboard...8
4.3 Standard Input and Output...8
4.4 Coordinate System..8
5.1 Event Handling in Windows...10
5.2 Contents of Windows...10
5.3 Window Items..11
6.2 Basic Menu Facilities...12

6.2.1 Menu Item Facilities..13
6.2.2 Static and Dynamic Menu Items...13

5 Windows ..14

6 Menu Handling ..15

7 The Menu Bar..18
7.1 Standard Menus...18

8 Graphics ..20
8.1 Figure Items...20
8.2 Interactive Graphics Facilities..22

8.2.1 Selection of Graphics Objects...22
8.2.2 Dragging of Graphics Objects...23

8.3 Canvas...23
8.4 Scroller...24
9.2 Control Items..26

9 Controls and Dialog Boxes..26

10 Scroll Lists ..31

11 Window Fields...33

12 Standard Dialogs ..36

Index ...37
L...37

 Lidskjalv: User Interface Framework − Tutorial

i

1 The Lidskjalv User Interface Framework

Lidskjalv is a platform independent object−oriented user interface construction toolkit for:

• Macintosh
• X Window System (Motif Widgets)
• Windows 95/98
• Windows NT

Lidskjalv allows construction of portable user interfaces in such a way that the look−and−feel of the
applications, will conform to the standardized look−and−feel of the specific platform.

The framework defines abstractions for all commonly used interface objects, such as windows,
menu bars, menus, buttons, text fields, figure items, scrolling lists, etc.

The application programmer does not have to handle user interaction at the event level of the
underlying platform, because each interface object takes care of the interactions related to itself. It
is the responsibility of the entire framework to ensure that the user interactions (such as mouse
button presses, key presses, etc.) are converted internally into invocations of virtual procedures of
the appropriate interface object. The only thing the application programmer needs to do is to bind
the virtual procedures. All layout properties of interface objects can be manipulated through the
Lidskjalv framework.

Following, a realistic example of using Lidskjalv is presented. It is a small text editor with full
support for loading, editing, and saving files.

ORIGIN '~beta/guienv/fields';
INCLUDE '~beta/guienv/stddialogs';
INCLUDE '~beta/basiclib/file';
−− program: descriptor −−
guienv
(# theWindow: @window
 (# menubarType::
 (# fileMenu: @menu
 (# textFile: @file;
 openItem: @menuitem
 (# eventhandler::
 (# onSelect::
 (# theText: @StyledText;
 do theWindow[]−>fileSelectionDialog−>textFile.name;
 textFile.openRead;
 textFile.scan(# do ch−>theText.put #);
 theText[]−>theTextEditor.contents.contents;
 textFile.close;
 #)#);
 open:: (# do 'Open' −> name #);
 #);
 saveItem: @menuitem
 (# eventhandler::
 (# onSelect::
 (# theText: @Text;
 do textFile.openWrite;
 theTextEditor.contents.contents
 −>textFile.puttext;
 textFile.close;
 #)#);
 open::< (# do 'Save' −> name #);

1 The Lidskjalv User Interface Framework 1

 #);
 quitItem: @menuitem
 (# eventhandler::
 (# onSelect:: (# do Terminate #) #);
 open::< (# do 'Quit' −> name #);
 #);
 open::<
 (#
 do 'File' −> name;
 openItem.open; openItem[] −> append;
 saveItem.open; saveItem[] −> append;
 quitItem.open; quitItem[] −> append;
 #)#);
 open:: (# do fileMenu.open; fileMenu[] −> append #);
 #);
 thetextEditor: @textEditor
 (# open::
 (#
 do theWindow.size−>Size;
 True−>bindBottom−>bindRight
 #)
 #);
 open:: (# do thetextEditor.open #);
 #);
do theWindow.open;
#)

The following three screen snapshots show how this application appear on the screen after the
program has loaded its own source text for editing, and with the menu opened.

Macintosh

Windows 95 / Windows NT

 Lidskjalv: User Interface Framework − Tutorial

1 The Lidskjalv User Interface Framework 2

X Window System

This document contains a tutorial on the use of the Lidskjalv user interface framework.

These libraries are collectively referred to as the Lidskjalv user interface framework. Lidskjalv
consists of a number of libraries, of which guienv, controls, fields, scrolllists and figureitems will be
described in this tutorial. Most Lidskjalv applications will only be using some of these libraries.

The controls library offers the capabilities of interface controls, such as buttons, scrollbars, etc.

The fields library offers the capabilities for displaying bitmaps, rasters and advanced text editing.

The figureitems library offers fairly advanced graphics capabilities, including maintenance of
graphical objects on the screen, which can be selected and dragged.

The scrolllists library offers facilities for making scrolling lists as used in e.g. the file dialog.

Besides the basic user interface libraries, as described above, the Lidskjalv framework contains a
series of utility libraries (not described in this manual). These utility libraries can be found in the
utils subdirectory of the Lidskjalv directory tree.

This tutorial will contain screen dumps mainly from the Windows 95 and Windows NT platforms. All
demos can be recompiled on the other supported platforms, resulting in similar windows, just with
the look−and−feel of that platform.

 Lidskjalv: User Interface Framework − Tutorial

1 The Lidskjalv User Interface Framework 3

1.1 Further Readings

This tutorial is accompanied with a reference manual for the Lidskjalv framework: Mjølner System:
Lidskjalv: User Interface Framework − Reference Manual, [MIA 94−27]. User's manuals for the
Mjølner System on the different platforms are also available Furthermore, a reference manual for
the BETA compiler is available: Mjølner System: Compiler Reference, [MIA 90−02]. Finally, a
reference manual is available on the basic libraries: Mjølner System: Basic Libraries, [MIA 90−08].
The reader is advised to consult these documents (along with the other Mjølner BETA Manuals) as
well as this tutorial.

 Lidskjalv: User Interface Framework − Tutorial

1.1 Further Readings 4

#mia94-27
#mia90-02
#mia90-08

2 Structure of a Lidskjalv application
A Lidskjalv application is usually structured along the following lines:

ORIGIN '~beta/guienv/guienv'
−−− program: descriptor −−−
guienv
(# ... declarations ...
do ... initializations ..
#)

The ORIGIN specification informs the compiler, that this program is utilizing the guienv library. The
'~beta/guienv/guienv' specifies that the BETA compiler is expected to find the fragment guienv on
the disk in the subdirectory of the guienv directory, which is supposed to be located in the directory
where the Mjølner System is located. Please also note that the guienv fragment must be located in
the specified directory. If this is not the case, change the above directory specification.

