
BETA Language Introduction

Mjølner Informatics Report
MIA 94−26

February 2002

Copyright © 1994−2002 Mjølner Informatics.
All rights reserved.

No part of this document may be copied or distributed
without the prior written permission of Mjølner Informatics

http://www.mjolner.com

Table of Contents

1 Introduction ...1
1.1 Language Concepts...1
1.2 Powerful Abstraction Mechanisms...1

1.2.1 The pattern..1
1.2.2 Subpattern...1
1.2.3 Virtual pattern..2

1.3 Pattern variable..2
1.4 Coroutines and concurrency..2
1.5 Identification of Objects..2

1.5.1 Class−less objects..2
1.6 Classification..2
1.7 Composition (Aggregation)..3
1.8 Inheritance...3
1.9 Conceptual Framework..3

1.9.1 Modeling..3

2 Basic Constructs ..4
2.1 Simple Types and Values..4
2.2 Simple Static Variables..4
2.3 Simple Assignments..4

2.3.1 Value assignment..4
2.4 Control Structures..4

2.4.1 if..4
2.4.2 for..5
2.4.3 descriptor..5
2.4.4 labeled descriptor..5
2.4.5 labeled imperative...6

2.5 Static and Dynamic Variables..6
2.5.1 Reference attributes..6
2.5.2 Static Reference..6
2.5.3 Dynamic reference..6
2.5.4 Reference assignment..6

2.6 Repetitions...7
2.7 Composite Types (Records)..7

2.7.1 Pattern...7

3 Patterns and Objects..8
3.1 Pattern Employee..8
3.2 Elements of Employee...8
3.3 Class and procedure patterns..9
3.4 Subpatterns of Employee...9
3.5 Part object..9
3.6 Dynamic reference...9
3.7 Singular Objects...10
3.8 Subprocedure..10

3.8.1 Abstract procedure pattern..11
3.9 Control Patterns...12

3.9.1 scan is a control pattern..12
3.9.2 Using a control pattern..12

3.10 Nested Patterns...13
3.11 BETA supports general block−structure..13

 BETA Language Introduction

i

Table of Contents

3.12 Nested Class Patterns...13

4 Virtual Pattern ...15
4.1 Structural equivalence is used in BETA..15
4.2 Patterns A and AA...15
4.3 Combined descriptor..15
4.4 Pattern AB..15
4.5 Pattern AAA...15
4.6 Final binding...16
4.7 Virtual Procedure Pattern...16

4.7.1 ComputeSalary is a virtual procedure pattern...16
4.8 Virtual Class Pattern..17

4.8.1 type is a virtual class pattern...17
4.8.2 General parameterized patterns ..18

5 Coroutines and Concurrency ..19
5.1 Components with execution threads..19
5.2 Coroutines..20

5.2.1 Suspending and resuming..20
5.3 Concurrency...20
5.4 Monitor Example..21

5.4.1 Procedure pattern conc...21
5.4.2 Rendezvous Example...21
5.4.3 More information...23

6 Inheritance ...24
6.1 Classification and inheritance ...24
6.2 Inheritance from part−objects..24

7 BETA Terminology ...27
7.1 Modelling..27
7.2 Declarations and Object Descriptors...28
7.3 Reference Attributes..30
7.4 Pattern Attributes...31
7.5 Imperatives..32
7.6 Block Structure and Scoping..35
7.7 Inserted Objects...36
7.8 Inheritance...36
7.9 Virtual Patterns..37

8 BETA Quick Reference Card...39

Index ...42
#...42
&...42
(..42
−...42
/..42
:..42
>...42
@...43

 BETA Language Introduction

ii

Table of Contents

[..43
.̂..43

A...43
B...43
C..43
D..43
E...44
F...44
G..44
I..44
J...44
K...44
L...44
M..44
N..45
O..45
P...45
Q..45
R..45
S...45
T...46
V...46
|..46

 BETA Language Introduction

iii

1 Introduction
This report is a an introduction to the BETA language. The BETA language is presented to
someone who is familiar with one or more object−oriented language such as C++ or Eiffel.

The overall aspects of the BETA language is presented. The presentation focuses on the concepts
and ideas behind the design of BETA, and includes examples on the use of most constructs. The
tutorial contains sections on basic constructs, patterns and objects, singular objects, subprocedure,
control patterns, nested patterns, virtual patterns, coroutines, concurrency, and inheritance.

For more details about the BETA language than presented in this tutorial please see [MMN 93]. For
a tutorial on the Mjølner System, please see [MIA 94−24]

This introduction is based on a chapter in the book [Knudsen 94] written by Ole Lehrmann Madsen.

1.1 Language Concepts

BETA is a modern object−oriented language from the Scandinavian school of object−orientation
where the first object−oriented language Simula was developed. BETA supports the
object−oriented perspective on programming and contains comprehensive facilities for procedural
and functional programming. BETA has powerful abstraction mechanisms for supporting
identification of objects, classification and composition. BETA is a strongly typed language like
Simula, Eiffel and C++ with most type checking being carried out at compile−time. It is well known
that it is not possible to obtain all type checking at compile time without sacrificing the
expressiveness of the language. BETA has an optimum balance between compile−time type
checking and run−time type checking.

1.2 Powerful Abstraction Mechanisms

BETA has powerful abstraction mechanisms that provide excellent support for design and
implementation, including data definition for persistent data. The powerful abstraction mechanisms
greatly enhance reusability of designs and implementations.

1.2.1 The pattern

The abstraction mechanisms include class, procedure, function, coroutine, process, exception and
many more, all unified into the ultimate abstraction mechanism: the pattern. In addition to the
pattern, BETA has subpattern, virtual pattern and pattern variable. This unification gives a uniform
treatment of abstraction mechanisms and a number of new ones. Most object−oriented languages
have classes, subclasses and virtual procedures, and some have procedure variables. Since a
pattern is a generalization of abstraction mechanisms like class, procedure, function, etc., the
notions of subpattern, virtual pattern and pattern variable also apply to these abstraction
mechanisms. In addition to the above mentioned abstraction mechanisms, the pattern subsumes
notions such as generic package and task type as known from Ada.

1.2.2 Subpattern

The subpattern covers subclasses as in most other object−oriented languages. In addition,
procedures may be organized in a subprocedure hierarchy in the same way as classes may be
organized in a subclass hierarchy. Since patterns may also be used to describe functions,

1 Introduction 1

#mmn93
#mia94-24
#knudsen94

coroutines, concurrent processes, and exceptions, these may also be organized in a pattern
hierarchy.

1.2.3 Virtual pattern

The notion of virtual pattern covers virtual procedures as in C++. In addition, virtual patterns cover
virtual classes, virtual coroutines, virtual concurrent processes, and virtual exceptions. Virtual
classes provide a more general alternative to generic classes as in Eiffel or templates as in C++.

1.3 Pattern variable

BETA includes the notion of pattern variable. This implies that patterns are first class values, that
may be passed around as parameters to other patterns. By using pattern variables instead of
virtual patterns, it is possible dynamically to change the behavior of an object after its generation.
Pattern variables cover procedure variables (i.e. a variable that may be assigned different
procedures). Since patterns may be used as classes, it is also possible to have variables that can
be assigned classes, etc.

1.4 Coroutines and concurrency

BETA does not only allow for passive objects as in C++ and Eiffel. BETA objects may also act as
coroutines, making it possible to model alternating sequential processes and quasi−parallel
processes. BETA coroutines may be executed concurrent (non pre−emptive scheduling in current
implementation). The basic mechanism for synchronization is semaphores, but high−level
abstractions for synchronization and communication, hiding all details about semaphores, are easy
to implement, and the standard library includes monitors, and rendezvous. The user may easily
define new concurrency abstractions including schedulers for processes.

BETA supports the three main subfunctions of abstraction: identification, classification, and
composition as described in the following.

1.5 Identification of Objects

1.5.1 Class−less objects

It is possible to describe objects that are not generated as instances of a class pattern, so−called
'class−less objects'. This is in many cases useful when there is only one object of a kind. In most
object−oriented languages, it is necessary to define superfluous classes for such objects. In
analysis and design, it is absolutely necessary to be able to describe singular objects without
having them as instances of classes.

1.6 Classification

Classification is supported by patterns, subpatterns, and virtual patterns that make it possible to
describe classification hierarchies of objects and patterns (objects, classes, procedures, functions,
coroutines, processes, exceptions, etc.).

 BETA Language Introduction

1.2.3 Virtual pattern 2

1.7 Composition (Aggregation)

Objects and patterns may be defined as a composition of other objects and patterns. The support
for composition includes:

• Whole−part composition: an attribute of an object may be a part−object. This makes it
possible to describe objects in terms of their physical parts.

• Reference composition: an attribute may be a reference to an object. Reference
composition is the basis for modeling arbitrary relations between objects.

• Localization: an attribute of an object may be a (nested) patternÑalso known as
block−structure. The block−structure makes it easy to create arbitrary nested patterns. This
makes it possible for objects to have local patterns used as classes, procedures, etc. Local
patterns greatly enhance the modeling capabilities of an object−oriented language.