If you want selectively to use some of the other Lidskjalv libraries (fields, control, scrollingList or
figureItem), the libraries must be specified in INCLUDE clauses. E.g. to utilize both the fields and
control libraries, the program must look like:

ORIGIN '~beta/guienv/guienv';
INCLUDE '~beta/guienv/fields';
INCLUDE '~beta/guienv/controls';
−−− program: descriptor −−−
guienv
(# ... declarations ...
do ... initializations ...
#)

Note that the main part of a Lidskjalv application contains an inserted instance of the Guienv
pattern (not to be confused with the Guienv library). This Guienv pattern is taking care of all event
handling of events originating from the underlying window system (e.g. mouse button events,
window refresh events, keyboard events, etc.) such that Lidskjalv application programmers does
not have to be concerned with managing the global event loop. Each user interaction (e.g. menu
selections) result in execution of some specific actions of some BETA objects (details later).

2.1 Lidskjalv Declarations

The declarations part of a Lidskjalv application contains declaration of patterns, objects, and
declaration of specializations of user interface objects such as menus, windows, buttons, etc. Most
of the functionality of Lidskjalv applications will in fact be specified in these specializations, since
activation of most of the functionality will originate from the user manipulating items in the user
interface.

2.2 Lidskjalv Initialization

The initializations part of a Lidskjalv application is primarily concerned with initialization of objects
and with the creation and initialization of the various menus, windows, buttons, etc. The structure of
Lidskjalv applications is such that the main part of the application is normally not concerned with
invoking the functionality of the application, since that is usually the result of the user manipulating
the user interface.

2 Structure of a Lidskjalv application 5

2.3 Lidskjalv Event Handling

Events (e.g. window refresh events, mouse button events, keyboard events) must be taken care of
by the Lidskjalv application some way or another. The approach taken is to handle the global event
loop for the programmer. When specifying interface objects [1] in a Lidskjalv program, the
underlying implementation takes care of propagating events to the appropriate interface object.
Events, (e.g. mouse button) will be converted into invocation of virtual procedure patterns of
interface objects. These virtual procedure patterns (e.g. onMouseDown and onRefresh), must be
extended by the Lidskjalv application programmer to contain the proper response to the specific
event. That is, interface objects define various virtual procedure patterns that specify the types of
events that are relevant for this type of interface object . In Lidskjalv programs, the programmer
creates specializations of interface objects with further bindings for the virtual procedure patterns
with the proper response to those events. During the discussion of the various types of interface
objects, we will be discussing more details of this event handling.

2.4 Application Suspend, Resume and Terminate

Lidskjalv applications will continue to be executing until the application explicitly specifies that it
may be terminated. Termination of a Lidskjalv application is done by executing the Guienv attribute
terminate when termination is wanted. The result hereof is that the global event handling is
immediately terminated, resulting in the termination of the execution of the entire application.

 [1] Interface objects are BETA objects that represent elements on the graphical user interface (e.g.
a menu item, a button, etc.). Interface objects will be discussed in detail later

 Lidskjalv: User Interface Framework − Tutorial

2.3 Lidskjalv Event Handling 6

3 Overview of Lidskjalv
Lidskjalv contain many different patterns for implementing advanced (and simple) applications
utilizing the graphical user interface system. It is impossible in this tutorial to give all details of these
patterns and the presentation here will therefore only stress the most important patterns and the
most important attributes of each pattern, along with illustrative examples.

Since there are many patterns and a somewhat elaborate pattern hierarchy, the following figure will
show the most important classes and their super/subpattern relations.

3 Overview of Lidskjalv 7

4 Access to Global Structures
Lidskjalv offers access to several global objects of the window system, such as the mouse, the
clipboard, the menubar, etc.

4.1 Access to the Mouse

The Mouse attribute in Guienv provides access to the physical mouse connected to the window
system. Mouse.globalPosition returns the current position of the mouse (in screen coordinates).
Mouse.buttonState returns the status of the mouse buttons and returns 1, 2, or 3 if the
corresponding mouse button is currently pressed, and 0 otherwise.

4.2 Access to the Clipboard

The clipboard attribute in Guienv gives direct access to the underlying window system clipboard.

clipboard.hasText returns true, if the clipboard containg textual information. If txt[] is a reference to
text object, then txt[]−>clipboard.textContents places the text in txt[] onto the clipboard, and
clipboard.textContents−> txt[] copies the contents of the clipboard as text into txt[]. To clear the
clipboard, you can invoke clipboard.clearContents.

4.3 Standard Input and Output

In betaenv, the standard input and output from the user is obtained through the screen object (or
through the putText, getText, etc. operations of betaenv).

Obtaining input and output through screen should however be used sparely in Lidskjalv since the
facilities for input and output through Lidskjalv will conform to the user interface guidelines of the
underlying window system and result in more elegant and powerful user interfaces.

In window−based environments there usually are two ways to invoke applications: either directly
from some sort of console window (e.g. Xterm on UNIX platforms, MS−DOS Box on Windows 95
and Windows NT, and MPW Shell on Macintosh platforms), or by double−clicking on some
graphical icon in the graphical user interface. Lidskjalv behaves different in these two cases with
respect to handling standart input and outpu.

In Lidskjalv applications invoked through console windows, standard input and output will be
obtained from the console window from which the application is invoked. In Lidskjalv applications
invoked through the graphical user interface, a console window will be created by the application,
and standard input and output will be obtained from this console window.

4.4 Coordinate System

Many aspects of the programming in Lidskjalv involves specifying positions on the desk−top of the
underlying window system (i.e. the position and size of a window). Lidskjalv defines a point and
rectangle pattern for representing such properties.

The coordinate system used in the specification of these positions etc. are having a horizontal
X−axis with X increasing to the right, and the Y−axis is vertical with Y increasing downwards. In
defining e.g. the size of a window, the terms width and height are used along the X−axis,
respectively the Y−axis.

4 Access to Global Structures 8

The screen of the underlying window system has the (0,0) positioned at the upper left corner of the
screen. Windows on the desk−top also has the (0,0) positioned in the upper left corner of the
window. In general,, the (0,0) position is located in the upper left corner of all interface objects.