1.8 Inheritance

In BETA, inheritance is not only restricted to inheritance from superpatterns. It is also possible to
inherit from a part−object. Virtual patterns in the part−object may be redefined to influence the
enclosing object. Multiple inheritance is supported through inheritance from multiple part−objects.
This gives a much cleaner structure than inheritance from multiple superpatterns.

1.9 Conceptual Framework

BETA is intended for modeling and design as well as implementation. During the design of BETA
the development of the underlying conceptual framework has been just as important as the
language itself.

1.9.1 Modeling

BETA is a language for representing/modeling concepts and phenomena from the application
domain and for implementing such concepts and phenomena on a computer system. Part of a
BETA program describes objects and patterns that represent phenomena and concepts from the
application model. This part is said to be representative since BETA elements at this level are
meaningful with respect to the application domain. Other parts of a BETA program are
non−representative, since they do not correspond to elements of the application domain, but are
intended for realizing the model as a computer system.

The BETA language as presented in this introduction is for describing objects and patterns. The
objects and patterns constitute the logical structure of a program execution. The physical structure
of a program execution is handled by other components of the Mjølner System. A tutorial on using
the this system is given in [MIA 94−24].

 BETA Language Introduction

1.7 Composition (Aggregation) 3

#mia94-24

2 Basic Constructs

The most fundamental elements of BETA are objects and patterns. This section describes the
basic patterns and values, simple assignments, control structures, variable declarations, repetitions
and patterns used as composite types.

2.1 Simple Types and Values

The simple types (or also called basic patterns) are integer, boolean, char, and, real. The following
table shows the simple types with examples of values, including text constant. Notice, that text is
not a simple type in BETA, but a pattern defined in the basic BETA environment called betaenv.

Type Value integer7, −4, 0x4FFC, 2x101101 booleantrue, false char'c' real3.141, −1.234E3 text
constant'abc'

2.2 Simple Static Variables

In BETA, a static variable (also called a static reference) is declared like:

i: @integer;
r: @real;

Variables of the simple types can only be declared static, see below for dynamic references.

2.3 Simple Assignments

2.3.1 Value assignment

Simple value assignments in BETA goes left to right:

2 −> i (* assign the value 2 to i *)
i −> j (* assign the value of i to j *)
i*j −> k (* assign the value of i*j to k *)
(i,j) −> (x,y) (* assign the value of i to x and
 * the value of j to y
 *)

2.4 Control Structures

BETA has two build−in control structures: if and for, both having two forms. The simple if imperative
with one boolean expression:

2.4.1 if

(if <expression> then
 <imperatives>

2 Basic Constructs 4

 else
 <imperatives>
if)

and the if with several alternatives:

(if <expression>
 // <expression> then <imperatives>
 // <expression> then <imperatives>
 else
 <imperatives>
if)

where // means equals.

The simple for imperative just iterates a given number of times:

2.4.2 for

(for <expression> repeat <imperatives> for)

but the for imperative may implicitly declare an iteration variable, only available inside the for loop,
by:

(for <variable>: <expression> repeat <imperatives> for)

The for loop always starts in 1 and stops at <expression>. The loop can be terminated or restarted
using labels, see below.

The following BETA code is a general object−descriptor (or descriptor for short):

2.4.3 descriptor

<declarations>
enter <enter−list>
do <imperatives>
exit <exit−list>

A descriptor consists of type and variable declarations, an enter part for parameters (enter
<enter−list>), a do−part for the action (do <imperatives>), and finally an exit part for the results (exit
<exit−list>). All elements are optional.

A descriptor can be labeled, and the descriptor can be restarted and/or left using the label:

2.4.4 labeled descriptor

L: (# leave L; restart L #)

 BETA Language Introduction

2.4.2 for 5

In general any imperative can have a label:

2.4.5 labeled imperative

L: <imperative>
L: (if leave L if)
L: (for leave L for)

leave L implies that control is transferred to immediately after the labeled imperative/descriptor.
restart L implies that control is transferred to immediately before the labeled imperative/descriptor.

2.5 Static and Dynamic Variables

2.5.1 Reference attributes

In BETA variables are two examples of reference attributes − static references that constantly
denote the same object, and dynamic references that may denote different objects.

2.5.2 Static Reference

Examples of static reference variables are:

i: @integer (* i refers to a simple type: integer *)
p: @A (* an instance of A is automatically generated and
 * p always refers to this object *)
s: @(# #) (* an instance of (# #) is automatically generated
 * and s always refers to this singular object *)

2.5.3 Dynamic reference

Examples of dynamic reference variables are:

i: ^integerObject
p: ^A

Assignments between dynamic references can be done using the reference operator '[]' (read box):

2.5.4 Reference assignment

p1[] −> p2[] (* reference assignment *)

Dynamic reference variables are initially NONE i.e. refers to nothing. Objects can be created using
the new operator '&':

&A[] −> p[] (* create an instance of A and assign the reference
 * to p *)

It is illegal to declare dynamic references to simple types:

 BETA Language Introduction

2.4.5 labeled imperative 6

i: ^integer (* ILLEGAL *)
r: ^real (* ILLEGAL *)

Instead use integerObject, charObject, booleanObject, or realObject defined in the Mjølner System
basic betaenv environment.

2.6 Repetitions

In BETA it is possible to declare a repetition of static (simple types) or dynamic references. A
repetition is declared like:

R: [10] @integer (* repetition of 10 static references *)
P: [10] ^A (* repetition of 10 dynamic references *)
R[1] −> i (* value assignment *)
P[1][] −> x[] (* reference assignment *)
RR: [1] @integer (* repetition of 1 static reference *)
R −> RR (* repetition assignment:
 * all values from R is copied into RR
 * RR is automatically extended if needed
 *)
R.range (* the size of the repetition *)
n −> R.extend (* extends the repetition with n elements *)
n −> R.new (* allocates a new repetition with n elements *)

The range of a repetition is 1 to R.range, thus repetitions always start with 1.

2.7 Composite Types (Records)

Using the object−descriptor it is possible to declare composite types:

point: (# x,y: @integer #) (* point is a composite type
 * consisting of two integers *)
p: @point (* static declaration of a point *)
p.x (* remote access to x *)
circle: (* composite type using simple and composite types *)
 (# center: @point;
 radius: @integer;
 #)

2.7.1 Pattern

The declaration of point and circle above is in general called a pattern declaration. The pattern will
be described in details in the following sections.

 BETA Language Introduction

2.6 Repetitions 7

3 Patterns and Objects

Most object−oriented languages supporting the object−oriented perspective have constructs such
as class, subclass, virtual procedure, and qualified reference variable. These constructs all
originated with Simula. Eiffel and C++ include these constructs although a different terminology is
used. In addition to virtual procedures BETA also has non−virtual procedures.

In this introduction, the BETA version of the above constructs will be described and compared to
other object−oriented languages. The example used in the following is a company with different
kinds of employees, including salesmen and workers. employee is an abstract superpattern
describing the common properties of all employees.

3.1 Pattern Employee

employee:
 (# name: @text;
 birthday: @date;
 dept: ^Department;
 totalHours: @integer;
 registerWork:
 (# noOfHours: @integer
 enter noOfHours
 do noOfHours + totalhours −> totalHours
 #);
 computeSalary:<
 (# salary: @integer
 do inner
 exit salary
 #);
 #);

The elements of the employee pattern have the following meaning:

3.2 Elements of Employee

• The attributes name, birthday, dept and totalHours are reference attributes denoting
instances of the patterns text, date, department and integer respectively.

• Name, birthday, and totalHours refer to part−objects. A part−object is a fixed part of its
enclosed object and is generated together with the enclosing object. Part−objects are also
found in Eiffel and C++.

• Dept is a dynamic reference that either has the value NONE or refers to a separate instance
of the pattern department.

• The attributes registerWork, and computeSalary are pattern attributes describing actions to
be executed. They correspond to procedures in most other languages. The enter−part
describes the input parameters of a pattern and the exit−part describes its output
parameters. registerWork has one input parameter noOfHours and computeSalary has one
output parameter, salary.

• registerWork is a non−virtual pattern attribute. This means that its complete description is
given as part of the description of employee. It is similar to non−virtual functions in C++.

• computeSalary is a virtual pattern attribute (specified by using the ':<' symbol). Only part of
its description is given since the computation of the salary is different for salesmen and
workers. The description of a virtual pattern may be extended in subpatterns of employee. A
virtual pattern attribute is similar to a virtual function in C++.

3 Patterns and Objects 8

3.3 Class and procedure patterns

• employee, registerWork and computeSalary are all examples of patterns. employee is an
example of a pattern used as a class and is therefore called a class pattern. registerWork
and computeSalary are examples of patterns used as procedures and are therefore called
procedure patterns. Technically there is no difference between class patterns and
procedure patterns.

The following patterns are subpatterns of employee corresponding to salesmen and workers.