 Lidskjalv: User Interface Framework − Tutorial

4 Access to Global Structures 9

5 Windows
The window pattern describe properties of underlying window system windows. All Lidskjalv
windows has a position on the screen, a height and width and a title (shown in the title bar).
Windows may be visible on the screen or hidden. Finally, the window may specify the particular
event handling to be associated with that window.

The open attribute initializes the window according to the window attributes. During the lifetime of a
window, it may shift between being visible on the screen or not. This is controlled by the show and
hide attributes. A window may take the control of the entire underlying window system (i.e. act as a
modal window) if is is shown using showModal instead of show.

The following creates an ordinary window. The window will be initially visible:

Program 1: simpleWindow.bet

ORIGIN '~beta/guienv/guienv'
−−− program: descriptor −−−
guienv
(# simpleWindow: @window
 (# open::
 (#
 do (100, 100)−>position;
 (300, 100)−>size;
 'simpleWindow'−>title
 #);
 eventhandler::
 (# onAboutToClose:: (# do terminate #) #);
 #)
do simpleWindow.open
#)

screendump
(Windows NT)

Please note the onAboutToClose:: (# do terminate #) part of this small demo program. You will see
this in all following demo programs. This small piese of code is included in these demo programs
with the intent to make the demo applications terminate, when the window is closed. In realistic
applications, this form of termination is very seldom used, since such applications often use a
number of windows, and a Quit menu item to actually terminate the application..

5.1 Event Handling in Windows

All user activities with the mouse, keyboard, etc. are turned into events by the underlying window
system. Lidskjalv turns the window relevant events into invocations of virtual procedure patterns,
defined in the eventhandler of the window. Eventhandler defines the following virtual patterns:
onActivate, onDeactivate, onRefresh, onKeyDown, onMouseDown, onMouseUp, and

5 Windows 10

onAboutToClose.

These patterns are invoked when the corresponding event occurs and further bindings of these
patterns may specify actions to be executed then. OnActivate is invoked when this window is
becoming the active window and onDeactivate is invoked when another window becomes the
active window. OnRefresh is invoked when the window has been corrupted (e.g. when the window
is opened or when another window, which is obscuring parts of this window, is moved).
OnKeyDown is invoked when the user presses a key on the keyboard. OnKeyDown takes one
parameter which is the character associated with that key. OnMouseDown is invoked when the
user presses the mouse button and onMouseUp is invoked, when the user releases the mouse
button. OnAboutToClose is invoked when the mouse button is pressed when the cursor is located
in the Close box. E.g.:

Program 2: windowWithEvents.bet

ORIGIN '~beta/guienv/guienv'
−−− program: descriptor −−−
guienv
(# eventWindow: @window
 (# open::
 (#
 do (100,100)−>position;
 (300,300)−>size;
 'windowWithEvents'−>title
 #);
 eventhandler::
 (# onAboutToClose:: (# do terminate #);
 onRefresh:: (# do 'refresh'−>putline #);
 onMouseDown:: (# do 'mouseDown'−>putline #)
 #)
 #)
do eventWindow.open;
#)

Program 3: screendumps (Windows 95)

The refresh and mouseDown printouts originates from user interaction with the window.

5.2 Contents of Windows

The window pattern in Lidskjalv offers several advanced facilities for specifying the contents of the
window. These facilities are e.g. the windowItem, Canvas and Scroller patterns. WindowItem is the
basic pattern for describing items to be displayed in a window, canvas (a subpattern of
windowItem) is used to group windowItems of a window, and scroller enables scrolling of the
window items. Several other subpatterns of windowItem exists, and will be discussed in later

 Lidskjalv: User Interface Framework − Tutorial

5.1 Event Handling in Windows 11

sections.

The window pattern defines one attribute, related to handling the window contents: contents.
Contents is an operation, returning a canvas as exit parameter. Window displays all windowItems
having window.contents as their father (explained later) and handles everything associated with
refreshing the window contents in response to windowItems being associated with the window, and
related to exposure of previously hidden parts of the window.

5.3 Window Items

As mentioned above, instances of windowItem are the elements displayed in a window. The
windowItem pattern defines attributes common to all the different types of window items, defined in
the different Lidskjalv libraries.

Window items are organized in a father−child hierarchy with respect to some canvas (or the
contents canvas of a window) and all items have a father. The father defines the coordinate system
for the children (e.g. the position of each child is relative to the position of the father, such that
moving the father also moves the children). The father attribute of a window item refers to the
canvas that this window item is a child of. WindowItem defines attributes for accessing and
changing the position and size of the item and for controlling the visibility of the window item.

All window items are able to receive events from the user, and defines an event handler (similar to
windows) to take care of these events. The enable and disable attributes are used to control
whether the item will react to these events or not (i.e. a disabled window item will ignore e.g.
onMouseDown events eventhough an event pattern is defined for onMouseDown event in that
window item). The event patterns defined in the event handler of window items are:
OnFatherChanged, ChangedFrame, OnFatherChanged, onMouseDown, onMouseUp,
onKeyDown, onEnableTarget, onDisableTarget, onRefresh, onActivate and onDeactivate. Specific
behavior for these events can be specified by further binding the appropriate event pattern.

 Lidskjalv: User Interface Framework − Tutorial

5.3 Window Items 12

6 Menu Handling
Lidskjalv offers several facilities for dealing with menus. In Lidskjalv applications, menus can be of
four types, namely pulldown and pop−up menus (and both menu types can be linear or
hierarchical), where the linear and hierarchical pulldown menus are the most often used menu
types. Pulldown menus are associated with the menubar that is located in the top of the window (or
on the top of the screen on the Macintosh platform). Each pulldown menu has a title which is
shown in the menubar. When that title is selected with the mouse, the pulldown menu is shown.

Program 4: Screendump (Windows NT)

Pop−up menus are under the control of the application programmer, who at any point in the
program may specify that a particular menu must be popped up at a specific position (e.g. inside a
window).

6.2 Basic Menu Facilities

The Menu pattern defined in Lidskjalv describes the facilities of any type of menu in Lidskjalv. Menu
is a subpattern of interfaceObject. The menu handling is fully supported by Lidskjalv in the sense
that the application programmer specifies the title and format of the menu (including layout of
individual menu items, submenus, etc.) and specifies the actions, associated with the individual
menu items. The menu is inserted in the menubar and Lidskjalv handles all events associated with
menus (e.g. when some menu item is selected, the proper actions are executed).

Menus may be enabled or disabled. A disabled menu is visible in the menu bar but its title is
dimmed and it is impossible to pull the menu down from the menu bar.