3.4 Subpatterns of Employee

worker: employee
 (# seniority: @integer;
 computeSalary::<
 (# do totalHours*80+seniority*4−>salary; 0−>totalHours #)
 #);
salesman: employee
 (# noOfSoldUnits: @integer;
 computeSalary::<
 (# do totalHours*80+noOfSoldUnits*6−>salary;
 0−>noOfSoldUnits−>totalHours
 #)
 #)

• The class pattern worker adds the attribute seniority and extends the definition of
computeSalary. The salary for a worker is a function of the totalHours being worked and the
seniority of the worker.

• The class pattern salesman adds the attribute noOfSoldUnits and describes another
extension of computeSalary. The salary for a salesman is a function of the totalHours being
worked and the noOfSoldUnits.

• The symbol '::<' describe the fact that the definition of computeSalary from the superpattern
employee is extended.

3.5 Part object

The above examples have shown instantiation of objects from patterns in the form of
part−object attributes (like birthday: @date). An instance of, say worker, may in a similar way be
generated by a declaration of the form:

mary: @worker

3.6 Dynamic reference

The above examples have also shown a dynamic reference (like dept: ^department). Such a
reference is initially NONE. A dynamic reference to instances of worker may be declared as follows:

theForeman: ^worker

theForeman may be assigned a reference to the object referred by mary by execution of the
following imperative:

 BETA Language Introduction

3.3 Class and procedure patterns 9

mary[] −> theForeman[]

Note that the opposite assignment (theForeman[]−>mary[]) is not legal since mary is a static
reference. An instance of worker may be generated and its reference assigned to theForeman by
executing the following imperative:

&worker[] −> theForeman[]

A few additional comments about constructs used so far:

• The symbol & means new.
• The symbol −> is used for assignment of state.
• An expression R[] denotes the reference to the object referred by R, whereas an expression

R denotes the object itself. The above assignment thus means that the qualified reference
theForeman is assigned a reference to the generated instance of worker.

• An assignment of the form mary−>theForeman means that the state of the object referred
by mary is enforced upon the state of the object referred by theForeman. This form of
assignment is called value assignment. If X and Y are integer objects then X −> Y means
that the value of X is assigned to the object Y.

In this section, it was shown how the most common object−oriented constructs may be expressed
in BETA. In the following sections, examples of the more unique constructs will be given.

3.7 Singular Objects

Often there is only one object of a given type. In most languages it is necessary to make a class
and generate a single instance. In BETA it is possible to describe a singular object directly. There is
only one president of our company and he may be described as the following singular object:

president: @employee(# computeSalary::< (# do BIG −> salary #) #)

The declaration president is similar to the declaration of mary. The difference is that in the
declaration of mary, a pattern name (worker) describes the objects whereas a complete object
description is used to describe the president.

The president object is an example of a singular data object corresponding to an instance of a
class pattern. It is also possible to describe singular action objects corresponding to an instance of
a procedure pattern. Examples of singular action objects are given below.

3.8 Subprocedure

The previous sections has shown examples of patterns used as classes and procedures. For class
patterns, examples of subpatterns have been given. Subpatterns may also be used for procedure
patterns. For attributes, subpatterns may add new attributes and extend definitions of virtual
patterns in the superpattern. In addition, a subpattern may specify further imperatives which have
to be combined with the imperatives of the superpattern. The combination of the imperatives is
handled by the inner construct. Consider the following objects:

mutex: @semaphore; sharedVar: @integer

 BETA Language Introduction

3.7 Singular Objects 10

The variable sharedVar is shared by a number of concurrent processes. Mutual access to the
variable is handled by the semaphore mutex. Update of sharedVar should then be performed as
follows:

mutex.P; m+sharedVar −> sharedVar; mutex.V

3.8.1 Abstract procedure pattern

This pattern of actions must be used whenever sharedVar and other shared objects have to be
accessed. Instead of manipulating the semaphore directly it is possible to encapsulate these
operations in an abstract procedure pattern. The pattern entry can describe this encapsulation:

entry: (# do mutex.P; inner; mutex.V #)

Execution of entry locks mutex before the inner and releases it afterwards. inner may then in
subpatterns of entry be replaced by arbitrary imperatives. The subpattern updateShared of entry
updates sharedVar:

updateShared: entry
 (# m: @integer
 enter m
 do sharedVar+m−> sharedVar
 #)

Execution of an imperative

123 −> updateShared

will then result in execution of the actions

mutex.P; sharedVar+123−>sharedVar; mutex.V

We may now define an abstract superpattern corresponding to a monitor:

monitor:
 (# mutex: @semaphore;
 entry: (# do mutex.P; inner; mutex.V #);
 init:< (# do mutex.V(*initially open*); inner #)
 #);

A (singular) monitor object may now be declared like shared below:

shared: @monitor
 (# var: @integer;
 update: entry(# m: @integer enter m do var+m−>var #);
 get: entry(# v: @integer do var−>v exit v #)
 #)

Semaphores are the basic mechanism in BETA for synchronization. They can express most
synchronization problems, but may be complicated to use. It is therefore mandatory that high level
abstraction mechanisms like monitor can be defined. In section 9 below, further details about
concurrency in BETA will be given.

 BETA Language Introduction

3.8.1 Abstract procedure pattern 11

3.9 Control Patterns

Sub (procedure) patterns are used intensively in BETA for defining control patterns (control
structures). This includes simple control patterns like cycle, forTo, etc. It also includes so−called
iterators on data objects like list, set and register. A pattern describing a register of objects may
have the following interface:

3.9.1 scan is a control pattern

register:
 (# has: (# E: ^type; B: @boolean enter E[] do exit B #);
 insert: (# E: ^type enter E[] do #);
 delete: (# E: ^type enter E[] do #);
 scan: (# current: ^type do inner #);

 #)

A number of details have been left out from the example. These include the representation and
implementation of the register. A register may include instances of the pattern type, which has not
been specified. Type is an example of a virtual class pattern which will be introduced later. For the
moment type is assumed to stand for the pattern object which is a superclass of all patterns, i.e. a
register may include instances of all patterns. An instance of register may be declared and used as
follows:

employees: @register;

mary[]−>employees.insert;
(if boss[]−>employees.has then if)

The control pattern scan may be used as follows:

3.9.2 Using a control pattern

0−>totalSalary;
employees.scan
 (# do current.computeSalary+totalSalary−>totalSalary #);
totalSalary−>screen.putint

This works as follows:

• The imperative employees.scan(# #) is an example of a singular action object as mentioned
in section 4.

• The do−part of scan has an inner imperative which is executed for each element in the
register. The details of this are not shown, but it may be implemented as a loop that steps
through the elements of the register and executes inner for each element.

• The attribute current of scan is used as an index variable that for each iteration refers to the
current element of the register. This may be implemented by assigning the reference of the
current element to current before inner is executed.

• The effect of executing the above singular action object is that
current.computeSalary+totalSalary−>totalSalary is executed for each element in the
register.

 BETA Language Introduction

3.9 Control Patterns 12

3.10 Nested Patterns

One of the characteristics of Algol−like languages is block−structure, which allows for arbitrary
nesting of procedures. The possibility of nesting has been carried over to BETA where patterns can
be arbitrarily nested. Block−structure is a powerful mechanism that extends the modeling
capabilities of languages. However, besides Simula and BETA, none of the mainstream
object−oriented languages supports block−structure. In most object−oriented languages, an object
may be characterized by data attributes (instance variables) and procedure attributes. In BETA, an
object may in addition be characterized by class pattern attributes.

3.11 BETA supports general block−structure

In the examples presented so far, there have been two levels of nesting. The outer level
corresponds to class patterns, like employee, and the inner level corresponds to procedure
patterns, like computeSalary. In procedural languages like Algol and Pascal it is common practice
to define procedures with local procedures. This is also possible in BETA.

3.12 Nested Class Patterns

The possibility of nesting classes is a powerful feature which is not possible in languages like C++
and Eiffel. The following example shows a class pattern that describes a product of our company:

productDescription:
 (# name: @text;
 price: @integer;
 noOfSoldUnits: @integer;
 order:
 (# orderDate: @date;
 c: ^customer;
 print:<
 (#
 do name[] −> puttext;
 'Price: '−>puttext; price −> putint; ' '−>put;
 ' No of units sold: '−>puttext;
 noOfSoldUnits−>putint; ' '−>put;
 orderDate.print;
 C.print;
 inner
 #)
 #)
 #);

One of the attributes of a productDescription object is the class pattern order. An instance of order
describes an order made on this product by some customer. The attributes of an order object
include the date of the order, the number of units ordered, the customer ordering the product, and a
print operation. Consider the objects:

P1,P2: @product; o1,o2: @P1.order; o3,o4: @P2.order

The objects o1 and o2 are instances of P1.order whereas o3 and o4 are instances of P2.order. The
block−structure makes it possible to refer to global names in enclosing objects. In the above
example, the print operation refers to names in the enclosing order object. This resembles most
object−oriented languages where operations inside a procedure refer to names in the enclosing
object. The print operation, however, also refers to names in the surrounding productDescription

 BETA Language Introduction

3.10 Nested Patterns 13

object. Execution of say o1.print will thus print the values of P1.name, P1.price, P1.noOfSoldUnits,
o1.orderDate, and o1.c.