If theMenu be an instance of Menu, initialization of theMenu may be done by further binding the
open virtual procedure pattern attribute of Menu. In this further binding, the individual items in the
menu are defined. The individual items are instances of the menuItem pattern (described below).

The menu may be used as a pull−down menu by inserting it in the menubar, e.g. by
THIS(Menu)[]−>MenuBar.append, or theMenu[]−>MenuBar.append. The menu may also be used
as a pop−up menu by invoking (i,p,wi[])−> THIS(menu).popUp or (i, p, wi[])−>theMenu.popUp. This
will show the menu at position p with the menu element number i selected. wi is a reference to the
window item in which the menu should pop−up. Finally, the menu may be used as a hierarchical
menu. The menu can be inserted as a submenu of an item of another menu by
THIS(Menu)[]−>anotherMenuItem.subMenu or theMenu[]−> anotherMenuItem.subMenu. The

6 Menu Handling 13

menu will then be a submenu of anotherMenuItem.

6.2.1 Menu Item Facilities

Each individual item in a menu is described by the menuItem pattern, defined locally to the Menu
pattern in Guienv. Most facilities of menuItem deals with describing the format of the menu item.
Name makes it possible to specify the name of the item. Key makes it possible to control the
keyboard equivalent, and finally, SubMenu makes it possible to control the submenu of this item.
Checked is used to control whether or not this menu item should be checked (a toggle menu item).
The position of the item in the menu is examined by position.

Items in menus may be enabled (e.g. it is possible to select this menu item) or disable (e.g. the
menu item cannot be selected and the menu item is dimmed in the menu). Enabling and disabling
of menu items are controlled by the virtual procedure pattern onStatus. The application
programmer must further bind onStatus in menu items in order to specify dynamic changes in the
selectability of menu items.

When a menu item is selected, some actions must be executed. This is specified using the virtual
event pattern onSelect. The application programmer must further bind onSelect in order to specify
the actions to be executed as the result of this menu item being selected.

Menu items are initialized in two steps. The title of the menu item is first specified by giving a text
string as the name operation of MenuItem. This is usually done in the open virtual in the menu item.
Then the menu item is appended to the menu.

The menu items are numbered from the top of the menu, starting with 1, and menu separators are
numbered too. Menu separators are specified by using the separator pattern, e.g.

&separator[]−>sep[]; sep.open; sep[]−>animalMenu.append

Let us look at a small example:

Program 5: menus.bet

ORIGIN '~beta/guienv/guienv'
−−− program: descriptor −−−
guienv
(# menuWindow: @window
 (# menubarType::
 (# animalMenu: @menu
 (# iCat: @menuItem
 (# eventhandler::
 (# onSelect:: (# do 'Cat chosen'−>putline #) #);
 open:: (# do 'Cat'−>name #)
 #);
 iBear: @menuItem
 (# eventhandler::
 (# onSelect:: (# do 'Bear chosen'−>putline #)#);
 open:: (# do 'Bear'−>name #)
 #);
 iEagle: @menuItem
 (# eventhandler::
 (# onSelect:: (# do 'Eagle chosen'−>putline #);
 onStatus:: (# do false−>value #)
 #);
 open:: (# do 'Eagle'−>name #)

 Lidskjalv: User Interface Framework − Tutorial

6.2.1 Menu Item Facilities 14

 #);
 open::
 (# sep: ^menuItem
 do 'Animals'−>name;
 iCat.open; iBear.open; iEagle.open;
 iCat[]−>animalMenu.append;
 iBear[]−>animalMenu.append;
 &separator[]−>sep[]; sep.open; sep[]−>animalMenu.append;
 iEagle[]−>animalMenu.append
 #)
 #);
 open:: (# do animalMenu.open; animalMenu[]−>append #)
 #);
 eventhandler::
 (# onAboutToClose:: (# do terminate #) #);
 open:: (# do 'menus'−>title #)
 #)
do menuWindow.open
#)

animalMenu is a menu with three items and one separator. The title of animalMenu is Animals and
the three menu items have the titles Cat, Bear, and Eagle:

Program 6: screendumps (Windows NT)

When either Cat or Bear is selected, the title of the item will be printed. The Eagle item is disabled
(shown dimmed) and cannot be selected.

6.2.2 Static and Dynamic Menu Items

Menu items are either constantly associated with the same actions during the entire execution of
the program as described above (i.e. static menu items), or they may be associated with different
actions during the execution of the program (i.e. dynamic menu items). For that reason, Lidskjalv
contains two different menu item patterns: menuItem and dynamicMenuItem. MenuItem (described
above) describes the static menu items and dynamicMenuItem (a subpattern of menuItem)
describes the dynamic menu items. Since static menu items were the subject of the previous
section, we will here concentrate on the additional properties of dynamicMenuItems.

DynamicMenuItem is a subpattern of menuItem, and the dynamics of dynamic menu items is
controlled by attaching and detaching so−called menuActions to the menu item during the
execution of the program. MenuAction is a pattern defined in the menu pattern and defines two
attributes: noStatus and onSelect with the same purpose as the onStatus and onSelect attributes of
a static menu item. That is, by specializing the onSelect attribute, the actions of the menuAction are
specified, and the noStatus attribute controls whether the menuAction is enabled or not.

DynamicMenuItem defines only two new attributes: attach and detach. Attach takes a menuAction
as enter parameter and attaches it to the menu item. The result hereof is that then the noStatus
attribute of the menu item is invoked, the onStatus attribute of the attached action is invoked
instead, and invocation of the onSelect attribute of the menu item will result in invocation of the

 Lidskjalv: User Interface Framework − Tutorial

6.2.1 Menu Item Facilities 15

onSelect attribute of the attached action. The attached action is in this way becoming the behavior
of the dynamic menu item. By changing the action associated with a dynamic menu item during the
execution of the program, different behaviors may be associated with one particular dynamic menu
item. If the dynamic menu item executes a detach, the action is detached and the menu item
becomes disabled.

E.g.:

Program 7: rulerMenu.bet

ORIGIN '~beta/guienv/guienv'
−−− program: descriptor −−−
guienv
(# rulerWindow: @window
 (# menubarType::
 (# rulerMenu: @menu
 (# iHideRuler: @dynamicMenuItem
 (# open:: (# do 'Hide ruler'−>name #) #);
 iShowRuler: @dynamicMenuItem
 (# open:: (# do 'Show ruler'−>name #) #);
 hideRuler: @menuAction
 (# onSelect::
 (#
 do 'Hiding...'−>puttext;
 iHideRuler.detach;
 showRuler[]−>iShowRuler.attach
 #)
 #);
 showRuler: @menuAction
 (# onSelect::
 (# do 'Showing...'−>puttext;
 iShowRuler.detach;
 hideRuler[]−>iHideRuler.attach
 #)
 #);
 open::
 (#
 do 'Rulers'−>name;
 iHideRuler.open; iHideRuler[]−>rulerMenu.append;
 hideRuler[]−>iHideRuler.attach;
 iShowRuler.open; iShowRuler[]−>rulerMenu.append;
 #)
 #);
 open:: (# do rulerMenu.open; rulerMenu[]−>append #)
 #);
 eventhandler::
 (# onAboutToClose:: (# do terminate #) #);
 open:: (# do 'rulerMenu'−>title #)
 #)
do rulerWindow.open
#)

Program 8: screendumps
(Windows 95)

 Lidskjalv: User Interface Framework − Tutorial

6.2.2 Static and Dynamic Menu Items 16

 Lidskjalv: User Interface Framework − Tutorial

6.2.2 Static and Dynamic Menu Items 17

7 The Menu Bar
The menuBar attribute of Guienv is the interface to the underlying window system menubar.
menuBar.Clear removes all menus from the menubar. If theMenu is a menu (discussed earlier),
theMenu[]−>menuBar.append inserts theMenu as the last menu in the menubar and menus are
removed from the menubar by theMenu[]−>menuBar.delete.

7.1 Standard Menus

Most window systems have user interface guidelines that defines that the two first menus of any
applications must be: File and Edit. It is also often the case that the File menu contains at least
New, Open, Close, Save, Save As, Revert, Print, , Page Setup and Quit, and that the Edit menu
contains at least Undo, Cut, Copy, Paste and Clear.

To make it easy to create such menus, Lidskjalv contains a pattern standardMenuBar, containing
two menu definitions: standardFileMenu and standardEditMenu, with exactly those menu item
described above (as dynamic meny items).

These menu items are realized by instances of dynamicMenuItem with related names (e.g.
saveMenuItem for the Save item). The actions to be associated with the individual items are
specified by attaching an menuAction to the menu item in question, e.g.

anMenuAction[]−>theFileMenu.saveMenuItem.attach

E.g.:

Program 9: fileMenu.bet

ORIGIN '~beta/guienv/guienv'
−−− program: descriptor −−−
guienv
(# fileMenuWindow: @window
 (# menubarType:: standardMenubar
 (# fileMenu:: standardFileMenu
 (# newMenuAction: @menuAction
 (# onSelect:: (# do 'New...'−>putline #) #);
 saveMenuAction: @menuAction
 (# onSelect:: (# do 'Saving...'−>putline #) #);
 saveAsMenuAction: @menuAction
 (# onSelect:: (# do 'Saving As...'−>putline #) #);
 open::
 (#
 do newMenuAction[]−>newMenuItem.attach;
 saveMenuAction[]−>saveMenuItem.attach;
 saveAsMenuAction[]−>saveAsMenuItem.attach
 #)
 #);
 editMenu:: standardEditMenu
 #);
 eventhandler::
 (# onAboutToClose:: (# do terminate #) #);
 open:: (# do 'fileMenu'−>title #)
 #)
do fileMenuWindow.open
#)

7 The Menu Bar 18

Note that the open attribute, further bound in fileMenu is automatically invoked on the theFileMenu
instance during the initialization of Guienv.

Program 10: Screendumps(Windows 95)

 Lidskjalv: User Interface Framework − Tutorial

7.1 Standard Menus 19

8 Graphics
As described above, the contents of windows (including ordinary graphics) are controlled by
attaching instances of (subpatterns of) windowItems to the window (or to some canvas attached to
the window). This section will describe the simple figure items.

8.1 Figure Items

As described above, the responsibility for the contents of an instance of window relies on the
programmer. To aid the programmer in making graphics, Guienv defines a number of patterns for
drawing lines, rectangles (with sharp or round corners), ovals, wedges and polygons.

FigureItem is a subpattern of windowItem and inherits as such all its functionality (including the
event handling possibilities) and defines the basic properties that are shared by all figure items. A
figure item have a pen to be used for drawing the item. The pen defines attributes for defining the
drawing pattern, the foreground and background colors, and the size of the pen (a rectangle).

Line is a straight line and defines the attributes start and end for accessing and changing the
end−points of the line.

Shape is used as superpattern to all figure items that are defined by means of a rectangle and can
be filled. Shape contains a fill attribute which defines the facilities for filling the shape (i.e. the tile
pattern and the foreground and background colors to be used for the fill).

Rect is a real figure item in the sense that it is
extending all figureItem procedures such that an
instance of rect can be properly drawn in a window.

RoundRect is like rect, except that it also defines
roundness to takes two integers, defining the round
corners by defining the width and height of the oval in
the corners. If R is an instance of roundRect, then

(OW, OH) −> R.roundness

defines the rectangle seen here.

Oval is also like rect except that an oval is drawn.

8 Graphics 20

Wedge is like oval, except that it also defines
startAngle and endAngle which takes one integers,
defining the start and end angles of the arc. If A is an
instance of wedge, then

SW −> A.startAngle
EW −> A.endAngle

defines the wedge seen here.

Polygon is a figure item that consists of a collection of
connected line segments. The points defining the
polygon is specified by:

p: [6] ^point
do &point[]−>p[1][]; (3,3) −>p[1];
 &point[]−>p[2][]; (5,7) −>p[2];
 &point[]−>p[3][]; (4,45) −>p[3];
 &point[]−>p[4][]; (30,45)−>p[4];
 &point[]−>p[5][]; (44,3) −>p[5];
 &point[]−>p[6][]; (1,55) −>p[6];
 go.open;
 p[]−>go.points

Drawing using figure items is as simple as:

Program 11: oval.bet

ORIGIN '~beta/guienv/guienv';
INCLUDE '~beta/guienv/figureitems'
−−− program: descriptor −−−
guienv
(# aWindow: @window
 (# go: @oval
 (# open::
 (#
 do (100, 100)−>position;
 (50, 100)−>size;
 7−>pen.size
 #)
 #);
 eventhandler::
 (# onAboutToClose:: (# do terminate #) #);
 open::
 (#
 do (100, 100)−>position;
 (300, 300)−>size;
 'oval'−>title;
 go.open
 #)
 #)
do aWindow.open
#)

This creates a window with an oval, positioned in (100, 100) and with the oval drawn using a 7x7
sized pen.