 BETA Language Introduction

3.10 Nested Patterns 14

4 Virtual Pattern

4.1 Structural equivalence is used in BETA

In the example in section 3 it was mentioned that a redefinition of a virtual procedure pattern is not
a redefinition (overriding) as in C++. In fact a virtual pattern in BETA can only be extended and
cannot be completely redefined. The rationale behind this is that a subpattern should have the
same properties as its superpattern including which imperatives are executed. Ideally a subpattern
should be behaviorally equivalent to its superpattern. This will, however, require a correctness
proof. The subpattern mechanism of BETA supports a form of structural equivalence between a
subpattern and its superpattern.

Consider the following patterns:

4.2 Patterns A and AA

A: (# V:< (# x: do I1; inner; I2 #) #);
AA: A(# V::< (# y: do I3; inner; I4#) #)

The pattern A has a virtual procedure attribute V. V has an attribute x and its do−part contains the
execution of I1; inner; I2. The subpattern AA of A extends the definition of V. The extended
definition of V in AA corresponds to the following object−descriptor (except for scope rules):

4.3 Combined descriptor

(# x: ; y: do I1; I3; inner; I4; I2 #)

As may be seen the V attribute of AA has the attributes x and y and the do−part consists of I1; I3;
inner; I4; I2. The definition of V is an extension of the one from A and not a replacement.

The subpattern AB of A describes another extension of V:

4.4 Pattern AB

AB: A(# V::< (# z: do I5; inner; I6 #) #)

Here V corresponds to the following object descriptor:

V: (# x: ; z: do I1; I5; inner; I6; I2 #)

The definition of V may be further extended in subpatterns of AA also as shown in the definition
AAA:

4.5 Pattern AAA

AAA: AA(# V::< (# q: do I7; inner; I8 #) #)

The definition of V corresponds to the following object−descriptor:

4 Virtual Pattern 15

V: (# x: ; y: ; q: do I1; I3; I7; inner; I8; I4; I2 #)

As may be seen, the pattern V is a combination of the definitions of V from A, AA and AAA.

4.6 Final binding

The definition of V may be extended using a final binding (::) in subpatterns of A as shown in the
definition AC:

AC: A(# V::(# q: do I2; inner; I4 #) #)

The final binding of V means that V cannot be extended in subpatterns of AC. The extended
definition of V in AC corresponds to the following object−descriptor (except for scope rules):

(# x: ; y: do I1; I3; inner; I4; I2 #)

The virtual mechanism in BETA guarantees that behavior defined in a superpattern cannot be
replaced in a subpattern. This form of structural equivalence is useful when defining libraries of
patterns that are supposed to execute a certain sequence of actions. In C++, the programmer must
explicitly invoke the actions from the superclass by means of superclass::functionname. This is
illustrated by the example in the next section.

The inner construct is more general than shown above, since a pattern may have more than one
inner and inner may appear inside control structures and nested singular object descriptors.

4.7 Virtual Procedure Pattern

The attribute computeSalary of pattern employee is an example of a virtual procedure pattern. In
this example the do−part of the virtual definition in employee is very simple, only consisting of an
inner−imperative. The extended definitions of computeSalary in worker and salesman both include
the code noOfHours*80 and 0−>totalHours. This code may instead be defined in the definition of
computeSalary in employee as shown below:

4.7.1 ComputeSalary is a virtual procedure pattern

employee:
 (#
 computeSalary:<
 (# salary: @integer
 do noOfHours*80−>salary; inner; 0−>totalHours
 exit salary
 #)
 #);
 worker: employee
 (#
 computeSalary::< (# do seniority*4+salary−>salary; inner #)
 #);
 salesman: employee
 (#
 computeSalary::<
 (#
 do noOfSoldUnits*6+salary −>salary;
 0 −>noOfSoldUnits;

 BETA Language Introduction

4.6 Final binding 16

 inner
 #)
 #)

The extended definitions of computeSalary in worker and salesman have an inner to enable further
extensions of computeSalary in subpatterns of worker and salesman.

4.8 Virtual Class Pattern

Virtual patterns may also be used to parameterize general container patterns such as the register
pattern described above. For the register pattern we assumed the existence of a type pattern
defining the elements of the register, i.e. elements of a register must be instances of the pattern
type. The pattern type may be declared as a virtual pattern attribute of register as shown below:

4.8.1 type is a virtual class pattern

register:
 (# type:< object;
 insert:< (# e: ^type enter e[] do #)

 #)

The declaration type:< object specifies that type is either the pattern object or some subpattern of
object. In the definition of register, type may be used as an alias for object, e.g. references qualified
by type are known to be at least Objects. Since object is the most general superpattern, type may
potentially be any other pattern. The virtual attribute type may be bound to a subpattern of object in
subpatterns of register. The following declaration shows a pattern workerRegister which is a
register where the type attribute has been bound to worker:

workerRegister: register
 (# type::< worker;
 findOldestSeniority:
 (# old: @integer
 do scan
 (# do (if current.seniority > old then
 current.seniority−>old
 if)#)
 exit old
 #)
 #);

In the definition of workerRegister, the virtual pattern type may be used as a synonym for the
pattern worker. This means that all references qualified by type may be used as if they were
qualified by worker. The reference current of the scan operation is used in this way by the operation
findOldestSeniority which computes the oldest seniority of the register. The expression
current.seniority is legal since current is qualified by type which in workerRegister is at least a
worker.

In subpatterns of workerRegister it is possible to make further bindings of type thereby restricting
the possible members of the register. Suppose that manager is a subpattern of worker. A manager
register may then be defined as a subpattern of workerRegister:

 BETA Language Introduction

4.8 Virtual Class Pattern 17

managerRegister: workerRegister(# type::< manager #)

In the definition of managerRegister, type may be used as a synonym for manager, i.e. all
references qualified by type are also qualified by manager.

4.8.2 General parameterized patterns

Virtual patterns make it possible to define general parameterized patterns like register and to
restrict the member type of the elements. In this way virtual class patterns provide an alternative to
templates as found in C++.

 BETA Language Introduction

4.8.2 General parameterized patterns 18

5 Coroutines and Concurrency

A BETA object may be the basis for an execution thread. Such a thread will consist of a stack of
objects currently being executed. An object which can be used as the basis for an execution thread
has to be declared as an object of kind component as shown in the following declaration:

5.1 Components with execution threads

A: @|activity

The symbol '|' describes that the object A is a component. A component (thread) may be executed
as a coroutine or it may be forked as a concurrent process. Consider the following description of
activity:

activity:
 (#
 do cycle
 (#
 do getOrder; suspend;
 processOrder; suspend;
 deliverOrder; suspend
 #)#)

The component object may be invoked by an imperative

A

which implies that the do−part is executed. The execution of A is temporarily suspended when A
executes a suspend−imperative. In the above example this happens after the execution of
getOrder. A subsequent invocation of A will resume execution after the suspend−imperative. In the
above example this means that processOrder will be executed. If B is also an instance of activity,
then the calling object may alternate between executing A and B:

cycle(# do A; B; #)

The above example shows how to use components as deterministic coroutines in the sense that
the calling object controls the scheduling of the coroutines. In section 9.1 below another example of
using coroutines will be given.

It is also possible to execute component objects concurrently. By executing

A[]−>fork; B[]−>fork

the component objects A and B will be executed concurrently. As for the deterministic coroutine
situation, A and B will temporarily suspend execution when they execute a suspend−imperative.
Further examples of concurrent objects will be given below in section 9.2.

5 Coroutines and Concurrency 19

5.2 Coroutines

 Deterministic coroutines have demonstrated their usefulness through many years of usage. Below
we give a typical example of using coroutines.

Suppose we have a register for the permanent workers and another one for the hourly paid
workers. Suppose also that it is possible to sort these registers according to a given criterion like
the total hours worked by the employee. Suppose that we want to produce a list of names of all
employees sorted according to the total hours worked. This may be done by merging the two
registers. A register object has a scan operation that makes it possible to go through all elements of
the register. Instead we define an operation of register in the form of a coroutine getNext, which
delivers the next element of the register when called:

register:
 (#
 getNext: | @
 (# elm: ^employee
 do scan(# do current[]−>elm[]; suspend #);
 none−>elm[]
 exit elm[]
 #);
 #);
 pReg: @permanentRegister; hReg: @hourlyPaidRegister;

 pReg.getNext−>e1[]; hReg.getnext−>e2[];
 L: cycle
 (#
 do (if e1[] = none then (*empty hReg*); leave L if);
 (if e2[] = none then (*empty pReg*); leave L if);
 (if e1.totalHours < e2.totalHours then
 e1.print; pReg.getNext−>e1[]
 else
 e2.print; hReg.getNext−>e2[]
 if)
 #)

5.2.1 Suspending and resuming

The attributes getNext of the objects pReg and hReg have their own thread of execution. When
called in an imperative like pReg.getNext−>e1[], the thread is executed until it either executes a
suspend or terminates. If it executes a suspend, it may be called again in which case it will
resume execution at the point of suspend. The first time getNext is called, it will start executing
scan. For each element in the register, it will suspend execution and exit the current element via
the exit variable elm[]. When the register is empty, NONE is returned.