 Lidskjalv: User Interface Framework − Tutorial

8.1 Figure Items 21

Program 12: Screendump
(Windows NT)

8.2 Interactive Graphics Facilities

Interactive graphics in window is handled through the definition of event handlers of the
windowItems attached with the window. The actual event handling of the window items (realizing
that they are clicked, the mouse is entering them, etc) is handled entirely by Lidskjalv. The refresh
of window items are also handled entirely by Lidskjalv. Please note, that these interactive facilities
applies for all subpatterns of windowItem (i.e. not only for subpatterns of figureItem). Figure items
are merely used here for demonstrative purposes.

8.2.1 Selection of Graphics Objects

Selection of a windowItem is realized by specializing the onMouseDown event pattern in the
appropriate windowItem. E.g.

Program 13: ovalSelect.bet

ORIGIN '~beta/guienv/guienv';
INCLUDE '~beta/guienv/figureitems'
−−− program: descriptor −−−
guienv
(# selectWindow: @window
 (# go: @oval
 (# open::
 (#
 do (100, 100)−>position;
 (50, 100)−>size;
 #);
 eventhandler::
 (# onMouseDown:: (# do 'Selected...'−>puttext #) #)
 #);
 eventhandler::
 (# onAboutToClose:: (# do terminate #) #);
 open::
 (#
 do (100, 100)−>position;
 (300, 300)−>size;
 'ovalSelect'−>title;
 go.open
 #)
 #)
do selectWindow.open
#)

 Lidskjalv: User Interface Framework − Tutorial

8.1 Figure Items 22

Program 14: screendumps
(Windows 95)

8.2.2 Dragging of Graphics Objects

Dragging is specified using the drag pattern of windowItem. Dragging of e.g. a oval can specified
as follows:

Program 15: ovalDrag.bet

ORIGIN '~beta/guienv/guienv';
INCLUDE '~beta/guienv/figureitems'
−−− program: descriptor −−−
guienv
(# dragWindow: @window
 (# go: @oval
 (# open::
 (#
 do (100, 100)−>position;
 (50, 100)−>size;
 7−>pen.size
 #);
 eventhandler::
 (# onMouseDown:: (# do drag #) #)
 #);
 eventhandler::
 (# onAboutToClose:: (# do terminate #) #);
 open::
 (#
 do (100, 100)−>position;
 (300, 300)−>size;
 'ovalDrag'−>title;
 go.open
 #)
 #)
do dragWindow.open
#)

8.3 Canvas

Canvasses are used for grouping other window items together to form a single unit such that e.g.
moving the canvas inside the window moves all the window items attached to the canvas. Canvas
is a subpattern to windowItem.

 Lidskjalv: User Interface Framework − Tutorial

8.2.1 Selection of Graphics Objects 23

8.4 Scroller

A scroller is a special kind of windowItem that has scrollbars associated with it. The purpose of the
scroller is to act as a viewport, restricting the visibility of the window items attached to the scroller.
The purpose of the scrollbars is to enable this viewport to be scrolled to another position:

Scrolling is realized through three patterns: abstractScroller, textEditor and scroller.
AbstractScroller implements the general scrolling facilities with scrollbars etc. It defines a virtual
pattern, contentsType, which defines the type of windowItem to be controlled by the
abstractScroller. The two other scrollers then further bind this virtual to text and canvas,
respectively.

The following is the previous example with an associated scroller:

Program 16: ovalScroll.bet

ORIGIN '~beta/guienv/guienv';
INCLUDE '~beta/guienv/figureitems';
INCLUDE '~beta/guienv/fields'
−−− program: descriptor −−−
guienv
(# scrollWindow: @window
 (# scroll: @scroller
 (# contentsType::
 (# go: @oval
 (# open::
 (#
 do (100, 100)−>position;
 (350, 450)−>size;
 7−>pen.size
 #);
 eventhandler::
 (# onMouseDown:: (# do drag #) #)
 #);
 open:: (# do go.open #)
 #);
 open::
 (# do true−>bindBottom−>bindRight #)
 #);
 eventhandler::
 (# onAboutToClose:: (# do terminate #) #);
 open::
 (#
 do (100, 100)−>position;
 (300, 300)−>size;
 'ovalScroll'−>title;
 scroll.open;
 size−>scroll.size
 #)

 Lidskjalv: User Interface Framework − Tutorial

8.4 Scroller 24

 #)
do scrollWindow.open
#)

Program 17: screendump (Windows NT)

Please note the use of

true −> bindBottom −> bindRight

in the definition of scroll. This informs Lidskjalv that scroll should extend towards the bottom and
right if its enclosing window is resized. This facility is available for all windowItems.

 Lidskjalv: User Interface Framework − Tutorial

8.4 Scroller 25

9 Controls and Dialog Boxes
One of the most efficient ways to obtain structured information from the user is by presenting him
with a dialog box in which he may enter text, select items from a list, check choices, etc. Lidskjalv
enables the construction of such dialog boxes through the window pattern. Dialogs may be either
modal or modeless. A modal dialog box will take over the entire control of the underlying window
system, restricting the user only to interact with the dialog box until it is removed from the screen. A
modeless dialog box, on the other hand, allows the user to choose also to interact with the other
windows and menus on the screen while the dialog box is on the screen. Dialogs are constructed
by a window, and either shown using either showModal or show.

Dialog boxes consists of the dialog box window and a number of control items in that window.
Control items are either static text, editable text, buttons, check boxes, radio boxes or icons, along
possibly with other graphics (e.g. figure items). The control items are used to specify the various
options, that the user has to choose among in order to fill−in the requested information.

Program 18: screendump (Macintosh)

9.2 Control Items

Control items are the bread and butter of dialogs. Control items exists in seven different forms (all
subpatterns of windowItem), namely text labels, text fields (editable), buttons, check boxes, radio
boxes, icons and pictures. These control items are defined as subpatterns of the control pattern.