5.3 Concurrency

As previously mentioned, it is possible to perform concurrent execution of components by means of
the fork operation as sketched in the following example:

(# S1: @| (# do #);
 S2: @| (# do #);
 S3: @| (# do #)
 do S1[] −> fork; S2[] −> fork; S3[] −> fork;
#)

 BETA Language Introduction

5.2 Coroutines 20

The execution of S1, S2 and S3 will take place concurrently with each other and with the object
executing the fork operations. Concurrent objects may access the same shared objects without
synchronization, but may synchronize access to shared objects by means of semaphores. In
section 5 above the pattern semaphore has been described. It is well known that a semaphore is a
low level synchronization mechanism which may be difficult to use in other than simple situations.
For this reason the Mjølner library has a number of patterns defining higher level synchronization
mechanisms. This library includes a monitor pattern as described in section 5 above. The library
also includes patterns defining synchronization in the form of rendezvous as in Ada.

5.4 Monitor Example

The following example describes a company with a number of salesmen, workers and carriers. The
salesmen obtain orders from customers and store them in an order pool. The workers obtain orders
from the order pool, process them and deliver the resulting item in an item pool. The carriers pick
up the items from the item pool and bring them to the customer. Salesmen, workers and carriers
are described as active objects whereas the order− and item pools are represented as monitor
objects.

(# salesman: employee
 (# getOrder: (# exit anOrder[] #)
 do cycle (# do getOrder −> jobPool.put #)
 #);
 S1,S2, : @|salesman;
 jobPool: @monitor
 (# jobs: @register(# type::< order #);
 put: entry
 (# ord: ^order enter ord[] do ord[] −>jobs.insert #);
 get: entry
 (# ord: ^order do jobs.remove −> ord[] exit ord[] #)
 #);
 worker: employee
 (# processJob: (# enter anOrder[] do exit anItem[] #)
 do cycle(# do jobPool.get −> processJob −> itemPool.put #)
 #);
 W1,W2,: @| worker;
 itemPool: @monitor(# #);
 carrier: employee
 (# deliverItem: (# enter anItem[] do #)
 do cycle(# do itemPool.get −>DeliverItem #)
 #);
 C1,C2, : @| carrier;
do jobPool.init; itemPool.init;
 conc(# do S1[]−>start; W1[]−>start; C1[]−>start; #)
#)

5.4.1 Procedure pattern conc

The procedure pattern conc is another example of a high−level concurrency pattern from the
Mjølner library. It does not terminate execution until components being started (by S1[]−>start, etc.)
have terminated their execution.

5.4.2 Rendezvous Example

Next we show an example of using the library patterns for describing synchronized rendezvous.
The example shows a drink machine that provides coffee and soup. A customer operates the
machine by pushing either makeCoffee or makeSoup. If makeCoffee has been pushed, then the

 BETA Language Introduction

5.4 Monitor Example 21

customer may obtain the coffee by means of getCoffee. Similarly if makeSoup has been pushed
then the soup may be obtained by means of getSoup.

The system pattern has a port attribute which may be used to define synchronization ports. The
drink machine described below has three such ports, activate, coffeeReady, and soupReady. A
port object has a pattern attribute entry which may be used to define procedure patterns associated
with port. For the port activate, two procedure patterns makeCoffee and makeSoup are defined.
For coffeeReady and soupReady, the procedure patterns getCoffee and getSoup are defined.

An execution of a port−entry operation like aDrinkMachine.makeCoffee will only be executed if the
drinkMachine has executed a corresponding accept by means of activate.accept.

• Initially a drinkMachine is ready to accept either makeCoffee or makeSoup.
• If e.g. makeCoffee is executed, then when 'the coffee has been made', the drinkMachine is

willing to accept the operation getCoffee. This is signaled by executing an accept on the
port coffeeReady. Technically this is implemented by assigning a reference to coffeeReady
to the port reference drinkReady. The do−part of drinkMachine then makes an accept on
drinkReady.

• When the operation getCoffee, has been executed, the drinkMachine is again ready to
accept a new operation associated with the activate port.
drinkMachine: system
 (# activate: @port;
 makeCoffee: activate.entry
 (# do coffeeReady[]−>drinkReady[] #);
 makeSoup: activate.entry(# do soupReady[]−>drinkReady[] #);
 coffeeReady, soupReady: @port;
 getCoffee: coffeeReady.entry(# do exit someCoffee [] #);
 getSoup: soupReady.entry(# do exit someSoup [] #);
 drinkReady: ^port
 do cycle(# do activate.accept; drinkReady.accept #)
 #)

The drinkMachine may be used in the following way:

aDrinkMachine: @| drinkMachine

 aDrinkMachine.makeCoffee; aDrinkMachine.getCoffee;
 aDrinkMachine.makeSoup; aDrinkMachine.getSoup;

As may be seen the use of the patterns system, port and entry makes it possible to describe a
concurrent program in the style of Ada tasks that synchronize their execution by means of
rendezvous. A port object defines two semaphores for controlling the execution of the associated
entry patterns. The actual details will not be given in this language introduction.

It is possible to specialize the drinkMachine into a machine that accepts further operations:

extendedDrinkMachine: drinkMachine
 (# makeTea: activate.entry(# do teaReady[]−>drinkReady[] #);
 teaReady: @port;
 getTea: teaReady.entry(# exit someTea[] #)
 #)

The extendedDrinkMachine inherits the operations and protocol from drinkMachine and adds new
operations to the protocol.

The basic mechanisms in BETA for providing concurrency are component−objects (providing

 BETA Language Introduction

5.4 Monitor Example 22

threads), the fork−imperative (for initiating concurrent execution) and the semaphore (for providing
synchronization). As has been mentioned already, these mechanisms are inadequate for many
situations. The abstraction mechanisms of BETA make it possible to define higher−level
abstractions for concurrency and synchronization.

5.4.3 More information

Please see the manual [MIA 90−8] for details about the concurrency library.

 BETA Language Introduction

5.4.3 More information 23

#mia90-8

6 Inheritance
The subpattern mechanism combined with the possibility of redefining/extending virtual procedures
is widely recognized as a major benefit of object−oriented languages. This mechanism is often
called inheritance since a subpattern is said to inherit properties (code) from its superpattern.
Inheritance makes it easy to define new patterns from other patterns. In practice this has implied
that subpatterns are often used for sheer inheritance of code without any concern for the relation
between a pattern and its subpatterns in terms of generalization/specialization. The use of multiple
inheritance is in most cases justified in inheritance of code and may lead to complicated inheritance
structures.

6.1 Classification and inheritance

In BETA subpatterns are intended for representing classification and inheritance of code is a
(useful) side effect. In BETA it is not possible to define a pattern with multiple superpatterns
corresponding to multiple inheritance. There are indeed cases where it is useful to represent
classification hierarchies that are not tree structured. However, a technical solution that justifies the
extra complexity has not yet been found.

6.2 Inheritance from part−objects

BETA does support multiple inheritance, but in the form of inheritance from part−objects. A
compound object inherits from its parts as well as its superpattern. The reason that this has not
been more widely explored/accepted is that in most languages inheritance from part−objects lacks
the possibility of redefining/extending virtual procedures in the same way as for inheritance from
superpatterns. Block−structure and singular objects make this possible in BETA.

Assume that we have a set of patterns for handling addresses. An address has properties such as
street name, street number, city, etc., and a virtual procedure for printing the address. In addition
we have a pattern defining an address register.

address:
 (# streetName: @text; streetNo: @integer; city: @text;
 print:<
 (#
 do inner;
 streetName−>puttext;
 streetNo−>putint; (*etc.*)
 #);
 #);
addressRegister: register(# element::< address #)

We may use the address pattern for defining part−objects of employee/company objects:

employee:
 (# name: @text; {the name of the employee*)
 adr: @address(# print:: (# do name−>puttext #)#)
 #);
company:
 (# name: @text; (*the name of the company*)
 adr: @address(# print:: (# do name−>puttext #) #)
 #);

The object adr of employee is defined as a singular address object where the virtual print pattern is
defined to print the name of the employee. As can be seen it is possible to define a part−object and

6 Inheritance 24

define its virtual procedures to have an effect on the whole object. The company pattern is defined
in a similar way.

It is possible to handle the address aspect of employees and companies. An example is an address
register:

AReg: @addressRegister;

employee1.adr[]−>AReg.insert; employee2.adr[]−>AReg.insert;
company1.adr[]−>AReg.insert; company2.adr[]−>AReg.insert;
AReg.scan(# do current.print #)

The AReg register will contain address objects which are part of either employee objects or
company objects. For the purpose of the register this does not matter. When the print procedure of
one of these address objects is invoked it will call the print procedure associated with either
employee or company. The scanning of the AReg register is an example of invoking the print
pattern.