The inheritance tree of controls in the controls library is:

To illustrate the facilities, we have included the Macintosh graphical elements associated with these
classes. Naturally, the graphical elements will appear differently on the Motif and Win32 platforms:

Control pattern name

9 Controls and Dialog Boxes 26

Image

Description

scrollbar

Used for various scrolling purposes.

staticText

Used to specify permanent text in the dialog (usually explanatory text).

editText

Used to allow the user to enter some text.

pushButton

A button is used to specify some actions to be taken.

optionButton

Used to specify a button with associated pop−up menu.

checkBox

A check box is usually used together with other check boxes to present the user with a group of
non−exclusive options.

radioButton

A radio box is usually used together with other radio boxes to present the user with a group of
exclusive options.

iconButton

 Lidskjalv: User Interface Framework − Tutorial

9 Controls and Dialog Boxes 27

An icon is used to show a minor picture in the dialog.

The control pattern is a subpattern of windowItem and inherits as such all its facilities (size,
position, event handling, etc.). The actions to be associated with a control must be specified in
further bindings of e.g. the virtual event pattern onMouseDown. Control defines some other
facilities that can be ignored for most Lidskjalv applications.

Scrollbar defines various attributes for controlling the scrollbar (scrollAmount, maxValue and value).
Besides the eventhandler, a new event patterns are defined: onThumbMoved. OnThumbMoved is
invoked when the user moved the scroll thumb. The orientation (vertical or horizontal) is controlled
through the vertical attribute, such that true−>vertical specifies the scrollbar to be vertical
(horizontal for false). Finally, the length of the scrollbar is controlled by the length attribute.

Button is also a subpattern of control and is the superpattern for the rest of the controls. The
attributes of button are controlling the label (text and text style), associated with all buttons.

PushButton and staticText are simple subpatterns of button. IconButton is another simple
subpattern of button, only defining one new attribute showLabel for controlling whether the label
should be shown or not.

EditText is implementing a one−line text editor to be used for simple text specifications (file names
etc.) The text style of the text is controlled by the style attribute, and the contents of the editText
can be manipulated through the contents attribute. That is, if T is a text, and ET is a editText, then
T[]−> ET.contents sets the text shown in the editText control to the contents of T (i.e. setting the
initial contents), and ET.contents−>T[] copies the contents of the editText control into T (i.e. reading
the user input).

OptionButton defines a field which will pop−up a menu in response to the user pressing the mouse
button on top of the field. The attributes of optionButton controls the associated menu and the
currently selected menu item (shown inside the field).

ToggleButton is the common superpattern for the RadioButton and CheckBox controls.
ToggleButton controls a binary state. A series of RadioButtons are used for specifying a set of
exclusive options, and one or more checkBoxes are used for specifying a set of non−exclusive
options.

Finally, one of the buttons in the window can be specified to function as a default button (i.e. be
activated by pressing carriage return) by entering a reference to it to defaultButton.

The following example illustrates the use of controls:

Program 19: dialog.bet

ORIGIN '~beta/guienv/guienv';
INCLUDE '~beta/guienv/controls'
−−− program: descriptor −−−
guienv
(# authorName: @text;
 isReport: @boolean;
 theDialog: @window
 (# cTitleLabel: @staticText

 Lidskjalv: User Interface Framework − Tutorial

9.2 Control Items 28

 (# open::
 (#
 do (10, 10)−>position; (95,25)−>size;
 'Title: '−>label
 #) #);
 cTitle: @editText
 (# open::
 (# do (115, 10)−>position; (150,25)−>size #)
 #);
 cAuthorLabel: @staticText
 (# open::
 (#
 do (10, 40)−>position; (95,25)−>size;
 'Author: '−>label
 #) #);
 cAuthor: @editText
 (# open::
 (# do (115, 40)−>position; (150,25)−>size #)
 #);
 cReport: @checkBox
 (# open::
 (#
 do (10, 70)−>position; (100,25)−>size;
 'Report'−>label
 #);
 eventhandler::
 (# onMouseUp:: (# do not state−>state #) #);
 #);
 cCancel: @pushButton
 (# open::
 (#
 do (115, 70)−>position; (80,25)−>size;
 'Cancel'−>label
 #);
 eventhandler::
 (# onMouseUp:: (# do theDialog.close #) #)
 #);
 cOk: @pushButton
 (# open::
 (#
 do (115+150−30, 70)−>position; (30,25)−>size;
 'OK'−>label
 #);
 eventhandler::
 (# onMouseUp::
 (#
 do (* store values, then *)
 theDialog.close
 #) #)
 #);
 eventhandler::
 (# onAboutToClose:: (# do terminate #) #);
 open::
 (#
 do (40,40)−>position; (275,100)−>size;
 'dialog'−>title;
 cOk.open; cCancel.open;
 cTitleLabel.open; cTitle.open;
 cAuthorLabel.open; cAuthor.open;
 cReport.open;
 cOk[]−>defaultButton
 #)
 #)
do theDialog.open;
 theDialog.showModal

 Lidskjalv: User Interface Framework − Tutorial

9.2 Control Items 29

#)

Program 20: screendump
(Windows NT)

This defines a dialog with two buttons, two editable text fields, two static text fields, and one check
box (all enabled).

 Lidskjalv: User Interface Framework − Tutorial

9.2 Control Items 30

10 Scroll Lists
Scroll lists are used to display an interface object in which the user is able to select elements from
a list of elements (e.g. file names).

A scrollList maintains the list of elements and the user is allowed to scroll in the list or to select
elements in the list by clicking on them. ScrollList has operations for inserting, deleting and
scanning the elements in the list. Furthermore, scrollList maintains a list of the currently selected
elements in the list.

TextScrollList is a subpattern of scrollList for maintaining a list of text strings. TextScrollList defines
additional operations for manipulating the text strings and for manipulation the text style of the
elements in the list.

The following is an example of a textScrollList for selecting in a list of items:

Program 21: scrollinglist.bet

ORIGIN '~beta/guienv/guienv';
INCLUDE '~beta/guienv/scrolllists'
−−− program: descriptor −−−
guienv
(# scrollListWindow: @window
 (# scrollList: @textScrollList
 (# open::
 (# tmpText: @text;
 windowSize: @point
 do (5,20)−>position;
 20−>append;
 (for inx: 20 repeat
 'Item: '−>tmpText;
 inx−>tmpText.putint;
 (inx,tmpText[])−>setText
 for);
 this(scrollListWindow).size−>windowSize;
 position−>windowSize.subtract;
 (0,15)−>windowSize.subtract;
 windowSize−>size;
 true−>bindRight−>bindBottom
 #);
 eventhandler::
 (# onSelect::
 (# do item−>gettext−>putline #)
 #)
 #);
 eventhandler::
 (# onAboutToClose:: (# do terminate #) #);
 open::
 (#
 do 'scrollingList'−>title;
 scrollList.open
 #)
 #)
do scrollListWindow.open
#)

10 Scroll Lists 31

Program 22: screendumps (Windows 95)

 Lidskjalv: User Interface Framework − Tutorial

10 Scroll Lists 32

11 Window Fields
Lidskjalv offers facilities for defining more advanced fields than the above mentioned controls.
These facilities include window items as two different text editing fields (textField and textEditor).
These patterns are subpatterns of windowItem and inherits as such all its facilities.