The example shows that in BETA inheritance from part−objects may be used as an alternative to
inheritance from superpatterns. The choice in a given situation depends of course on the actual
concepts and phenomena to be modeled. In the above example it seems reasonable to model the
address as a part instead of defining employee and company as specializations of address.

In general it is possible to specify multiple inheritance from part−objects since it is possible to have
several part−objects like the address object above. This form of multiple inheritance provides most
of the functionality of multiple inheritance from C++ and Eiffel. It is simpler since the programmer
must be explicit about the combination of virtual operations. It does, however, not handle so−called
overlapping superclasses. The programmer must also explicitly redefine the attributes of the
component classes. This may be tedious if there is a large number of attributes. However, a
renaming mechanism for making this easier has been proposed for BETA, but it is not yet
implemented in the Mjølner System. Multiple inheritance from part−objects should be used when
there is a part−of relationship between the components and the compound. This also covers
situations where implementations are inherited. It should not be used as a replacement for multiple
specialization hierarchies.

A common example of using multiple inheritance is modeling windows with titles and borders. This
may be modeled using block−structure. Since a window may have a title, a border or both, the
following class hierarchy using multiple inheritance is often used:

In BETA this can be described using nested patterns:

window:
 (# title: (# #);
 border: (# #);

 #);
aWindow: @window(# T: @title; B: @border #)

 BETA Language Introduction

6 Inheritance 25

The descriptions for title and border are made using nested patterns. For a given window, like
aWindow, a title object and a border object may be instantiated. If e.g. two titles are needed, two
instances of title are made. This example illustrates another situation where multiple inheritance
may be avoided.

 BETA Language Introduction

6 Inheritance 26

7 BETA Terminology

The following is a short description of important concepts used in the BETA language. Please note,
that these descriptions are deliberately informal. The precise meanings of these terms must be
found in [MMN 93].

Contents
Modelling
Declarations and Object Descriptors
Reference Attributes
Pattern Attributes
Imperatives
Block Structure and Scoping
Inserted Objects
Inheritance
Virtual Patterns

7.1 Modelling

Object−oriented programming

A program execution is viewed as a physical model or representation of part of the world.
 Objects on the computer model phenomena in the world; attributes of objects model
properties of phenomena.

Computer

Real world

Object

Phenomenon

Attribute

Property

Pattern

Concept

BETA program execution

A collection of objects. Some represent phenomena while others are simply part of the
implementation.

Object

Computer representation of a real world phenomenon. Its structure consists of

7 BETA Terminology 27

#mmn93
#mmn93

attributes and actions.

Pattern

Computer representation of a real world concept. Objects defined according to the pattern
are called instances or pattern defined objects: A pattern is to its instances as a concept is
to its phenomena.

Singular object

An object representing a singular "one−of−a−kind" phenomenon − the object is not defined
as an instance of some pattern.

State of an object

The combined values of its measurable properties at some point in time.

Measurable property

A property which has a measurable value. The value may vary over time.

Part object

An object which is part of another object. Part objects are used to model part or aggregation
hierarchies.

Separate object

An autonomous self−contained object which is not a part object.

Reference to separate object

An attribute which is a reference to a separate object.

Kinds of actions

The actions of a phenomenon in a real world system often take place concurrently (i.e. in
parallel) with those of other phenomena in the system. A single phenomenon normally
alternates among its own actions.

7.2 Declarations and Object Descriptors

Declaration or attribute declaration

An association or binding of a name to some entity. The syntactic construct used is the
colon ":" as in, <name>: <entity>. For attributes of an object descriptor, these are
sometimes referred to as the attribute name and attribute description, respectively.

Pattern declaration

A declaration binding a pattern name to an object descriptor, describing the structure of
instances of the pattern. Pattern declarations serve as templates for generating objects

 BETA Language Introduction

7.2 Declarations and Object Descriptors 28

having a given structure.

Syntax is:

 <name>: <object−descriptor>

Singular object declaration

Declaration of a singular object binding the object name to the singular object description
(an object descriptor).

Syntax is:

 <name>: @<object−descriptor>

Attribute reference

An occurrence of an attribute's name in an object descriptor.

Local attribute reference of a pattern

A reference from within a pattern's object descriptor to an attribute declared inside the same
object descriptor.

Global attribute reference

Any attribute reference which is not local.

Object−descriptor

Used to describe the structure of objects and consists of a prefix part and a main part.

Prefix part

Part of object descriptor used to specify the superpattern of the descriptor. The prefix part is
specified by a pattern name (or is empty).

Main part

Used to describe the additional structure of objects. Has the syntactic form(# E #) and
consists of an attribute part and an action part.

Attribute part

Part of object descriptor used to describe the object's attributes. Consists of a list of attribute
declarations.

Action part

Part of object descriptor used to describe the actions to be performed when the object is
executed. Consists of three parts: enter−part, do−part, exit−part.

Enter part

Part of action part describing the enter parameters.

 BETA Language Introduction

7.2 Declarations and Object Descriptors 29

Do part

Part of action part consisting of a list of imperatives.

Exit part

Part of action part describing the exit parameters.

Program

An object descriptor that can be compiled and executed.

7.3 Reference Attributes

Reference attribute

An attribute that denotes an object. Reference attributes can be either static references or
dynamic references.

Static reference

A reference attribute that constantly denotes the same object. Such objects are often
referred to as static objects. In cases where these objects are used to model part (or
aggregation) hierarchies, they are referred to as part objects, that is, they are part of an
enclosing object.

Static reference declaration

Used to define static reference attributes.

Syntax is:

 <name>: @<ptn.name or
obj.descriptor>

Dynamic reference

A reference attribute that denotes a object. The reference is variable in that it may denote
different objects over time. Initially it denotes NONE which represents "no object."

Dynamic reference declaration

Used to define dynamic reference attributes.

Syntax is:

 <name>: ^<pattern name>

Indexed collection of static / dynamic references

A repetition (or array) of object references referred to by a single name plus an index. The
size of a repetition A is denoted by A.range. A[1] refers to the first element in the repetition,
A[A.range] to the last.

 BETA Language Introduction

7.3 Reference Attributes 30

Syntax is:

 Name: [eval] @<ptn.name or obj.descriptor>
 Name: [eval] ^<ptn.name>

The size of the repetition can be dynamically extended by:

 <number> −> A.extend

Qualification or qualifying pattern

The pattern name appearing in a reference attribute declaration. It restricts the set of
objects that can be denoted by the reference.

Remote access

Used to denote attributes within an enclosing object.

Syntax is:

 reference.attribute

Computed Remote access

Used to denote attributes within objects that are returned as the result of evaluations.

Syntax is:

(evaluation).attribute

7.4 Pattern Attributes

Pattern reference

A reference attribute that denotes a pattern. The structure of the pattern is represented
locally using a structure object. Such objects include a reference back to the object of which
the pattern is an attribute. This reference is called the origin of the pattern.

Pattern reference declaration

Used to define a pattern.

Syntax is:

 <name>: <object descriptor>

Pattern variable declaration

Used to define pattern variable attributes. A pattern variable may denote different patterns
during the execution. The qualification restricts the set of patterns which may be denoted by
the pattern variable.

Syntax is:

 BETA Language Introduction

7.4 Pattern Attributes 31

 <name>: ##<pattern name>

Class pattern

Generally, a pattern used to model physical objects.

Procedure pattern

Generally, a pattern used to model action sequences.

Function pattern

A procedure pattern which computes and returns a value. Such patterns always have an
exit part.

Basic pattern

A pattern that is predefined within the BETA language. Examples are integer, real, boolean,
and char. Relevant operations include: +, −, *, div, mod, and, or, not, true, false, =, <, >, <>,
<=, >=.

7.5 Imperatives

Imperative

Describes an action; executing the imperative causes the action. Imperatives appear in the
do−part of an object. Kinds of imperatives include evaluations, reference assignments,
dynamic object creation, and control structures.

Evaluation imperative

An imperative that can cause state changes and may produce a value when executed.

Value assignment

An evaluation imperative that sets (changes) the value of an attribute.

Syntax is:

 3 −> I

Reference assignment

An imperative used to change the value of a dynamic reference.

Syntax is:

 objRef[] −> dynObjRef[]

objRef may be any object reference but dynObjRef must be a dynamic object reference.

Pattern assignment

 BETA Language Introduction

7.5 Imperatives 32

An imperative used to change the pattern denoted by a pattern variable.

Syntax is:

 ref## −> dynPatRef##

Ref may be the name of a pattern variable, the name of an object, or the name of a pattern
but dynPatRef must be a dynamic pattern reference.

Multiple assignment

An evaluation imperative that causes several assignments.

Syntax is:

 3 −> I −> J

Dynamic object creation / generation

Imperatives used to create new dynamic objects.

Syntax is:

&Pat or &Pat[]

Value equality

True when two references denote objects that have the same state.

Syntax is:

 A = B

Reference equality

True when two references denote the same object.

Syntax is:

 A[] = B[]

Pattern equality

True when two pattern references denote the same pattern.

Syntax is:

 A## = B##

Note that < and <= are also defined for pattern comparisons based on the inheritance
hierarchy.

Procedure call

An evaluation imperative that causes invocation of a procedure pattern.

 BETA Language Introduction

7.5 Imperatives 33

Syntax is:

&ProcPat

or

 (arg1,arg2) −> &ProcPat

Function call

An evaluation imperative that causes invocation of a function pattern.

Syntax is:

 (arg1,arg2) −> &FuncPat −>
result

Control structure

An imperative that controls the flow of executions.

For imperative

A control structure used to support iteration. A list of imperatives are executed repeatedly
while an index steps from 1 up to the number of iterations.

Syntax is:

(for Index: Range repeat
 Imperative−list

for)

General−if imperative

A control structure used to support selection. Based on evaluating a condition evaluation
and comparing it to the values of a number of selection evaluations, one of a set of
imperative−lists is executed.

Syntax is:

(if E0
// E1 then I1
// E2 then I2

 E
// En then In
else I
if)

Simple−if imperative

A control structure used to support boolean selection. Based on evaluating a condition
evaluation and testing if it is true or false, one of two imperative−lists is executed.

Syntax is:

(if E then
 I1

 BETA Language Introduction

7.5 Imperatives 34

else I2
if)

Labelled imperative

A means of naming an imperative. References to the label (via jump imperatives) can be
made from within the imperative.

Syntax is:

 L: Imperative

or

 L: (# ... do ... #)

Jump imperative

Causes flow of control to "jump" to another location. A jump imperative is one of a Leave
imperative or a Restart imperative.

Leave imperative

Causes termination of the execution of a labelled imperative; execution resumes after the
labelled imperative. This imperative can only appear within the labelled imperative.

Syntax is:

leave L

Restart imperative

Causes restarting of the execution of a labelled imperative, that is, jump is to the start of the
imperative. Can only appear within the labelled imperative.

Syntax is:

restart L

7.6 Block Structure and Scoping

Block structure

The nesting of one structure in another in the text of a program. In BETA, object descriptors
and imperatives can be nested inside of other object descriptors and imperatives. It is the
job of the programmer to use indentation to make such nesting visible to readers. In the
following example, Deposit's object descriptor is nested inside of Account's.

 Account:
(# Deposit:

(# E
do E
#);

#);

 BETA Language Introduction

7.6 Block Structure and Scoping 35

Declaration of a name

An association of a name with some defining expression.

Syntax is:

 <name>: E

Recall that colon ":" always signals a declaration of some kind.

Application of a name

Any occurrence of a name in a program which is not a declaration. Note that this does not
include keywords of the BETA syntax (e.g. if, for, repeat, do), but does include predefined
pattern and attribute names (e.g. char, putInt, stream).

Scope of a declaration

The part of the program text "covered" by the declaration, that is, where applications of the
declared name refer to the given declaration. In BETA, the scope of a declaration is the
object descriptor it appears in. The exception to this is that the declaration may be "hidden"
by declarations of the same name in nested object descriptors or labelled imperatives. Note
that the declared name can also be applied outside its object descriptor using remote
access. We say that a name is local to the object descriptor in which it is declared and
global to any nested object descriptors (for which it is not hidden).

7.7 Inserted Objects

Inserted item

A means of generating (and executing) a procedure object allocated as part of the enclosing
object.

Syntax is:

 A −> P −> B

or

 A −> P(# E #) −> B

This differs from dynamic generation, &P, in that the instance of P is generated only once
rather than each time the imperative is executed. Note that inserted items should not be
used to define recursive procedures. That is, an inserted instance of P may be specified in
the action part of P.

7.8 Inheritance

Direct subpattern

A pattern P is a direct subpattern of Q if P extends (specialises) the definition of Q. Q is

 BETA Language Introduction

7.7 Inserted Objects 36

called the direct superpattern of P and instances of P are also instances of Q.

Syntax is:

 P: Q(# E #)

Q is called the prefix pattern (or simply prefix), while the contents of (# E #) is called the
main−part of P. The prefix Q means that P's object descriptor inherits all of Q's declarations
in addition to any new ones defined in P's main−part.

Subpattern

A pattern P is a subpattern of Q if it is either a direct subpattern of Q or a subpattern of a
direct subpattern of Q. Likewise, Q is a superpattern of P if it is either a direct superpattern
of P or a superpattern of the direct superpattern of P. A pattern can have at most one direct
superpattern.

Abstract superpattern

A pattern used only as a superpattern for other patterns, that is, it is not intended to be used
to generate objects. If P is declared without the use of a superpattern, P: (# E #), then P is
assumed to be a subpattern of the most general abstract superpattern, Object. Note that the
basic patterns, Integer, Real, Boolean, Char and Real are not subpatterns of Object.

Superpattern as qualification

If R is a dynamic reference qualified by the pattern Q (i.e. R: ^Q) and Q is a superpattern of
P, then instances of both P and Q can be assigned to R. However, only attributes of Q (and
of superpatterns of Q) can be accessed using remote access through R. That is, if attribute
A is declared in the main part of P, then the remote access R.A is illegal.

Action specialisation

The use of a subpattern to extend the action part of a pattern. Action specialisation can
involve any or all of the enter−part, exit−part and do−part. The enter and exit parts of
instances of P (again, a subpattern of Q) consist of Q's enter and exit parameters together
with those defined by P. Extending the do−part of Q requires the use of the inner imperative
in Q's action part. Executing the do−part of an instance of P proceeds by executing Q's
do−part and executing P's do−part each time inner is encountered.

Syntax is:

 Q: (# E do E inner E #);
 P: Q(# E do E #);

7.9 Virtual Patterns

Virtual pattern

A pattern attribute V of a pattern Q is virtual if it is only partially defined in Q. That is, the
definition of V can be extended in subpatterns of Q.

Syntax is:

 BETA Language Introduction

7.9 Virtual Patterns 37

 Q: (# V:< S #)
 Q: (# V:< S0(# E #) #)
 Q: (# V:< (# E #) #)

In the first of the three forms, we say that the virtual V is qualified by the pattern S, in the
second and third forms, we say that V is directly qualified.

Further binding of a virtual pattern

The means by which a virtual attribute V of a pattern Q is extended in a subpattern P of Q.

Syntax is:

 P: Q(# V::< S1 #)
 P: Q(# V::< S1(# E #) #)
 P: Q(# V::< (# E #) #)

S1, S1(# E #), or (# E #) is called the extended descriptor of V. If we're using either the first
or second form, and if V is qualified by S in the pattern Q, then S1 must be a subpattern of
S. In the case of the third form there are no constraints on Q's declaration of V. If X is an
instance of P, then X.V specialises (that is, adds properties to) the definition of V in Q. Note
that V is now a virtual pattern in P (as well as Q) and can continue to be further bound in
subpatterns of P.

Final binding of a virtual pattern

The means by which a virtual attribute V of a pattern Q is extended in a subpattern P of Q,
and at the same time made non−virtual.

Syntax is:

 R: P(# V:: S2 #)
 R: P(# V:: S2(# E #) #)
 R: P(# V:: (# E #) #)

Final binding is identical to further binding, except that with final binding, V is no longer
virtual.

 BETA Language Introduction

7.9 Virtual Patterns 38

8 BETA Quick Reference Card
A summary of all special characters in BETA, and a short list of the syntax of the language is given
below along with a short description of their semantics:

Special
characters

Semantics

: Declaration

: @ Static object reference declaration

: ^ Dynamic object reference declaration

: ## Pattern reference declaration

: @| Static component declaration

: ^| Dynamic component declaration

: [range] Declaration of repetition. range must be an integer
evaluation

:< Virtual declaration

::< Extended binding of virtual declaration

:: Final binding of virtual declaration

& Dynamic creation of item; new

&| Dynamic creation of component

−> Assignment

[] Reference

Pattern reference

(# Object descriptor begin

#) Object descriptor end

// Selection in if−imperative

8 BETA Quick Reference Card 39

Keywords

do else enter exit inner leave none repeat restart suspend then this (if if) (for for)

Additional
keywords
(for
their
usage,
see
below)

Short
syntax

Semantics

P: (# E do E
#)

Definition of a pattern

PP: P(# E
do E #)

Definition of a subpattern

enter E Specification of enter−parameters

exit E Specification of exit−parameters

inner P Execute the actions in the subpattern. P is an optional name of
an enclosing pattern.

this(P) Denotation of this object

this(P)[] Reference to this object

E.P Remote name

(E).P Computed remote name

L: Imp In action part: labelled imperative

L: (# E do E
#)

In action part: labelled imperative (descriptor)

leave L Terminate labelled imperative or object instance L

restart L Goto beginning of labelled imperative or object instance L

suspend Component suspension

 BETA Language Introduction

8 BETA Quick Reference Card 40

E1 −> E2 Assignment imperative

(if E
// E1 then
Imp1
// En then
Impn
else Imp
if)

General selection imperative:
Sequential evaluation of E, E1, E En
First Impi is executed where Ei=E
If no Ei=E, then Imp is executed
'else Imp' is optional

(if E then

Imp1
else

Imp2
if)

Simple if imperative:
Evaluation of E (must exit a single boolean value);
Execute Imp1 if E is true;
Otherwise Imp2 is executed
'else Imp2' is optional

(for I: range
repeat
Imp
for)

Repetition imperative:
I is a locally scoped integer variable within Imp. Execute Imp with
I assigned each value in [1..range]

NONE The nil reference value

R[i:j] Repetition slice

R[i] Indexed repetition element

(e1, e2, E,
en)

Evaluation list

Please note, that the above description is by no means complete, and in some cases ambiguous.
The ultimate reference is naturally the BETA grammar as defined in the BETA book [MMN 93].