TextField and textEditor are both advanced text editors offering the usual text editing facilities, such
as fonts, cut/copy/paste, selections, etc. along with simple text manipulation functions. All event
handling is automatically taken care of by the patterns. TextEditor is only special by offering
scrolling facilities.

TextField handles text selection through the selection attribute. Selection.start contains the
character position of the first character in the selection and selection.end contains the character
position of the last character in the selection. If selection.start = selection.end, then nothing is
selected, and selection.start identifies the position of the text cursor. Selection.contents returns the
text in the selection. ScrollIntoView will make sure that the current selection is visible.

The text editing facilities are cut, copy and paste, that implements the usual cut/copy/paste
functionality. Insert takes a text as parameter, and inserts it immediately before the current
selection, and delete deletes the text of the current selection.

To enable scanning the entire text in the text field, the scanText operation is defined. ScanText is a
control pattern that takes two positions as parameters, and iterates over the characters in the text
editor between the two positions. During the scan, ch will contain the current character in the text.

The text contents of the text field is accessed through the contents attribute that can be used for
getting a copy of the current text in the text field.

The simplest possible 'Hello World' textField can be specified as follows:

Program 23: textField.bet

ORIGIN '~beta/guienv/guienv';
INCLUDE '~beta/guienv/fields'
−−− program: descriptor −−−
guienv
(# textWindow: @window
 (# txtField: @textField
 (# open::
 (# t: @styledText;
 do (0, 0)−>position;
 (300, 100)−>size;
 'Hello World!'−>t;
 t[]−>contents
 #)
 #);
 eventhandler::
 (# onAboutToClose:: (# do terminate #) #);
 open::
 (#
 do (20, 100)−>position;
 (300, 100)−>size;
 'textField'−>title;
 txtField.open
 #)
 #);

11 Window Fields 33

do textWindow.open
#)

This will create a textField at position (20, 100) and with size (300, 100). The initial contents of the
textField is 'Hello World!'. All usual text editing facilities will be available in the editor:

Program 24: screendump (Windows NT)

By replacing textField by textEditor and subtracting (15,15) from the size of the myTextField will
result in a window with at text editor with scrolling facilities. The reason for subtracting (15, 15) from
the size of the editor field is to make room for the scrollbars at the right and bottom of the window.

Program 25: textEditor.bet

ORIGIN '~beta/guienv/guienv';
INCLUDE '~beta/guienv/fields'
−−− program: descriptor −−−
guienv
(# textWindow: @window
 (# txtEdit: @textEditor
 (# open::
 (# t: @styledText;
 do (−1, −1)−>position;
 (287, 87)−>size;
 'Hello World!'−>t;
 t[]−>contents.contents;
 true −> bindRight;
 true −> bindBottom;
 #)
 #);
 eventhandler::
 (# onAboutToClose:: (# do terminate #) #);
 open::
 (#
 do (20, 100)−>position;
 (285, 85)−>size;
 'textEditor'−>title;
 txtEdit.open
 #)
 #);
do textWindow.open
#)

Program 26: screendump
(Windows NT)

 Lidskjalv: User Interface Framework − Tutorial

11 Window Fields 34

Note, that the only visible difference, compared with the previous textField example is that a text
editor automatically has both vertical and horizontal scroll bars.

 Lidskjalv: User Interface Framework − Tutorial

11 Window Fields 35

12 Standard Dialogs
Lidskjalv contains a number of standard dialogs, including file selection dialogs. The attribute
fileSelectionDialog will activate the standard file dialog and return the path name of the selected file:

Program 27: fileDialog.bet

ORIGIN '~beta/guienv/guienv';
INCLUDE '~beta/guienv/stddialogs';
−−− program: descriptor −−−
guienv
(# name: ^text;
do fileSelectionDialog(# do 'fileDialog'−>Title[] #)−>name[];
 (if name[]=NONE then
 'Selected Cancel' −> putline;
 else
 name[] −> putline;
 if);
 terminate;
#)

Program 28: screendump
(Windows NT)

12 Standard Dialogs 36

Index
The entries in the alphabetic index consists of selected words and symbols from the body files of
this manual − these are in bold font − as well as the identifiers defined in the public interfaces of
the libraries − set in regular font.
In the manual, the entries, which can be found in the index are typeset like this. This can help
localizing the identifier, when the link from the index if followed − especially in the case where the
browser does not scroll the line to the top, e.g. because there is less than a page of text left.
In the small table of letters and symbols below, each entry links directly to the section of the index
containing entries starting with the corresponding letter or symbol.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

L

Lidskjalv User Interface
Framework

Index 37

	Table of Contents
	1 The Lidskjalv User Interface Framework
	1.1 Further Readings

	2 Structure of a Lidskjalv application
	2.1 Lidskjalv Declarations
	2.2 Lidskjalv Initialization
	2.3 Lidskjalv Event Handling
	2.4 Application Suspend, Resume and Terminate

	3 Overview of Lidskjalv
	4 Access to Global Structures
	4.1 Access to the Mouse
	4.2 Access to the Clipboard
	4.3 Standard Input and Output
	4.4 Coordinate System
	5.1 Event Handling in Windows
	5.2 Contents of Windows
	5.3 Window Items
	6.2 Basic Menu Facilities
	6.2.1 Menu Item Facilities
	6.2.2 Static and Dynamic Menu Items

	5 Windows
	6 Menu Handling
	7 The Menu Bar
	7.1 Standard Menus

	8 Graphics
	8.1 Figure Items
	8.2 Interactive Graphics Facilities
	8.2.1 Selection of Graphics Objects
	8.2.2 Dragging of Graphics Objects

	8.3 Canvas
	8.4 Scroller
	9.2 Control Items

	9 Controls and Dialog Boxes
	10 Scroll Lists
	11 Window Fields
	12 Standard Dialogs
	Index
	L