 BETA Language Introduction

8 BETA Quick Reference Card 41

#mmn93

Index
The entries in the alphabetic index consists of selected words and symbols from the body files of
this manual − these are in bold font − as well as the identifiers defined in the public interfaces of
the libraries − set in regular font.
In the manual, the entries, which can be found in the index are typeset like this. This can help
localizing the identifier, when the link from the index if followed − especially in the case where the
browser does not scroll the line to the top, e.g. because there is less than a page of text left.
In the small table of letters and symbols below, each entry links directly to the section of the index
containing entries starting with the corresponding letter or symbol.

& > (− / : @ [^ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z |

#

#)

&

& [2] [3] &|

(

(#
(E).P

(for
(if

−

−> [2] [3]

/

// [2]

:

: ##
: @
: @|
: [range]

: ^
: ^|
:
:: [2]

::< [2]
:< [2]

>

>

Index 42

@

@ @|

[

[] [2]

^

^

A

Abstract superpattern
action object
Action part
action part [2] [3]
Action specialisation
actions

Aggregation
alternates
Application of a name
array
attribute declarations
attribute description

attribute name
attribute part and an action
part.
Attribute part
Attribute reference
attributes [2]

B

Basic Constructs
Basic pattern
behaviorally equivalent
BETA program execution

binding
Block Structure and Scoping
Block structure
block−structure [2]

boolean
booleanObject
box

C

char
charObject
class pattern attributes
class pattern
Class pattern
classification
Classification
component
Composite Types

composite types
Composition
Computed Remote access
conc
concept
Conceptual Framework
Concurrency
concurrency
concurrent execution

concurrent process
concurrently
control patterns
Control structure
control structures [2]
coroutine [2]
Coroutines and Concurrency
Coroutines

D

data object
Declaration of a name
Declaration or attribute
declaration
Declarations and Object
Descriptors
descriptor [2]
Deterministic coroutines
Direct subpattern

direct subpattern
direct
directly qualified
Do part
do−part
do [2]
Dynamic object creation /
generation

dynamic object creation
dynamic objects
Dynamic reference declaration
dynamic reference [2] [3]
Dynamic reference
dynamic references

 BETA Language Introduction

@ 43

E

E.P
else [2]
enclosing object
enclosing objects
enter parameters
Enter part

enter−part
enter [2]
Evaluation imperative
evaluations
executing
execution thread

Exit part
exit−part
exit [2]
extend [2]
extended descriptor

F

final binding
Final binding of a virtual
pattern
For imperative

for)
for [2]
fork

Function call
Function pattern
Further binding of a virtual
pattern

G

General−if imperative Global attribute reference global

I

if)
if [2]
Imperative
imperative [2]
imperatives
Imperatives
indentation

Indexed collection of static /
dynamic references
inheritance
Inheritance
inheritance
inherits
inner [2] [3]
input parameters

Inserted item
Inserted Objects
instances of the pattern
instances
integer
integerObject
iteration

J

Jump imperative jump imperatives

K

Kinds of actions

L

L: Imp
labeled
Labelled imperative

Language Concepts
Leave imperative [2]
leave L

leave [2]
Local attribute reference of a
pattern
local

M

main part
Main part
main−part

Measurable property
Mjølner System
modeling

Multiple assignment
multiple inheritance [2]
must be a dynamic object

 BETA Language Introduction

E 44

measurable properties Modelling reference.
must be a dynamic pattern
reference.

N

Nested Patterns
nesting
new [2] [3]

non−virtual pattern attribute
NONE [2] [3]
none

NONE [2]

O

object−descriptor
Object−descriptor
Object−oriented programming

Object
Objects
objects

Objects
origin
output parameter

P

parameter
parameterized patterns
parameters
Part object
part objects
part−object [2] [3]
Pattern assignment
Pattern Attributes
Pattern declaration
pattern defined objects
Pattern equality

pattern name
Pattern reference declaration
Pattern reference
Pattern variable declaration
pattern variable
Pattern [2]
pattern
Patterns and Objects
phenomenon
physical model
Powerful Abstraction
Mechanisms

prefix part
Prefix part
prefix pattern
prefix
Procedure call
procedure pattern [2]
Procedure pattern
procedure
Program

Q

qualified

R

R[]
R[i:j]
R[i]
range
real
realObject
Reference assignment [2]
reference assignments

reference attribute [2]
Reference attribute
Reference Attributes
Reference equality
reference operator
Reference to separate object
Remote access
rendezvous

repeat [2]
repetition
Repetitions
representation
Restart imperative [2]
restart L
restart [2]
resume

S

scan
Scope of a declaration
selection [2]
Separate object

slice
State
static reference)
static objects

structural equivalence
structure object
subpattern [2]
Subpattern

 BETA Language Introduction

N 45

simple types
Simple−if imperative
Singular object declaration
Singular object
Singular Objects
singular

Static reference declaration
static reference
Static reference
static references
static variable
strongly typed

subpattern [2]
Superpattern as qualification
superpattern [2]
suspend [2] [3]

T

templates
Terminology
text constant

then [2]
this(P)
this(P)[]

this
thread

V

value assignment [2]
Value assignment
Value equality
Virtual Class Pattern
virtual class pattern

virtual pattern attribute
Virtual pattern
Virtual Pattern
virtual pattern
Virtual Patterns

virtual procedure pattern
Virtual Procedure Pattern
virtual procedure pattern
virtual

|

|

 BETA Language Introduction

T 46

	Table of Contents
	1 Introduction
	1.1 Language Concepts
	1.2 Powerful Abstraction Mechanisms
	1.2.1 The pattern
	1.2.2 Subpattern
	1.2.3 Virtual pattern

	1.3 Pattern variable
	1.4 Coroutines and concurrency
	1.5 Identification of Objects
	1.5.1 Class-less objects

	1.6 Classification
	1.7 Composition (Aggregation)
	1.8 Inheritance
	1.9 Conceptual Framework
	1.9.1 Modeling

	2 Basic Constructs
	2.1 Simple Types and Values
	2.2 Simple Static Variables
	2.3 Simple Assignments
	2.3.1 Value assignment

	2.4 Control Structures
	2.4.1 if
	2.4.2 for
	2.4.3 descriptor
	2.4.4 labeled descriptor
	2.4.5 labeled imperative

	2.5 Static and Dynamic Variables
	2.5.1 Reference attributes
	2.5.2 Static Reference
	2.5.3 Dynamic reference
	2.5.4 Reference assignment

	2.6 Repetitions
	2.7 Composite Types (Records)
	2.7.1 Pattern

	3 Patterns and Objects
	3.1 Pattern Employee
	3.2 Elements of Employee
	3.3 Class and procedure patterns
	3.4 Subpatterns of Employee
	3.5 Part object
	3.6 Dynamic reference
	3.7 Singular Objects
	3.8 Subprocedure
	3.8.1 Abstract procedure pattern

	3.9 Control Patterns
	3.9.1 scan is a control pattern
	3.9.2 Using a control pattern

	3.10 Nested Patterns
	3.11 BETA supports general block-structure
	3.12 Nested Class Patterns

	4 Virtual Pattern
	4.1 Structural equivalence is used in BETA
	4.2 Patterns A and AA
	4.3 Combined descriptor
	4.4 Pattern AB
	4.5 Pattern AAA
	4.6 Final binding
	4.7 Virtual Procedure Pattern
	4.7.1 ComputeSalary is a virtual procedure pattern

	4.8 Virtual Class Pattern
	4.8.1 type is a virtual class pattern
	4.8.2 General parameterized patterns

	5 Coroutines and Concurrency
	5.1 Components with execution threads
	5.2 Coroutines
	5.2.1 Suspending and resuming

	5.3 Concurrency
	5.4 Monitor Example
	5.4.1 Procedure pattern conc
	5.4.2 Rendezvous Example
	5.4.3 More information

	6 Inheritance
	6.1 Classification and inheritance
	6.2 Inheritance from part-objects

	7 BETA Terminology
	7.1 Modelling
	7.2 Declarations and Object Descriptors
	7.3 Reference Attributes
	7.4 Pattern Attributes
	7.5 Imperatives
	7.6 Block Structure and Scoping
	7.7 Inserted Objects
	7.8 Inheritance
	7.9 Virtual Patterns

	8 BETA Quick Reference Card
	Index
	#
	&
	(
	-
	/
	:
	>
	@
	[
	^
	A
	B
	C
	D
	E
	F
	G
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	V
	|

